
165

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 60, Issue II June, 2017

GENERALIZED DELTA RULE WITH ENTROPY ERROR FUNCTION

Javier BILBAO, Imanol BILBAO, Cristina FENISER

Abstract: Machine Learning can refer to a different and various algorithms, based on artificial

intelligence, that are able to recognize data patterns through continuous and repeated learning

techniques, and we do not have to assume any prior data distribution. In this way, artificial neural

networks can provide an effective technology and methodology. Artificial neural networks need a rule,

delta rule, in order to learn from the supplied data. In this paper a generalized delta rule with a new

error function is presented.

Key words: neural networks, delta rule, error function, cost function.

1. INTRODUCTION

Artificial Neural Networks have proven to
be an effective technology in performing tasks
in which the human brain provides good
results. In addition, thanks to their parallel
architecture, they are able to quickly handle the
immense amount of data and variables that,
today, are available thanks to the wide
deployment of mobile technologies and, in
general, the so-called Big Data. What’s more,
their capacity for adaptation and evolution is
also desirable in systems that evolve and
develop changing over time.

Feedforward Artificial Neural Networks
using classical generalized delta rule have
shown ability to classify the data in previously
defined clusters, represent the information
internally in a way that extracts de data’s
features and compresses it, and finally,
generalize results to patterns not presented
before.

The power of the idea of the generalized
delta rule is that even the connections of the
network’s internal neurons can adapt to
minimize the error between the target and the
result of the output neurons. It allows somehow
hidden layers’ neurons to create an adequate
representation of the information.

2. CONSIDERATIONS ABOUT ERROR

FUNCTIONS

For a training data set ()ptx
rr

, , where t
r

 is the

desired response associated to the x
r

 network
entry data of the pattern p, all the suggested
error functions are accumulative and
independent respect to their terms, this is, the
total error will be a sum of the individual
errors. Therefore, ∑

∀

=
p

ptotal EE , the total error

is the sum of the error made with each pattern.
We will understand total error as a function

of the network weights
ijw , and we will try to

locate its minimum value using the gradient
descent method.

The fact that ∑
∀

=
p

ptotal EE allows us to write

also the partial derivatives as an accumulation
for each pattern:

 ∑
∑

∀

∀

∂

∂
=

∂

∂

=
∂

∂

p ji

p

ji

p

p

ji

total

w

E

w

E

w

E
 (1)

So, following the gradient descent rule:

166

 ∑
∀ ∂

∂
−=

∂

∂
−=∆

p ji

p

ji

total
ji

w

E

w

E
w (2)

If we name

jip w∆ something that is

proportional to each
ji

p

w

E

∂

∂
− we are able to write

∑
∀

∆=∆
p

jipji ww .

3. CLASSICAL GENERALIZED DELTA

RULE

3.1 Used error function

The error function used in [1] is the usual
sum-squared error function calculated through
all the output layer’s neurons:

 ()∑
∀

−=
j

pjpjp otE
2

2

1
 (3)

pjt is the j-th component for the desired

output
pt
r

. Therefore, it is the desired output for

the j-th output neuron when the pattern p is
applied.

pjo is the output obtained in the output

neuron j when
px
r

 is presented to the network

input layer.

3.2 Initial definitions and used output

function
In a purely feedforward network architecture

the i layer’s neurons only are connected to the
i+1 layer’s neurons. The input layer receives
the

px
r

data and transforms it in network signals.

The output layer transmits its signals outside
the network. The hidden layers are responsible
of finding an appropriate representation of the
info to achieve the desired result.

Fig. 1. Feedforward architecture.

In a feedforward architecture each neuron of

the network receives signals from the neurons
of the previous layer. The effect of these signals
is combined in the neuron net total input:

 ∑

∀

=
i

pijipj ownet (4)

Here the net total input is the linear

combination of the previous layer’s neurons
output with the corresponding connections
weights. The subindex i indicates each neuron
of that previous layer and

jiw is the weight of

the connection from the neuron i to the neuron j
that’s being analyzed.

