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POLYNOMIAL INTERPOLATION FUNCTIONS IN ADVANCED DYNAMICS 

 
Iuliu NEGREAN, Adina CRIŞAN 

 
Abstract: The present paper is devoted to the research of the main author, in what concerns the use of polynomial 

interpolation functions in generating the motion trajectory of an industrial robot. In this purpose are presented some classical 
formulations on polynomial interpolation functions of third order with restrictions. Unlike the third order polynomials, the 
higher order polynomials ( )5≥  have the advantage of ensuring the continuity in accelerations of higher order. Are also 
presented, in explicit form, the expressions for the acceleration energy of first, second and third order, corresponding to the 
current and sudden motions multi body systems and which are further use to define the motion equations. In the final part of 
the paper, the formulations are applied to describe the dynamic behavior of a 2TR robot structure. So, are determined the 
expressions for the acceleration energies of first, second and third order, compulsory in defining the dynamic equations. The 
time variation laws for generalized coordinates, velocities, accelerations, energy of accelerations and generalized forces of 
first, second and third order will be also defined.   
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1. INTRODUCTION 
 

A consequence of the fact that the machines 
and robots used in different technological 
processes have become very complex and 
precise, is seen in the improvement of the 
performed tasks regarding the motions that have 
to be designed in order to follow accurately a 
given path. So, it is introduced the concept of 
motion trajectory which allows engineers to 
build more powerful tools in order to control the 
motion of different machines simply by 
considering the position a function of time.  

In most cases, the main approach, consist in 
defining a certain path and expect the system to 
be able to follow.  But many of the designed 
paths can’t be precisely and effectively 
followed. Some of the systems already use 
trajectories, but not in an integrated way. The 
use of a trajectory to define the motion of a 
mechanical system gives all the necessary 
elements to verify that the motion is really 
feasible. For example, in case of an industrial 
robot which is interacting with human operators, 
the safety constraints can be expressed more 
easily in terms of kinematic constraints.  

From mathematical point of view, the 
trajectory is usually studied between two points 

belonging to the working space, corresponding 
to the initial and final moment of the motion. In 
order to avoid possible collisions with different 
objects from the working area, a finite set of 
intermediate points is added to the two points 
that were initially considered. The motion 
trajectory of a robot represents the meeting of 
all polynomial time functions, these being 
expressed either in the configuration space or in 
the Cartesian space, depending on the initial 
conditions of the movement. The degree of 
interpolation of the polynomial depends on 
restrictive conditions of the movement, which 
are generally the points in the work space that 
the robot is forced to pass at a certain moment 
and the generalized and operational velocities 
and accelerations that characterize the motion of 
these points at the time 1t , according to [ 5], [6]. 
According to the research of the main author, 
example [12] – [15], polynomial interpolation 
functions can be expressed in a general form as: 
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In the expression presented above, m  is a 
parameter defining the deriving order of 
polynomial ( ≥ =, , , , ,Km 2 m 2 3 4 5 ), = →p 0 m , 
= →j 1 n are the degrees of freedom of the 

analyzed mechanical system. In the same 
equation, δp  represents the space travelled 
during it  period of time, being defined by the 
following identity: ( ) ( ){ }δ = = ≥, ; ;p 0 p 0 1 p 1 .  
If in case of the real interpolation function, δp  
represents the space travelled during time 
interval it , for the normalized function, it 
travels a space of unity length in a given time 
interval. Also, = →i 1 s  defines the intervals of 
motion trajectories, τ  is the actual time variable 
τ τ τ−∈ [ ]i 1 i , and τ τ −= −t i i i 1 is the actual time 
corresponding to each trajectory interval ( )i . 
For every trajectory interval ( )= →i 1 s , ( )+m 1  
represents the number of unknowns, defined as: 
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where ( )jika are the integration constants, as well 
( )
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m

ji 1q  the generalized accelerations of ( )m  order. 

To determine the unknowns defined by the 
expression (2), is required to apply geometrical 
and kinematical constraints [11], [15] – [18]: 
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The continuity conditions from (3) are applied 
to each ( )τ i , where = → −i 1 s 1 . Finally, the 
results from (1) will be substituted in the 
kinematic and dynamic equations. 

