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Abstract: Machine Learning can refer to a different and various algorithms, based on artificial 

intelligence, that are able to recognize data patterns through continuous and repeated learning 

techniques, and we do not have to assume any prior data distribution. In this way, artificial neural 

networks can provide an effective technology and methodology. Artificial neural networks need a rule, 

delta rule, in order to learn from the supplied data. In this paper a generalized delta rule with a new 

error function is presented. 
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1. INTRODUCTION  
 

Artificial Neural Networks have proven to 
be an effective technology in performing tasks 
in which the human brain provides good 
results. In addition, thanks to their parallel 
architecture, they are able to quickly handle the 
immense amount of data and variables that, 
today, are available thanks to the wide 
deployment of mobile technologies and, in 
general, the so-called Big Data. What’s more, 
their capacity for adaptation and evolution is 
also desirable in systems that evolve and 
develop changing over time. 

Feedforward Artificial Neural Networks 
using classical generalized delta rule have 
shown ability to classify the data in previously 
defined clusters, represent the information 
internally in a way that extracts de data’s 
features and compresses it, and finally, 
generalize results to patterns not presented 
before. 

The power of the idea of the generalized 
delta rule is that even the connections of the 
network’s internal neurons can adapt to 
minimize the error between the target and the 
result of the output neurons. It allows somehow 
hidden layers’ neurons to create an adequate 
representation of the information.  
 

 
2. CONSIDERATIONS ABOUT ERROR 

FUNCTIONS 
 

For a training data set ( )ptx
rr

, , where t
r

 is the 

desired response associated to the x
r

 network 
entry data of the pattern p, all the suggested 
error functions are accumulative and 
independent respect to their terms, this is, the 
total error will be a sum of the individual 
errors. Therefore, ∑

∀

=
p

ptotal EE , the total error 

is the sum of the error made with each pattern. 
We will understand total error as a function 

of the network weights 
ijw , and we will try to 

locate its minimum value using the gradient 
descent method. 

The fact that ∑
∀

=
p

ptotal EE allows us to write 

also the partial derivatives as an accumulation 
for each pattern: 

 

 ∑
∑

∀

∀

∂

∂
=

∂

∂

=
∂

∂

p ji

p

ji

p

p

ji

total

w

E

w

E

w

E
 (1) 

 
So, following the gradient descent rule: 
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If we name 

jip w∆ something that is 

proportional to each 
ji

p

w

E

∂

∂
−  we are able to write 

∑
∀

∆=∆
p

jipji ww . 

 
 
3. CLASSICAL GENERALIZED DELTA 

RULE 
 
3.1 Used error function 

The error function used in [1] is the usual 
sum-squared error function calculated through 
all the output layer’s neurons: 
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pjt  is the j-th component for the desired 

output 
pt
r

. Therefore, it is the desired output for 

the j-th output neuron when the pattern p is 
applied. 

 
pjo  is the output obtained in the output 

neuron j when 
px
r

 is presented to the network 

input layer. 
 

3.2 Initial definitions and used output 

function 
In a purely feedforward network architecture 

the i layer’s neurons only are connected to the 
i+1 layer’s neurons. The input layer receives 
the 

px
r

data and transforms it in network signals. 

The output layer transmits its signals outside 
the network. The hidden layers are responsible 
of  finding an appropriate representation of the 
info to achieve the desired result. 

 

 
Fig. 1. Feedforward architecture. 

 
In a feedforward architecture each neuron of 

the network receives signals from the neurons 
of the previous layer. The effect of these signals 
is combined in the neuron net total input: 

 
 ∑

∀

=
i

pijipj ownet  (4)  

 
Here the net total input is the linear 

combination of the previous layer’s neurons 
output with the corresponding connections 
weights. The subindex i indicates each neuron 
of that previous layer and 

jiw  is the weight of 

the connection from the neuron i to the neuron j 
that’s being analyzed. 

As usual in this kind of models, all the 
neuron’s activation thresholds are jθ  treated as 

a weight of a fictitious connection of input 1. In 
this sense, 0jj w=θ . 

The mathematical development of [1] takes 
into account that all the neurons in the network 
have their own generic output function that 
relates the output of the neuron with the net 
total input. Therefore, 

 
 ( )

pjjpj netfo =  (5) 

 
The only condition they must fulfill is to be 

non-decreasing and differentiable. 
 
