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Abstract: The contribution of this paper consists in advancing of a control strategy based on the differential 

dynamic logic (dL) for a cooperative surgeon-robot system whose behavior depends on the interaction 

between discrete dynamics deriving from the control and continuous dynamics deriving from surgical 

instrument moving. Such systems are called hybrid systems. The dL algorithm captures the logics of 

superposition of both dynamics and is capable to control the system in the most natural way. In our opinion, 

dL can be successfully used for avoiding the collisions of the surgical instrument with a critical domain in 

a virtual system composed by a surgical robot, a device for visualizing and analyzing the medical images 

and a six degree-of-freedom robotic arm designed for use in hepatic surgery. 
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1. INTRODUCTION  
  

This paper models the hybrid dynamics of a 

cooperative surgeon-robot system with 

interacting discrete and continuous state 

transitions, by using the differential dynamic 

logic (dL). dL is a variant of the dynamic logic, 

very appropriate to be used for modeling the 

hybrid systems encountered in the surgery, 

robotics, automotive industry, railway, aerial 

navigation fields, aerospace and satellite 

systems [1-5]. Flexibility of dL permits the 

progression of the state variables such as 

positions, velocities and accelerations of the 

system along the time, without making 

distinction between the discrete and continuous 

evolutions [6-8].  

Hybrid programs can combine the interaction 

of the physical systems with the surgeon in his 

action to precisely navigate in the working space 

during the surgical hepatic treatment [9-11].  

The task of the surgeon is the target delivery 

of drugs in tumor tissue, according to a known 

integrated imaging-molecular diagnosis, while 

the task of the robot is to stop touching by the 

surgical instrument of a forbidden domain. 

The limitations of the known results in the 

literature refer to the ignoring of the nonlinear 

boundary conditions associated to the given 

critical points or frontiers which should not to be 

intersected by the surgical instrument [12,13]. 

To overcome this inconvenience, this paper 

shows that the boundary value conditions with 

nonlinear terms can be efficiently captured by 

dL, and the stopping of the surgical instrument 

to cross critical points or frontiers is completely 

under control. The solution offers the safety 

trajectories of the surgical instrument in the 

working space, and the full compatibility of 

continuous and discrete dynamics of the 

cooperation between the surgeon and the robot. 

The statements and assignments of dL are 

described by the state variables which can be 

discrete or continuous. and the arithmetic 

operations: logical and a b∧ ; logical or a b∨ ; 

negation a¬ ; existential and universal 

quantifications in R  ( )xP x∃ and ( )xP y∀ , 

respectively; all runs of a  satisfying the 

postcondition ψ  (box mode) [ ]a ψ ; there exists 

a run of a  that satisfies ψ  a< > ψ  (angle 

mode)[4].  
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The sequence 1 1 2 2, ,... &
n n

x x x= ϕ = ϕ = ϕ ψ& & &  

describes the continuous evolution which is 

completed by the assumption ( ?ψ ), the 

assignment ( :
i i

x = ϕ ), the non-deterministic 

assignment of any value ( : *
i

x = ),  the 

sequentially running a  and b  ( ;a b ), the non-

deterministic choice ( a b∪ ) and the non-

deterministic loop ( *a ). An arbitrary input of a 

non-deterministic value to f of dL can be written 

as [11] 

ctrl ( : *;

( & 0)

( & ( 0) ( ))

( ( / ) & ( 0) ( )))*,

f

r gf f

r gf f r D

r g r D f f r D

= =

= >= ∪

= <= ∧ >= ∪

= <= ∧ <=

&

&

&

     (1) 

where r  is the tool’s position on the x axis, f  is 

the force exerted by the surgeon on the surgical 

instrument in the direction of the x  axis, and g  

a constant.  

The control algorithm requires that the 

surgical instrument starting from 0r >=  

continues his task in Ω  at every moment and for 

any input conditions. The safety property  

( 0) [ctrl( 0)r r>= → >=  is the key of 

KeYmaera, a useful instrument that checks the 

safety property of the algorithm [3, 12]. 

