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Abstract: This paper presents a mixed integer programming model that could be used to schedule the 

assembly of wiring systems in the automotive industry. The assembly system consisted of several parallel 

independent workstations. The paper shows how the performance of a traditional integrated planning and 

scheduling model could be improved with the help of three additional constraints and priority coefficients 

in allocation of resources. The first constraint was a reformulation of the traditional material balance 

equation while the other two set the values of the planning variables when the demand for a particular 

period is higher than the average demand or the capacity of the assembly system. The priority allocation 

coefficients exploited the fact that workstations were identical. 

Key words: integrated planning and scheduling, priority allocation coefficients, parallel independent 

workstations. 

 

1. INTRODUCTION  
 

1.1 The need for integration 

Planning and scheduling have been two 

important instruments used in managing the 

activity of a system that either produced some 

goods or provided services. Planning focused 

more on balancing the demand of the customer 

with the rough-cut capacity of the system while 

scheduling specified, in detail, how resources 

should be used in order to meet the needs of the 

customer. 

Obviously, the ultimate goal was to find the 

optimal schedule because it provided the 

framework that ensured that customer requests 

were efficiently satisfied. The quest for such a 

schedule has always been a challenging task 

because of the combinatorial nature of the 

scheduling problem. 

Initially the task has been accomplished by 

considering a two-stage process. The first one, 

called planning, produced an aggregate plan 

that specified production targets for product 

families for every period of the planning 

horizon. The second stage aimed to formulate 

for every resource a detailed working plan 

based on the production targets set by planning. 

In this way it was possible to obtain a 

schedule but, in most cases, it was not the 

optimum because planning did not take into 

account the sequence in which resources 

processed products or services. Despite the 

drawback, this approach has been frequently 

used because, on one hand, it was the only 

possibility at the time and, on the other, it was 

in line with management practice, as higher-

level managers focused more on meeting 

customer demand while operational managers 

dealt with scheduling issues. 

 

1.2 Characteristics of an integrated model 

An integrated planning and scheduling 

model (referred to as IPS model in this paper) 

should incorporate all general features of both 

planning and scheduling models. This means 

that an IPS model should take into account: 

1. customer demand specified at certain 

moments in time; 

2. resource capacity indicated for every period 

of the planning horizon; 

3. moments when tasks or production of 

products would start or end; 

4. set-up times required by resources to switch 

to a different product or task; 

5. processing times; 
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6. precedence constraints; 

7. resource allocation rules. 

From a modelling point of view, it could be 

concluded that an IPS model should contain 

both planning and scheduling variables. 

However, the integration of the two sets is not a 

trivial task because of the different scales of the 

time intervals on which the two sets of 

variables are defined.  

Scheduling focuses mainly on fine details 

such as the sequencing of tasks over time. 

Resources are allocated in such models with the 

help of binary and/or integer variables. Since 

the computational effort is directly linked to the 

number of integer variables scheduling models 

were only developed for a short period of time. 

To this decision contributed also the fact that 

developing schedules for long intervals may not 

make sense given the number of factors that 

affect the activity of a production system.  

In an IPS model the time horizon should be 

quite long in order to accommodate the 

requirements of a planning model. Too long a 

horizon and the corresponding model may not 

provide a solution in a reasonable amount of 

time or the solution may not be practical if the 

planning horizon is larger than the period 

during which customer demand is “frozen”. 

Perhaps this period should be the unit of 

measurement for the planning period for which 

the IPS model should be developed.  

 

1.3 Literature overview 

Despite the difficulty in finding the optimal 

solution for a large IPS model the number of 

articles on this topic is quite high, so much so, 

that a literature overview has been performed in 

2009 [7]. Maravelias and his colleague have 

suggested that IPS models should be classified 

based on modelling approaches and solution 

strategies [7]. The first criterion allowed the 

authors to identify three classes: detailed 

scheduling, relaxation and aggregations of 

scheduling and finally surrogate models [7]. 