3.3 Classical generalized delta rule summary 

The modification in the weights that should 
be done after a pattern p is presented is 

 
 pipjjip ow ηδ=∆  (6) 

 
The 

pjδ  for the neurons of the output layer is 
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 ( ) ( )
pjjpjpjpj netfot '−=δ  (7) 

 
For the hidden layers’ neurons: 
 

 ( )∑
∀

=
k

kjpkpjjpj wnetf δδ '  (8) 

 
Where k are all the neurons which the 

neuron j is connected to. 
The calculations are divided into two phases. 

The first is a feedforward propagation of the 
entry data 

px
r

 through the network, from the 

input layer towards output layer. The objective 
is to generate each neuron’s net total input and 
each neuron’s output for the known weights. 
Once pjnet  and 

pjo  have been calculated for all 

the neurons the second back propagation phase 
can be done. Starting in the last layer, with the 
known 

pt
r

 for the used data entry, we calculate 

each layers neurons’ 
pjδ . Therefore, we 

calculate 
pjδ  for all the neurons of the output 

layer, and with all them together we continue 
calculating the previous layer neurons’ 

pjδ  just 

as a linear combination of them. The process 
continues recursively layer by layer until the 
input layer is reached. 
 
3.4 Classical generalized delta rule 

development 
Following the general steps provided by [1] 

we will calculate 
ji

p

w

E

∂

∂
−  for each 

jiw  and try to 

write it as the product pipjoδ . Thus, we can 

write: 

 
ji

pj

pj

p

ji

p

w

net

net

E

w

E

∂

∂

∂

∂
=

∂

∂
 (9) 

 
Where pjnet  is the net total input of the 

neuron j where the connection 
jiw  finishes. 

From the equation (4) it is easy to follow 
that 

 

 
pi

ji

pj
o

w

net
=

∂

∂
 (10) 

 

Cause all the other weights act as constants 
for 

jiw∂ . 

To compute the other term of (9), 
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Where pjo  is the output of the neuron where 

the connection 
jiw  finishes. 

From the equation (5) it follows immediately 
that 
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The first term is more complicated to 

evaluate. If we suppose that j is a neuron from 
the output layer, then 
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Cause all the other pko distinct from 

pjo  are 

unrelated and act as constants. 
If the neuron j is a neuron from the previous 

layers, we should follow the chain rule, just as 
indicated in [1]: 
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4. GENERALIZED DELTA RULE WITH 

ENTROPY ERROR FUNCTION  
 
4.1 Desired values and possible output values 

As in the case of the logistic regression 
explained in [2] there are some cases, 
especially for digital data of input and output, 
where the provided targets 

pjt  are always 0 or 1 
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and the desired outputs of the network should 
be in the same range to be interpreted. In 
classification networks, for example, each 
output neuron could reflect the probability of a 
data to belong to a determined predefined class 
being desirable this property. 

We can assure, in accordance with the 
digital nature of the data collected, that all the 
target values will be 0 or 1. 

On the other hand, we will interpret the 
output values of each output neuron as the 
probability of that output to be a 1. To be so it’s 
neurons output range should be [ ]1,0 . We will 
later choose an appropriate output function that 
fulfils this condition. 
 

 

4.2 Used error function 
The error function is that used in [2] for the 

logistic regression. For a given pattern the error 
on each neuron of the output layer is: 
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1ln
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otE  (18) 

 
This function is a known function in the 

statistical field making use of the maximum 
likelihood principle. It’s a concave function 
where the errors are nearly 0 if the estimation is 
correct, or near correct, and where the errors 
tend to infinity if the estimations are incorrect. 
It takes intermediate values for values that are 
in an uncertain probability. 

If the desired output is 1=pjt and the actual 

output is near 1 the error would be very small. 
As 

pjo tends to 0 the error would increase 

slowly, and for values of 
pjo near to 0 the error 

would be very big (it tends to infinity as the 
output tends to 0). 

 

 
Fig. 2. Error for tpj=1. 

 

If the desired output is 0=pjt and the actual 

output is near 0 the error would be very small. 
As 

pjo tends to 1 the error would increase 

slowly, and for values of 
pjo near to 1 the error 

would be very big (it tends to infinity as the 
output tends to 1). 