As usual in this kind of models, all the
neuron’s activation thresholds are jθ treated as

a weight of a fictitious connection of input 1. In
this sense, 0jj w=θ .

The mathematical development of [1] takes
into account that all the neurons in the network
have their own generic output function that
relates the output of the neuron with the net
total input. Therefore,

 ()

pjjpj netfo = (5)

The only condition they must fulfill is to be

non-decreasing and differentiable.

3.3 Classical generalized delta rule summary

The modification in the weights that should
be done after a pattern p is presented is

 pipjjip ow ηδ=∆ (6)

The

pjδ for the neurons of the output layer is

167

 () ()
pjjpjpjpj netfot '−=δ (7)

For the hidden layers’ neurons:

 ()∑
∀

=
k

kjpkpjjpj wnetf δδ ' (8)

Where k are all the neurons which the

neuron j is connected to.
The calculations are divided into two phases.

The first is a feedforward propagation of the
entry data

px
r

 through the network, from the

input layer towards output layer. The objective
is to generate each neuron’s net total input and
each neuron’s output for the known weights.
Once pjnet and

pjo have been calculated for all

the neurons the second back propagation phase
can be done. Starting in the last layer, with the
known

pt
r

 for the used data entry, we calculate

each layers neurons’
pjδ . Therefore, we

calculate
pjδ for all the neurons of the output

layer, and with all them together we continue
calculating the previous layer neurons’

pjδ just

as a linear combination of them. The process
continues recursively layer by layer until the
input layer is reached.

3.4 Classical generalized delta rule

development
Following the general steps provided by [1]

we will calculate
ji

p

w

E

∂

∂
− for each

jiw and try to

write it as the product pipjoδ . Thus, we can

write:

ji

pj

pj

p

ji

p

w

net

net

E

w

E

∂

∂

∂

∂
=

∂

∂
 (9)

Where pjnet is the net total input of the

neuron j where the connection
jiw finishes.

From the equation (4) it is easy to follow
that

pi

ji

pj
o

w

net
=

∂

∂
 (10)

Cause all the other weights act as constants
for

jiw∂ .

To compute the other term of (9),

pj

pj

pj

p

pj

p

pj
net

o

o

E

net

E

∂

∂

∂

∂
=

∂

∂
=−δ (11)

Where pjo is the output of the neuron where

the connection
jiw finishes.

From the equation (5) it follows immediately
that

 ()
pjj

pj

pj
netf

net

o
'=

∂

∂
 (12)

The first term is more complicated to

evaluate. If we suppose that j is a neuron from
the output layer, then

 ()∑
∀

−
∂

∂
−=

∂

∂
−

k

pkpk

pjpj

p
ot

oo

E 2

2

1
 (13)

pjpj

pj

p
ot

o

E
−=

∂

∂
− (14)

Cause all the other pko distinct from

pjo are

unrelated and act as constants.
If the neuron j is a neuron from the previous

layers, we should follow the chain rule, just as
indicated in [1]:

pj

pk

k pk

p

pj

p

o

net

net

E

o

E

∂

∂

∂

∂
−=

∂

∂
− ∑

∀

 (15)

 ∑∑
∀∀ ∂

∂

∂

∂
−=

∂

∂
−

i

piji

pjk pk

p

pj

p
ow

onet

E

o

E
 (16)

 ∑∑
∀∀

=
∂

∂
−=

∂

∂
−

k

kjpkkj

k pk

p

pj

p
ww

net

E

o

E
δ (17)

4. GENERALIZED DELTA RULE WITH

ENTROPY ERROR FUNCTION

4.1 Desired values and possible output values

As in the case of the logistic regression
explained in [2] there are some cases,
especially for digital data of input and output,
where the provided targets

pjt are always 0 or 1

168

and the desired outputs of the network should
be in the same range to be interpreted. In
classification networks, for example, each
output neuron could reflect the probability of a
data to belong to a determined predefined class
being desirable this property.

We can assure, in accordance with the
digital nature of the data collected, that all the
target values will be 0 or 1.