With respect to solution strategies Maravelias 

and his colleague have classified contributions 

as: hierarchical, iterative and full-space [7]. 

Using the taxonomy introduced by 

Maravelias and Sung this paper could be related 

to contributions that aim to produce a detailed 

schedule using a full-space solution strategy. 

Two comments could be made on the 

contributions of this class. First of all, the 

number of papers is quite small because the 

rapid increase of the computational time with 

the size of the problem has led researchers to 

finding alternative means to mathematical 

formulations. Secondly, models have a similar 

structure because they have to consider material 

balances, resource constraints generated by 

limited resource capacity and resource change-

overs from a product to another. As a 

consequence of the latter, IPS models of this 

class differ through the way planning and 

scheduling variables are correlated and through 

the formulation of their constraints. 

The most import factor related to correlation 

of planning and scheduling variables is time 

representation. Given the nature of the planning 

and the scheduling problems constraints have to 

be enforced of some points in time. Depending 

on how those points are defined the time grid 

may be fixed, with a constant number of 

intervals or with intervals of the same duration.  

Decisions related to time representation may 

lead to two classes of IPS models. The first one 

uses actually two time-grids: the planning grid 

that spans for weeks or months, and the 

scheduling grid where the time unit is usually 

the hour. In the models of the second class 

there is only one grid that has a time unit given 

by scheduling. 

IPS models with two grids are used most 

often, for example Erdirik-Dogan and 

Grossmann have divided the planning intervals 

into slots. For each interval the number of slots 

was the same although of variable length [2]. 

An interesting solution has been employed by 

Gimenez, Henning and Maravelias while 

developing a network-based continuous-time 

representation for process scheduling. In this 

case the task allocated to a slot could “float” 

that is the beginning and the end of the task did 

not have to coincide with a time point [7]. The 

authors have used the continuous-time 

representation in order to reduce the number of 

decision variables that are generally generated 

by a two-grid approach.  

With respect to how a model is formulated, 

IPS models have many similarities because all 

have to address the same issues related to 

customer demand, resource capacity and 
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resource allocation.  For example, a common 

characteristic of the great majority of all IPS 

models is that they express the material balance 

in the form: 

 
= + − 				∀  (1) 

 

where the inventory at the end of the current 

period (“t”) is given by the inventory at the end 

of the previous period, the production and the 

demand of period “t”. 

A different formulation for the material 

balance constraint has been used by Joly, Moro 

and Pinto in planning and scheduling the 

activity of petroleum refineries [4]. The authors 

have determined the product level in a storage 

tank as the sum of the initial level and the 

amount that entered the tank, from the 

beginning until the current moment, minus the 

amount transferred from the tank up the current 

moment. This is a continuous process 

formulation to but it is in fact very similar to 

the one in (1). 

 

1.  PROBLEM DEFINITION 
 

The model presented in this paper has been 

formulated to develop a schedule for a plant 

assembling wiring systems for the automotive 

industry. The assembly facility consisted of 4 

lines, each having 6 workstations. A wiring 

system was completely produced by a 

workstation therefore stations were considered 

to be independent. Practically every 

workstation could have been used to produce 

any of the 8 product types assembled at the 

time. However, the company has decided to 

allocate some products to some assembly lines 

in order to ensure the efficiency of the 

processes supplying the workstations with 

materials and components. Table 1 indicates the 

allocation of products to lines used by the 

company. 
Table 1 

Product-line allocation table (PLAT1) 

 P1 P2 P3 P4 P5 P6 P7 P8 

Line 1     X X X X 

Line 2 X   X     

Line 3 X  X      

Line 4 X X       

 

From a computational point of view the that 

fact that the lines were almost dedicated to the 

assembly of only two products was a major 

advantage. To test the capabilities of the 

proposed model an additional, slightly more 

complex, product-line allocation table has been 

considered. Its structure is presented in Table 2 

(referred to hereafter as PLAT2). 
Table 2 

Modified product-line allocation table (PLAT2) 

 P1 P2 P3 P4 P5 P6 P7 P8 

Line 1     X X X X 

Line 2 X X X X     

Line 3 X X X X     

Line 4 X X X X     

 

The activity of a workstation was based on a 

four-hour period. This meant that a workstation 

produced the same product during that period 

of time. Maintenance teams needed 

approximately 20 minutes to reconfigure a 

workstation if it had to switch to a new product 

type. Workstation operators also had a coffee 

break of the same duration after a four-hour 

period. Given these organisational issues the 

proposed model has been solved considering 

that the planning/scheduling horizon was 

formed of slots of 230 minutes. 