The constraints are modelled in linear or 

nonlinear inequalities over Boolean-valued 

variables 

{ }:: *

:: _ int |

_ _

:: _ int |

_ _

formula clause clause

clause linear consta s

boolean var linear constraint

clause nonlinear consta s

boolean var nonlinear constraint

= ∧

=

→ ∪

=

→

       (2) 

Details on the kinematic and mechanical 

constraints for a parallel robot can be found in 

[13]. Some of these constraints may be 

eliminates if the surgeon decides this for solving 

any possible conflict between them.  

The surgeon handles freely the surgical 

instrument (red) starting from the distance d  to 

a critical frontier Γ  (blue) without robotic 

control, but when it reaches a critical point or 

area at the distance D d<  from Γ , the robot 

intervenes and obliges the surgeon to stop the 

surgical instrument before reaching the final 

point or to choose another route (Fig. 1). The 

concept of curvature bound set can generalize 

and unify all kind of critical points or frontiers 

for a second-order vector equation 

( ) ( ( ), ( ), )x t f x t x t t′′ ′= , x ∈Ω , 0 1[ , ]t t t∈ ,  

          ( ( ), ( ), ( ), ( )) 0g x a x b x a x b′ ′ = ,       (3) 

where ( )x t   is a function continuous together 

with its first j  derivatives ( ) /k k k
x d x dt=  

( 1,2,..., )k j=  , 0 1t t<  reals, and the norm 

( )

[ , ]0
|| || [max | ( ) |]

j k

j t a bk
x x t∈=

=∑ ,        (4) 

where | |⋅  is the Euclidean norm in n
R .  The 

boundary conditions are described by g .  

 
Fig. 1. Crossing critical frontiers Γ  in the surgery 

control. 

 

The paper is organized as follows: Section 2 

is devoted to kinematics and dynamics of the 

robot. The nonlinear boundary problem is 

shortly described in Section 3, and the Section 4 

presents the results. Conclusions are drawn in 

Section 5. 

 

2. KINEMATICS AND DYNAMICS OF 

THE ROBOT 
 

The working space Ω  is defined by the 

coordinates ( , , )x y z . The motion of the surgical 

instrument is simulated by the virtual joystick 

situated at the height from the base of the robot. 

A system of coordinates is attached to the 

base of the robot as shown in Fig 2, where 

1 2 3( , , )q q q q=  is the joint vector. 

The transformation matrix is [14] 

2 2 2 2

1 2 1 2/ 1 c c / 1 c c 0

0 0 0 1

O x y z
S

i q q i i q q
T

 − −
=   
 

   (5) 

where cos( )cq q=   and sin( )sq q= , and  
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,            

with 1q  the rotation about X  -axis (pitch 

angle), 2q  the rotation about Y  -axis (roll angle) 

and 3q  the rotation about the axis Z  which is 

common with the  joystick axis (yaw angle) 

which does not influence the surgical instrument 

position as required by the laser joystick. 

 
Fig. 2.  System of coordinates attached to the system. 

 

The position of the surgical instrument is  

0 1

0 0 0 1

x x x x

O O
y y y yO O S J J

J S J

z z z z

X Y Z i

X Y Z iR P
T T T

X Y Z i

 
 

   = = =    
 
 

,  (6) 

where  S

JT  is the roll angle  

2 2

2 2

c s 0 0

s c 0 0

0 0 1

0 0 0 1

S

J

q q

q q
T

h

− 
 
 =
 
 
 

 , 

O

JR  is given by 

2 3 2 3 1 2

1 2 1 2

3 4 1 2

s c / s s / s c /

s / s / c s / ,

/ / s s /

O

J

q q q q q q

R q q

s s q q

α − α − α 
 = α α α 
 α α α 

% %

% %

 

with  

1 1 3 1 1 2 3s s s c c cs q q q q q q= +% , 

2 1 3 1 2 1 3c c c s ss q q q q q q= +% , 

2

3 1 3 1 2 3c s s c cs q q q q q= − −% , 

2

4 1 3 1 2 3c c s c ss q q q q q= − −% , 

and O

JP  is 

1 2

1 2

1 2

s c

c s / ,

s s

x

O

J y

z

i q q

P i h q q

i q q

−   
   = = α   
   
   

       

with  
2 2 3

1 2(1 c cq qα = − . 