On the other hand, we will interpret the
output values of each output neuron as the
probability of that output to be a 1. To be so it’s
neurons output range should be []1,0 . We will
later choose an appropriate output function that
fulfils this condition.

4.2 Used error function
The error function is that used in [2] for the

logistic regression. For a given pattern the error
on each neuron of the output layer is:

 ()
()

()

=−−

=−
=

01ln

1ln
,

pjpj

pjpj

pjpjp
to

to
otE (18)

This function is a known function in the

statistical field making use of the maximum
likelihood principle. It’s a concave function
where the errors are nearly 0 if the estimation is
correct, or near correct, and where the errors
tend to infinity if the estimations are incorrect.
It takes intermediate values for values that are
in an uncertain probability.

If the desired output is 1=pjt and the actual

output is near 1 the error would be very small.
As

pjo tends to 0 the error would increase

slowly, and for values of
pjo near to 0 the error

would be very big (it tends to infinity as the
output tends to 0).

Fig. 2. Error for tpj=1.

If the desired output is 0=pjt and the actual

output is near 0 the error would be very small.
As

pjo tends to 1 the error would increase

slowly, and for values of
pjo near to 1 the error

would be very big (it tends to infinity as the
output tends to 1).

Fig. 3. Error for tpj=0.

Knowing that the unique values that

pjt can

have are 0 or 1, the error for the pattern among
all the neurons in the output layer may be
rewritten as:

 () () ()∑ −−+−=

j

pjpjpjpjp ototE 1ln1ln (19)

4.3 Used output function
The used output function is the sigmoidal

function. It’s defined by:

 ()
pjnetpjjpj

e
netfo

−
+

==
1

1
 (20)

It’s a non-decreasing and differentiable

function in the range []1,0 that may be
interpreted as the probability of the neuron j to
be activated. For low values of pjnet it produces

outputs that are almost 0. For high values of

pjnet it results in values nearly 1. For values

near to the threshold of activation of the neuron

jθ it produces a progressive change.

Fig. 4. Sigmoidal output function

It’s derivative can be written as:

169

 ()
()21

'
pj

pj

net

net

pjj

pj

pj

e

e
netf

net

o

−

−

+
==

∂

∂
 (21)

 ()
pj

pj

pj net

net

netpjj
e

e

e
netf

−

−

−
++

=
11

1
' (22)

 ()
pj

pj

pj net

net

netpjj
e

e

e
netf

−

−

−
+

+−

+
=

1

11

1

1
' (23)

 ()

+
−

+

+
=

−−

−

pjpj

pj

netnet

net

pjpjj
ee

e
onetf

1

1

1

1
' (24)

 ()

+
−=

− pjnetpjpjj
e

onetf
1

1
1' (25)

 () ()pjpjpjj oonetf −= 1' (26)

Its derivative is nearly 0 if the output rounds

0 or 1, and has it maximum if pjnet is around

the threshold value.

4.4 Generalized delta rule
We will follow the same steps we have done

in the case of the classical generalized delta
rule of the section 3.4. We start applying the
chain rule introducing the pjnet of the neuron j

where the connection
jiw finishes:

ji

pj

pj

p

ji

p

w

net

net

E

w

E

∂

∂

∂

∂
−=

∂

∂
− (27)

The second term is identical to that of

equation (10), so we still can write that

pi

ji

pj
o

w

net
=

∂

∂
 (28)

Just as we did before in (11) and (12) for the

recurrent term
pjδ , we begin with its definition

and apply the chain rule again, introducing
pjo ,

the output of the neuron where the connection

jiw finishes:

pj

pj

pj

p

pj

p

pj
net

o

o

E

net

E

∂

∂

∂

∂
−=

∂

∂
−=δ (29)

 ()
pjj

pj

p

pj netf
o

E
'

∂

∂
−=δ (30)

Fort the output layer neurons the first term

of the derivative is a direct application of the
partial derivative. It is analogous to that done in
(13).