The company also provided data on the time 

needed to assemble a wiring system, and, more 

importantly on the customer demand for each 

product type. 

Unlike most IPS case studies, this time the 

demand was not specified at the end of each 

planning period but for every slot of the 

planning/scheduling horizon. 

The company wanted to obtain a schedule 

for only a three-day period because its 

customers were not allowed to change orders 

with less than three days to the due date. To test 

the capability of the model the planning horizon 

has been extended to 7 days, that is 42 slots. 

The analysis of the customer demand data 

revealed that one of the product types was more 

in demand than the other seven. Orders ensured 

a rough-cut system utilisation of approximately 

75% and were quite evenly distributed from a 

slot to another. From this initial data set 

(hereafter referred to as case A) four other data 

sets have been developed with the help of the 

following rules: 
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• case B – orders have been increased to 

ensure an overall system utilisation of 85%; 

• case C – total demand has been kept at the 

same level as in case B, but it has been 

redistributed by adding the demand for two 

slots for the product type with the largest 

orders; for this particular product type customer 

demand varied from zero in one slot to a 

“maximum” value in the next slot; the 

utilization per slot, considering all product 

types, varied from 30% to 100%; 

• case D – the profile of the demand for the 

product type with the largest orders have been 

modified again so that periods of low demand 

would be followed by periods of high demand 

(several consecutive slots); 

• case E – the entire demand for every product 

type has been concentrated in the last period of 

the planning/scheduling horizon. 

 

2. MATHEMATICALFORMULATION 

 

The formulation of the proposed model has 

been developed considering a single time grid 

that had its time points equally distributed at 

four-hour intervals.  

Four indices have been used, namely: “i” – 

for assembly lines, “j” for workstations, “k” for 

product types and “t” for slots – periods of the 

planning/scheduling horizon. 

The following parameters have been 

included: 

• L - number of assembly lines; 

• W - number of workstations per line; it 

was assumed that all lines would have 

the same number of workstations; 

• K - number of product types; 

• T - number of slots in the planning 

horizon; 

• asmbTimek - duration of the assembly of 

a wiring system of product type “k”; 

• dk,t - demand for product type “k” in slot 

“t”; 

• asgni,k – indicates if product “k” could 

be assembled on line “i"; 

• wCapk – the maximum number of 

products of type “k” that could be 

produced by a workstation; 

• ulb – utilisation lower bound; it was set 

to 85%; 

• slot – duration of a period of the 

planning/scheduling horizon; duration 

of a slot was set to 230 minutes; 

• noStationsi – number of stations for 

each assembly line i; 

• pri,j,k – priority coefficient; its value was 

calculated with the formula: 

 

, , = − 1 ∙ ∙ + − 1 ∙ +  (2) 

 

As decision variables the following have been 

defined: 

• Xi,j,k,t – binary variable equal to 1 if 

product type “k” has been allocated to 

workstation “j” from line “i" in slot “t”; 

• Yi,j,k,t – integer variable that indicates the 

number of wiring systems of product 

type “k” to be produced at workstation 

“j” from line “i" in slot “t”; 

• SFk,t – level of inventory of product type 

“k” at the end of the slot “t”; 

• Zi,j,t – binary variable equal to 1 if in slot 

“t” at workstation “j” of line “i" there 

was a changeover. 