The Jacobean matrix which transform the 

joint vector q  into Ω  is  

2

1 2 2 1 2

2

1 2 1 2 1

3 3

1 2 1 2

c c s / s s / 0

s s / c c s / 0

c s / s c / 0

h q q q h q q

J h q q h q q q

h q q h q q

 − α α
 

= − α α 
 α α 

,  (7) 

The inverse kinematics of the robot is 

described by 

1

2

3

atan 2( , )

atan 2( , )

atan 2( , )

z y

x z

x x

q i i

q i i

q Y X

   
   =   
   
   

,          (8) 

where atan arctan( )q q=  and 
x

Y ,
x

X  are   

 2 3 /
x

X sq cq= α  , 2 3 /
x

Y sq sq= − α . 

The contact is identified by the minimum 

distance between the tissue and the surgical 

instrument [15, 16]  

1 2 1 2 1 1 2 2

1
min ( ) ( ) ,  ( ) 0,   ( ) 0

2

T
r r r r f r f r

 
− − ≤ ≤ 

 
,   (9) 

where 1r  and 2r  are the position vectors of two 

points belonging to both bodies and 1f  and 2f  

are bounding surface constraints. The minimum 

problem is defined as 

1 1 1 2 2 2min( ),  ( ) ,   ( )
2 2

d d
d f r e f r e− ≤ − ≤ − ,  (10) 

where d  is the interference distance, and 1e  and 

2e  are the unit vectors. 

The motion equations of the robot are  

( ) ( , ) ( ) ( )T

c cA q q b q q g q J q f+ + + = ϒ&& & ,    (11) 
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where 1 2 3( , , )q q q q= , ( ), ( , )A q b q q&  and ( )g q  are 

the joint vector, the mass/inertia matrix, the 

Coriolis/centrifugal torque and the gravity 

torque in the joint space. The contact force is 

[17]  
n p q

cf k b= δ + δ δ% % & ,                      (12) 

where , ,n p q%  are constants, coefficient k  

depends on the material and the geometric 

properties of the bodies in contact, and b%  is 

defined with respect to the coefficient of 

restitution 0 1e≤ ≤ .  

 

3. NONLINEAR BOUNDARY VALUE 

PROBLEM  
  

The critical points or frontiers are described 

by nonlinear boundary conditions very suitable 

to capture points, lines and curves. For example, 

the vascular territories schematized in Fig, 3, i.e. 

the portal vein (Fig. 3a), the hepatic veins (Fig. 

3b), the hepatic artery (Fig. 3c) and the bile duct 

system (Fig. 3d) form a critical domain.   

We consider the second order vector equation 

(3) and introduce the curvature bound and open 

set G  defined on 0 1[ , ]t tΩ ×  that satisfies the 

condition that if ∀ 0( , )x t G∈∂% , 0 1] , [t t t∈% , there 

is a real function 1 0: ( , ) ( , , , )V x t V x t x t→ %  such 

that [18] 

2

0 1([ , ] , )V C t t R∪ ×Ω ,  

{( , ) : ( , ) 0}G x t V x t⊂ < , 0( , ) 0V x t =%  ,  

grad ,col(1, ) 0V y =p f ,           (13) 

0

(col(1, )),col(1, )

grad ,col(0, ( , , )) 0,

H y y

V f x t y

+

+ >

p f

%p f
 

where H  and grad V  are the gradient and the 

Hessian matrix of V  at 0( , )x t%  for all y .  This 

set can be autonomous in the sense that V  can 

be taken independent of t   and t%  .   