() () ()∑ −−+
∂

∂
=

∂

∂
−

k

pkpkpkpk

pjpj

p
otot

oo

E
1ln1ln

(31)

k is the set of neurons of the output layer.
The output layer doesn’t have connections
between neurons of the same layer, thus, we
know that each pko distinct from

pjo is

unrelated to
pjo∂ and that acts as a constant in

the derivative. The sum can then be eliminated
and write simpler:

() () ()

pj

pj

pj

pj

pj

pj

pj

p

o

t
t

o

o
t

o

E

∂

−∂
−+

∂

∂
=

∂

∂
−

1ln
1

ln
 (32)

 ()
pjpj

pjpj

pj

pj

pj

pj

pj

p

oo

ot

o

t

o

t

o

E

−

−
=

−

−
−=

∂

∂
−

11

1
 (33)

When both equations (30) and (33) match

together the expression obtained is:

pjpj

pj

p

pj ot
net

E
−=

∂

∂
−=δ (34)

It is more simple than that of the classical

generalized delta rule in (7) because we have
chosen the error function in a way that it’s
derivative simplifies with the output function
derivative.

For the weights connected to the previous
layers’ neurons the procedure is the same we
have followed with the classical generalized
delta rule in (15), (16) and (17). As the idea is
exactly the same they remain unchanged and
we still can summarize that for hidden neurons:

 ()∑

∀

−=
k

kjpkpjpjpj woo δδ 1 (35)

170

5. CONCLUSION

Artificial neural networks have taken a new
impulse due to different reasons, but mainly
because the prominence of Big Data and
Machine Learning in the last time, and because
their capacity for adaptation and evolution in
systems that evolve and develop changing over
time. Delta rule is the core of the systems that
use artificial neural networks, and although the
practical totality of their users take software or
libraries of software to use them, it is necessary
a mathematical development to create these
software.

A generalized delta rule is presented with a
new error function. It maintains the same idea
of the original rule but with fewer calculations.
It’s results can be summarized in three main
equations.

The modification in the weights that should
be done after a pattern p is presented is

 pipjjip ow ηδ=∆ (36)

The
pjδ for the neurons of the output layer is

 ()
pjpjpj ot −=δ (37)

For the hidden layers’ neurons:

 ()∑
∀

−=
k

kjpkpjpjpj woo δδ 1 (38)

6. REFERENCES

[1] Rumelhart, D.E., McClelland, J.L., Paralell

Distributed Processing: Explorations in the

Microstructure of Cognition, vol. 1,
Cambridge, MA: MIT Press, ISBN 0-262-
18120-7, 1986.

[2] Ng, A. CS229 Lecture notes. Machine

Learning. Supervised Learning,

Discriminative Algorithms
http://cs229.stanford.edu/notes/cs229-
notes1.pdf

REGULĂ DELTA GENERALIZATĂ CU FUNCȚIE DE EROARE BAZATĂ PE ENTROPIE

Rezumat: Învățarea automată se poate referi la algoritmi diferiți și variați, bazați pe inteligență artificială, capabili să
recunoască modele de date prin tehnici de învățare continuă şi repetată, fără a fi nevoie de o distribuție de date
anterioară. Astfel, rețelele neuronale artificiale pot contribui la asigurarea unor tehnologii și metodologii eficiente.
Rețelele neuronale artificiale au nevoie de o regulă, o regulă Delta, pentru a învăța din datele furnizate. În această
lucrare este prezentată o regulă Delta generalizată cu o nouă funcție de eroare.

Javier BILBAO, Professor, University of the Basque Country, Engineering School of Bilbao,

Applied Mathematics Department, javier.bilbao@ehu.eus, 0034 94 601 4151.
Imanol BILBAO, PhD Student, University of the Basque Country, Engineering School of Bilbao,

Electrical Engineering Department, imanol.bilbao@ehu.eus, 0034 94 601 4971, C/ Belostikale 4,
1, 0034 94 415 5896.

Cristina FENISER, Lecturer, Technical University of Cluj Napoca (Romania), Faculty of Machine
Building, Department of Management and Economic Engineering,
Cristina.FENISER@mis.utcluj.ro, 0040 752 105 451