The use of the Y variables is not mandatory 

but they have been included in the model 

because they could contribute to the reduction 

of the inventory costs. If only X variables were 

used then allocating a product to a workstation 

in a slot would result in the production of a 

number of wiring systems, equal to the capacity 

of the workstation. This number could be too 

large compared with the customer demand and 

therefore could lead to higher storage costs. 

With the help of these parameters and 

variables it was possible to formulate the 

objective function as a sum of three terms (3).  

The first term of this function was associated 

with transition costs. To avoid having a 

solution that was influenced by the salary of the 

worker performing the changeovers the first 

term of the objective function consisted only of 

the sum of the changeover variables. 

 The second element of the objective has 

been formulated as the sum of the inventory 

levels at the end of each slot. 

The last term was introduced in order to 

reduce the time needed to find a good solution. 

Given the nature of the wiring systems 

assembly a large number of workstations are 
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identical, a fact that means that a product could 

be assembled on a number of workstations. 

Since any workstation could be used to 

assemble a particular harness it was thought 

that the model could be solved faster if the 

allocation of products to workstations would be 

made with the help of some priority 

coefficients. In line with these considerations 

the model tried to minimize the following: 

 

, , + , + , , ∙ , , ,  (3) 

The set of constraints was formed of the 

following: 

, = , + , , , − , 		∀ , ∀  (4) 

, = , + , , , − , 		∀ , ∀  (5) 

, , , ≥ , −
1 ∙ , 		∀ , ∀  (6) 

, , , ≥ , − , , , − , 	∀ , ∀  (7) 

, , , ≤ ∙ , , , 		∀ , ∀ , ∀ , ∀  (8) 

 

∙ , , , ≥ ∙ ∙ , , , 		∀ , ∀ , ∀ , ∀  (9) 

, , , ≤ 1				∀ , ∀ , ∀  (10) 

, , , ≤ , 				∀ , ∀  (11) 

, , , ≤ 				∀ , ∀  (12) 

, , , − , , , ≤ 1 + , , 		∀ , ∀ , ∀ , ≥ 2	 (13) 

, , , − , , , ≤ , , 		∀ , ∀ , ∀ , ≥ 2 (14) 

It was assumed that the initial inventories for 

all product types were zero. 

The set of constraints of the proposed model 

presents some characteristics that are generally 

found in most IPS models. The material 

balance is expressed by constraint (4). Capacity 

related restrictions are imposed with the help of 

relations (8) and (9). The first one sets the 

upper bound for all Y variables to the value of 

the capacity of a workstation while the second 

one sets the lower bound for workstation 

utilisation to 85%. 

The set of constraints restricts the values of 

the X variables through relations (10), (11) and 

(12). Constraint (10) states that a workstation j, 

from a particular line i, in any slot t, could be 

allocated to one product k, at the most. Constraint 

(11) ensures that products are allocated to 

workstations in line with operational 

restrictions. Constraint (12) limits the number 

of allocations that are made for line i in slot t to 

the number of workstations of line i. 

The last two constraints, (13) and (14), set 

the values for Z variables. Based on the values 

of X variables in slot t and t-1 these two 

constraints set the value of the corresponding Z 

variable to one whenever there was a 

changeover at workstation j of line i in slot t.  

The set of restrictions contains also elements 

that are not usually present in common 

mathematical formulations. The first one, 

constraint (5), is another expression for the 

material balance. It is similar to the traditional 

one stated by constraint (4) but it sets of values for 

SF variables taking into account only variables 

Y and the demand from the previous slots [4]. 

Constraints (6) and (7) have been introduced 

to raise the values of variables Y whenever 

demand for slot t is higher than the average 

demand for the entire planning horizon or when 

the production for set for all periods before slot t 

would not be enough to satisfy demand of slot t. 

 

3. MODEL TESTING  
 

Model’s capacity to produce a schedule for 

real, large systems has been tested with the help 

of five data sets. Case A data has been provided 

by an important wiring systems manufacturer. 

The other four sets contain data that has been 

chosen in accordance with two principles. The 

new customer demand data had to be close to 

the volumes used in case A, but it had to be 

distributed as differently as possible to provide 

challenging test cases. 