 

Fig. 3. The vascular critical domain: the portal vein (a), 

the hepatic veins (b), the hepatic artery (c) and the bile 

duct system (d). 

 

4. CONTROL  

 

The control is concentrated on the stopping 

the surgical instrument to reach a irregular area 

containing points, lines and curves. The strategy 

is exercised on a domain that includes the portal 

vein, the hepatic veins, the hepatic artery and the 

bile duct system [19].  

A fictive intraoperative sonogram during 

surgical hepatic treatment is presented in Fig. 4. 

In the figure we see red arrows directed towards 

deep round tumors (white). Here, the drugs 

should be introduced according to a known 

integrated imaging-molecular diagnosis. 

 

 
Fig. 4.  Fictive intraoperative sonogram during liver 

transection.  
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Fig.5.  The steps of the control. 

 

To perform a sharp and almost bloodless 

trajectory with the surgical instrument, the task 

is composed from (Fig. 5): at the beginning the 

tumor is identified and a line is marked around 

it, at 1 or 2 cm to the tumor; at this point the 

surgical instrument (red) begins to move 

towards tumor to delivery of drugs into its tissue, 

and bypassing the forbidden lines (red). When it 

is getting close to the line, the robot intervenes 

by decreasing the surgical instrument speed 

proportionally to the distance to tumor. A buffer 

will mitigate the final stop inside the tumor with 

the progressive movements. 

   

5. CONCLUSION  
 

The original contribution of this paper 

consists in proposal of a control strategy based 

on dL for a cooperative surgeon-robot system 

whose behavior depends on the interaction 

between discrete and continuous dynamics. This 

strategy controls a virtual surgical robot 

composed by a system of tracking the position 

and orientation of the surgical instrument, a 

device for visualizing and analyzing the medical 

sonograms and a six degree-of-freedom robotic 

arm designed for use in hepatic surgery. 

The task of the surgeon is the target delivery 

of drugs in tumor tissue, while the task of the 

robot is to stop the surgical instrument to reach 

a forbidden domain. The limitations of the 

current results in the literature refer to the 

ignoring of the nonlinear boundary conditions 

that describe the geometry of the forbidden area. 

To overcome this limitation, we introduce the 

boundary value conditions with nonlinear terms 

that are efficiently captured by dL. This strategy 

is exercised on the vascular territories composed 

by the portal vein, the hepatic veins, the hepatic 

artery and the bile duct system. 

 Importantly, the new approach is suitable to 

capture irregular areas that include points, lines 

and curves and does not hinder the trajectory 

control.   
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Asupra unui model logic dinamic diferențial pentru sisteme hibride 
 

Rezumat: Contribuția acestei lucrări constă în avansarea unei strategii de control bazată pe logica 

dinamică diferențială (dL) pentru un sistem cooperant chirurg-robot al cărui comportament depinde de 

interacțiunea dintre dinamica discretă care derivă din control și dinamica continuă care apare din 

mișcarea instrumentului chirurgical. Astfel de sisteme se numesc sisteme hibride. Algoritmul dL captează 

logica suprapunerii ambelor dinamici și este capabil să controleze sistemul în modul cel mai natural. După 

opinia noastră, dL poate fi utilizat cu succes pentru evitarea coliziunilor instrumentului chirurgical cu un 

domeniu critic într-un sistem virtual compus dintr-un robot chirurgical, un dispozitiv de vizualizare și 

analiză a imaginilor medicale și un braț robotic cu șase grade de libertate conceput pentru utilizare în 

chirurgia hepatică. 

Cuvinte cheie: Control logic diferențial; Sisteme hibride; Chirurgie robotică; Evitarea coliziunii. 
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