Adrian Ioan BOTEAN


This study aims to evaluation of the state of mechanical stresses and strains in osteoporotic 2D models corresponding to the zone of proximal human femoral bone. Osteoporotic 2D models is comply Singh index which characterizes the evolution of osteoporosis. Experimental models are made of epoxy resin and silicone rubber and are under mechanical loading (Instron testing machine) so that it is respected unipodal support. It uses experimental (digital image correlation) and numerical (finite element) analysis methods of the state of stresses and strains in the plane model. Results obtained by comparative analysis of osteoporotic 2D models highlights the migration of maximum loading area from the small trochanter (corresponding to a trabecular and cortical healthy structure) to the area of the bottom of the femoral neck (corresponding to a trabecular and cortical osteoporotic structure). The analysis of stresses and strains state of osteoporotic 2D models, which highlights the maximum sections mechanical loaded, have great relevance given that the incidence of fractures caused by osteoporosis is extremely high.

Key words: human femoral bone, bone architecture, osteoporosis, 2D osteoporotic models, Singh index, digital image correlation, finite element method, mechanical stress, deformations, epoxy resin, silicone rubber

Full Text:



Singh M., Nagrath A.R., Maini P.S., Changes in trabecular pattern of the upper end of the femur as an index of osteoporosis, The Journal of Bone & Joint Surgery, 52A (1970) 457-467.

Pramudito J.T., Soegijoko S., Mengko T.R., Muchtadi F.I., Wachjudi R.G., Trabecular patern analysis of proximal femur radiographs for osteoporosis detection, Journal of Biomedical & Pharmaceutical Engineering 1:1 (2007) 45-51.

Hauschild O., Ghanem N., Oberst M., Baumann T., Kreuz P.C., Langer M., Suedkamp N.P., Niemeyer P., Evaluation of Singh index for assessment of osteoporosis using digital radiography, European Journal of Radiology 71 (2009) 152-158.

Bauer J.S., Link T.M., Advances in osteoporosis imaging, European Journal of Radiology 71 (2009) 440-449.

Borah B., Gross G.J., Dufresne T.E., Smith T.S., Cockman M.D., Chmielewski P.A., Lundy M.W., Hartke J.R., Sod E.W., Three-dimensional microimaging (MRμl and μCT), finite element modeling, and rapid prototyping provide unique insights into bone arhitecture in osteoporosis, The Anatomical Record, Special Issue: Advances in Biomedical Imaging, 265, Issue 2 (2001) 101-110.

Lotz J.C., Cheal E.J., Hayes W.C., Stress distributions within the proximal femur during gait and falls: implications for osteoporotic fracture, Osteoporosis Int 5 (1995) 252-261.

Riggs L., Melton L.J., Evidence for two distinct syndromes of involutional osteoporosis. Am. J. Med., 75 (1983) 899-902.

Wiliams J.F., Svensson N.L., An experimental stress analysis of the neck of the femur, Med. Biol. Eng., 9 (1971)479-493.

Schileo E., Taddei F., Malandrino A., Cristofolini L., Viceconti M., Subject-specific finite element models can accurately predict strain levels in long bones, Journal of Biomechanics 40 (2007) 2982-2989.

Ruimerman R., Hilbers P., van Rietbergen B., Huiskes R., A theoretical framework for strain-related trabecular bone maintenance and adaptation, Journal of Biomechanics 38 (2005) 931 – 941.

van Rietbergen B., Huiskes R., Eckstein F., Ruegsegger P., Trabecular bone tissue strains in the healthy and osteoporotic human femur, Journal of Bone and Mineral Research, 18, Issue 10 (2003) 1781-1788

Verhulp E., van Rietbergen B., Huiskes R., Load distribution in the healthy and osteoporotic human proximal femur during a fall to the side, Bone, 42, Issue 1 (2008) 30-35

Bessho M., Ohnishi I., Matsuyama J., Matsumoto T., Imai K., Nakamura K., Prediction of strength and strain of the proximal femur by a CT-based finite element method, Journal of Biomechanics 40 (2007) 1745-1753.