 

 
Fig. 3. Error for tpj=0. 

 
Knowing that the unique values that 

pjt can 

have are 0 or 1, the error for the pattern among 
all the neurons in the output layer may be 
rewritten as: 

 
 ( ) ( ) ( )∑ −−+−=

j

pjpjpjpjp ototE 1ln1ln  (19) 

 

4.3 Used output function 
The used output function is the sigmoidal 

function. It’s defined by: 
 

 ( )
pjnetpjjpj

e
netfo

−
+

==
1

1
 (20) 

 
It’s a non-decreasing and differentiable 

function in the range [ ]1,0  that may be 
interpreted as the probability of the neuron j to 
be activated. For low values of pjnet it produces 

outputs that are almost 0. For high values of 

pjnet  it results in values nearly 1. For values 

near to the threshold of activation of the neuron 

jθ  it produces a progressive change. 

 
Fig. 4. Sigmoidal output function 

 
It’s derivative can be written as: 
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Its derivative is nearly 0 if the output rounds 

0 or 1, and has it maximum if pjnet is around 

the threshold value. 
 

4.4 Generalized delta rule 
We will follow the same steps we have done 

in the case of the classical generalized delta 
rule of the section 3.4. We start applying the 
chain rule introducing the pjnet  of the neuron j 

where the connection 
jiw  finishes: 
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The second term is identical to that of 

equation (10), so we still can write that 
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Just as we did before in (11) and (12) for the 

recurrent term 
pjδ , we begin with its definition 

and apply the chain rule again, introducing 
pjo , 

the output of the neuron where the connection 

jiw  finishes: 
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Fort the output layer neurons the first term 

of the derivative is a direct application of the 
partial derivative. It is analogous to that done in 
(13). 
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k is the set of neurons of the output layer. 
The output layer doesn’t have connections 
between neurons of the same layer, thus, we 
know that each pko  distinct from 

pjo  is 

unrelated to 
pjo∂  and that acts as a constant in 

the derivative. The sum can then be eliminated 
and write simpler: 
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When both equations (30) and (33) match 

together the expression obtained is: 
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It is more simple than that of the classical 

generalized delta rule in (7) because we have 
chosen the error function in a way that it’s 
derivative simplifies with the output function 
derivative. 

For the weights connected to the previous 
layers’ neurons the procedure is the same we 
have followed with the classical generalized 
delta rule in (15), (16) and (17). As the idea is 
exactly the same they remain unchanged and 
we still can summarize that for hidden neurons: 
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5. CONCLUSION  
 

Artificial neural networks have taken a new 
impulse due to different reasons, but mainly 
because the prominence of Big Data and 
Machine Learning in the last time, and because 
their capacity for adaptation and evolution in 
systems that evolve and develop changing over 
time. Delta rule is the core of the systems that 
use artificial neural networks, and although the 
practical totality of their users take software or 
libraries of software to use them, it is necessary 
a mathematical development to create these 
software. 

A generalized delta rule is presented with a 
new error function. It maintains the same idea 
of the original rule but with fewer calculations. 
It’s results can be summarized in three main 
equations. 

The modification in the weights that should 
be done after a pattern p is presented is 

 
 pipjjip ow ηδ=∆  (36) 

 

The 
pjδ  for the neurons of the output layer is 

 ( )
pjpjpj ot −=δ  (37) 

 
For the hidden layers’ neurons: 
 

 ( )∑
∀

−=
k

kjpkpjpjpj woo δδ 1  (38) 
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REGULĂ DELTA GENERALIZATĂ CU FUNCȚIE DE EROARE BAZATĂ PE ENTROPIE 

 

Rezumat: Învățarea automată  se poate referi la algoritmi diferiți și variați, bazați pe inteligență artificială, capabili să 
recunoască modele de date prin tehnici de învățare continuă şi repetată, fără a fi nevoie de o distribuție de date 
anterioară. Astfel, rețelele neuronale artificiale pot contribui la asigurarea unor tehnologii și metodologii eficiente. 
Rețelele neuronale artificiale au nevoie de o regulă, o regulă Delta, pentru a învăța din datele furnizate. În această 
lucrare este prezentată o regulă Delta generalizată cu o nouă funcție de eroare. 
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