The model has been solved with CPLEX 

12.7 on an Intel® Xeon® E3-1240 v5 at 3.5 
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GHz machine.  The structure of the assembly 

system has led to a large model. It has to be 

mentioned that constraint (11) does improve the 

performance of the model because it eliminates 

a large number of search paths in the solution 

space. Table 2 shows that the assembly system 

could be thought of as being formed of two 

subsystems: one with 18 workstations that 

produces 4 products and the other one formed 

of 6 workstations that produce 4 products as 

well. The model still can be considered as a 

large model since the first of its submodels 

generates a number of approximately 3000 

binary variables. 

It is important to notice that by adopting 

input data in line with the allocation matrix 

presented in Table 2 the model has been used to 

solve a problem that is more difficult than that 

generated by the real system. Furthermore, the 

manufacturer has asked for a three-day 

schedule while all data sets have been 

developed for seven-day period. 

The search for the optimum has been limited 

to 600s and the optimality tolerance was set to 

0.01%. The model has been run several times to 

test the model in its initial formulation and later 

constraints (5), (6) and (7) have been removed 

successively to assess their impact on the model 

performance. 

The following tables report the performance 

of the proposed model as the: 

• duration of the interval in which a solution 

was found within the optimality tolerance; 

• total number of changeovers that have been 

made for all 24 workstations in all 42 slots; 

• total sum of inventories at the end of all 

slots, all workstations, all products. 

In its initial formulation the model produced 

the results presented in Table 3. For data set C 

the model failed to find a solution in 600s. The 

optimal solution was found for data set E in a 

small amount of time, perhaps due to the fact 

that all demand was concentrated in a single 

slot at the end of the planning/scheduling 

horizon. 
Table 3 

Results – initial model 

 time (CPUs) changeovers inventory 

Case A 96.446 90 2450 

Case B 152.902 109 3097 

Case C -- -- -- 

Case D 100.695 128 8279 

Case E 9.513 64 115761 

 

In the next tests constraint (5) has been 

removed from the initial set of constraints. 

Results presented in Table 4 show that this time 

the model has failed to find a solution for two 

data sets that are characterized by high 

variability of the demand for product P1. 

Comparing results in Table 3 and 4 it is not 

possible to draw a clear conclusion on whether 

constraint (5) had a positive effect on model 

results. Table 4 shows that in case B the 

solution was found in a smaller amount of time 

but the number of changeovers was higher than 

in Table 3. Most of the data in Table 4 is worse 

than in Table 3 so it may be a good decision to 

keep constraint (5) in the model. 
Table 4 

Results – constraint (5) not considered 

 time (CPUs) changeovers inventory 

Case A 153.12 91 2599 

Case B 148.152  123 2881 

Case C -- -- -- 

Case D -- -- -- 

Case E 8.857 66 116187 

 

The experiments continued with the removal 

of constraint (6). This time a solution was 

found for all data sets (Table 5). Results from 

data sets D and E are quite similar with those 

from Table 3. In case B the time to solve the 

model and the number of changeovers were 

worse than those obtained through the initial 

formulation and perhaps are the best arguments 

to keep constraint (6). However, data from 

cases A and C do not support the conclusion. 
Table 5 

Results – constraint (6) not considered 

 time (CPUs) changeovers inventory 

Case A 86.589 78 2439 

Case B 201.765 124 2237 

Case C 154.837 123 3564 

Case D 105.241 122 8517 

Case E 9.904 58 115779 

 

Constraint (7) was considered next for removal 

from the initial model. Data in Table 6 show that 

in cases B and D this constraint may have helped 

reduce the time needed to solve the model. Cases 

A and C support the opposite conclusion as less 

time was needed to find the optimum. 
Table 6 
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Results – constraint (7) not considered 

 time (CPUs) changeovers inventory 

Case A 71.436 71 2655 

Case B 580.723 101 2449 

Case C 169.944 123 3407 

Case D -- --  

Case E 9.56 64 115761 

 

In the lasts tests it was the objective function 

that changed. The last term from its expression 

was removed so the model sought the optimum 

without priority coefficients. Table 7 shows that 

in the first four cases the model did not find the 

optimum in the 600s interval. However though, 

only in three cases the solution was worse off 

than in the initial formulation.  