Yosibash Z., Trabelsi N., Milgrom C., Reliable simulation of the human proximal femur by high – order finite element analysis validated by experimental observations, Journal of Biomechanics 40 (2007) 3688 – 3699.

Sharir A., Barak M.M., Shahar R., Whole bone mechanics and mechanical testing, The Veterinary Journal 177 (2008) 8-17.

Barak M.M., Sharir A., Shahar R., Optical metrology methods for mechanical testing of whole bones, The Veterinary Journal 180 (2009) 7-14.

Takacs I.A., Dudescu M.C., Hărdău M., Botean A., Experimental validation of a finite element model of an osteoporotic human femoral bone using strain gauge measurement, Applied Mechanics and Materials, 658 (2014) 513-519.

Botean A., Takacs I.A., Hărdău M., Photoelasticimetry application in biomechanics, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, Vol. 54, Issue I (2011) 95-100.

Takacs I.A., Botean A., Hărdău M., Numerical and experimental analysis of the state of stresses of the femoral neck – plane modeling, 10th Youth Symposium on Experimental Solid Mechanics (2011) Chemnitz University of Technology, Department of Solid Mechanics.

Botean A., Takacs I.A., Hărdău M., The study of stresses distribution for the femoral bone in bipodal support – 3D modeling, 11th Youth Symposium on Experimental Solid Mechanics, Under the auspices of: IMEKO Technical Committee 15 and Danubia – Adria Symposium, 30th of May 2012 – 2nd of June 2012, Brasov, Romania, Book of Abstract.

Botean A., Mândru D., Hărdău M., Modeling human femoral neck using a 2D structure, Procedia Technology, 19 (2015) 921-926.

Beaupied H., Lespessailles E., Benhamou C.L., Evaluation of macrostructural bone biomechanics, Joint Bone Spine 74 (2007) 233-239.

Perelli E., Baleani M., Ohman C., Fognani R., Baruffaldi F., Viceconti M., Dependence of mechanical compressive strength on local variations on microarchitecture in cancelous bone of proximal human femur, Journal of Biomechanics 41 (2008) 438 – 446.

Vanderoost J., Jaecques S.V.N., der Perre G.V., Boonen S., D’hooge J., Lauriks W., van Lenthe G.H., Fast and accurate specimen – specific simulation of trabecular bone elastic modulus using novel beam – shell finite element models, Journal of Biomechanics 44 (2011) 1566 – 1752.

Helgason B., Perilli E., Schileo E., Taddei F., Brynjolfsson S., Viceconti M., Mathematical relationships between bone density and mechanical properties: A literature review, Clinical Biomechanics 23 (2008) 135 – 146.

Griffith J.F., Genant H.K., Bone mass and architecture determination: state of the art, Best Practice & Research Clinical Endocrinology & Metabolism, 22, No. 5 (2008) 737–764.

Taddei F., Cristofolini L., Martelli S., Gill H.S., Viceconti M., Subject – specific finite element models of long bones: An in vitro evaluation of the overall accuracy, Journal of Biomechanics 39 (2006) 2457 – 2467.

Verhulp E., van Rietbergen B., Huiskes R., Comparison of micro-level and continuum-level voxel models of the proximal femur, Journal of Biomechanics 39 (2006) 2951-2957.

Verhulp E., van Rietbergen B., Muller R., Huiskes R., Indirect determination of trabecular bone effective tissue failure properties using micro – finite element simulations, Journal of Biomechanics 41 (2008) 1497 – 1485.

Botean A., Mândru D., Hărdău M., Plan model to analyze the state of stressses and strains of the human proximal bone, Acta Technica Napocensis, Series: Applied Mathematics, Mechanics, and Engineering, Vol. 58, Issue 2 (2015) 199-204.

Th. Siebert, Q-400 Introduction in 3D – Correlation, Dantec Dynamics, 2006.


  • There are currently no refbacks.