In case C although the model failed to find 

the optimum but it did find a “good” solution 

(as the gap reported by OPL was less than 

1,31%). In the initial formulation no solution 

was found during the entire optimisation run. 

For case E the performance of the model was 

better but similar to that of the initial formulation. 
Table 7 

Results – without priority coefficients 

 time (CPUs) changeovers inventory 

Case A 601.186 - 

GAP - 2.91%  

81 995 

Case B 601.296 

GAP - 3.78% 

104 1194 

Case C 601.736 

GAP - 1.31% 

124 2205 

Case D 607.154 

GAP - 1,26% 

117 6320 

Case E 5.67  56 109576 

 

4. CONCLUSIONS  

 

This paper presents a model that could be 

used to produce a schedule for a large system 

consisting of parallel identical and unrelated 

machines. It also tried to support the idea that 

mathematical models developed for large real 

systems could provide a good solution in a 

reasonable amount of time. To help reduce the 

time to solve the model three new constraints 

have been added to the classical formulation. 

With the same intent priority coefficients have 

been introduced in the objective function. 

Tests have been conducted to determine if 

these changes do help the optimisation process. 

Results showed that for some data sets the 

proposed constraints have had a positive effect on 

the final result while in other cases they did not. 

As data in Table 8 shows constraint (5) seems 

to contribute more than constraint (6) and (7) to 

the performance of the optimisation process. 

Since the tests carried out without constraint (5) 

did not produce better results than the initial 

formulation it has been concluded that it has to 

be included in the mathematical model.  

The other two constraints, (6) and (7), have a 

different impact on the time to solve the model. 

For data sets A and C, the model needed more 

time to find the optimum while for data set E it 

was basically the same - only when the 

customer demand was relatively high and 

evenly distributed the two constraints reduced 

the time to find the best solution. 

Priority coefficients did have a positive impact 

on the performance of the optimisation process. 

They seemed to be most beneficial when 

customer demand does not have a jigsaw profile. 
Table 8 

Summary of test results (compiled with data from 

tables 4 through 7) 

 without 

con. (5) 

without 

con. (6) 

without 

con. (7) 

without 

priority 

Better  A, C A, C C, E 

Same B, E D, E E  

Worse A, D B B, D A, B, D 

Inconclusive C    

 

The proposed model has been solved in 

conditions that were more demanding than 

those derived directly from the real system. 

Although heuristic approaches solve models of 

the same complexity faster, results presented in 

this paper show that traditional mathematical 

methods could still be used for solving large 

real-world problems. 
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UN MODEL INTEGRAT DE PLANIFICARE  

ŞI PROGRAMARE A PRODUCŢIEI PENTRU ASAMBLAREA CABLAJELOR AUTO  

 
Rezumat: Această lucrare prezintă un model de mixt de programare în numere întregi care poate fi folosit pentru a 

programa asamblarea sistemelor de cablaje destinate industriei auto. Sistemul de asamblare a constat din mai multe 

stații de lucru independente, paralele. Lucrarea arată cum poate fi îmbunătățită performanța unui model tradițional 

integrat de planificare și programare cu ajutorul a trei constrângeri suplimentare și a coeficienților de prioritate în 

alocarea resurselor. Prima constrângere suplimentară este o reformulare a ecuației tradiționale de echilibru a stocurilor 

de produse în timp ce celelalte două stabilesc valorile variabilelor de decizie atunci când cererea pentru o anumită 

perioadă este mai mare decât cererea medie sau decât capacitatea sistemului de asamblare. Coeficienții de prioritate au 

exploatat faptul că stațiile de lucru au fost identice. 
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