2. CLASSICAL POLYNOMIAL FUNCTIONS 
 
The studies regarding trajectory generation at 

the joint level are various and win over the 
interest of many researchers. For example, the 
authors of the paper [1] were among the first 

that advanced the idea of using the polynomial 
functions for robot trajectory generation. Also, 
according to [2]-[6], a commonly used joint-
space trajectory generation method is based on 
linearly-changing joint velocity using starting 
and ending parabolic blends. 
 Although this method is frequently used, its 
application raises up some problems such as the 
fact that the first derivative of acceleration (jerk) 
is characterized by infinite spikes thus requiring 
three separate functions instead of one. The use 
of third order polynomial joint-space trajectory 
generation is also preferred by many authors 
[4]-[7]. Another approach is that of using the 
fifth-order polynomial for determining the 
motion trajectory of a mechanical system.  
 Some other authors [5]- [7] suggest the use 
of initial, intermediate and final polynomials of 
4-3-4 or 3-5-3 order polynomials, for a single 
joint motion. The objective of the present paper 
is to make a review on different methods of 
applying the polynomials in defining the motion 
trajectory, by highlighting the advantages and 
the drawbacks for each of them. Also, it will be 
presented a generalized algorithm that uses 
polynomial functions of higher degree for 
determining the trajectory of motion, based on 
an original approach.  
 If the motion of the end effector of a robot 
characterized by ( )n  degrees of freedom is well 
defined, the problem is to determine the 
interpolation polynomial functions which define 
the robot trajectory in the configurations space.  
 The meeting of all time dependent 
interpolation functions, defined for each 
segment of motion and for each component of 
the generalized variable vector represents the 
motion trajectory. Forwards are presented the 
most commonly methods based on polynomials 
functions, used for motion trajectory generation.  
 
2.1 Polynomial functions of third order 

 
For the mathematical modeling of motion 

trajectories in the configurations space are also 
used the geometric, kinematic and dynamic 
constraints of the command and control system, 
along with the initial conditions imposed by the 
work process [5], [8], [16]. Depending on the 
working process, the motion trajectory must go 
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through all ( )+n 1  points corresponding to the 
moments ( )τ = →i i 0 n . According to the initial 
conditions, the trajectory must provide a 
restrictive control over the position, velocity and 
acceleration that characterize the motion at the 
moments τ0  and τ n  to ensure the continuity in 
velocity and accelerations at the moments 

( )τ⎡ = → − ⎤⎣ ⎦i i 1 n 1 . The restrictive conditions for 
this type of motion trajectory are presented below: 
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The parameters included in (4) result from the 
geometric and kinematic control modeling. The 
initial conditions (4) are supplemented by the 
following kinematic and dynamic constraints: 
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The interpolation of each segment of the 
motion trajectory ( )= →i 1 n  is done by using 
the cubic spline functions. In order to determine 
the cubic spline functions is generated a time 
linear function for generalized accelerations from 
each robot joint ( )= →j 1 N , see [8] and [16]: 

  ( ) ( ) ( )τ τ τ ττ τ τ−
−

− −
= ⋅ + ⋅&& && &&i i 1

ji ji i 1 ji i
i i

q q q
t t

;    (6) 

where τ τ −= −i i i 1t  is the time needed to travel 
the = →i 1 n   segment of trajectory.  

According to [16], the unknowns are 
represented by the generalized acceleration that 
characterize the motion at moments τ −i 1  and τ i : 
   ( ) ( )τ τ− −= =;&& && && &&ji i 1 ji 1 ji i jiq q q q ;            (7) 

Integrating the differential equation (6), results: 
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By applying the following initial conditions are 
obtained the integration constants ji1a  and ji 2a : 
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The integration constants (11) and (12) are 
substituted in (8) and (9), resulting the polynomial 
functions of second order, with respect time 
variable ( )τ  characterizing the generalized 
variables and generalized velocities, [8] and [16]: 

    
( ) ( ) ( )τ τ τ τ
τ −

−

−
−

⎧ ⎫− −
= − ⋅ + ⋅ +⎪ ⎪

⎪ ⎪⋅ ⋅
⎨ ⎬⎛ ⎞ ⎛ ⎞⎪ ⎪+ − ⋅ − − ⋅⎜ ⎟ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎝ ⎠⎩ ⎭

& && &&

&& &&

2 2
i i 1

ji ji 1 ji
i i

ji ji 1i i
ji ji 1

i i

q q q
2 t 2 t

q qt tq q
t 6 t 6

;    (13) 

    

( ) ( ) ( )

( )

( )

τ τ τ τ
τ

τ τ

τ τ

−
−

−

−
− −

⎧ ⎫− −
= − ⋅ + ⋅ +⎪ ⎪

⋅ ⋅⎪ ⎪
⎪ ⎛ ⎞ ⎪

+ − ⋅ ⋅ − +⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪
⎛ ⎞⎪ ⎪

+ − ⋅ ⋅ −⎜ ⎟⎪ ⎪
⎝ ⎠⎩ ⎭

&& &&

&&

&&

3 3
i i 1

ji ji 1 ji
i i

ji i
ji i 1

i

ji 1 i
ji 1 i 1

i

q q q
6 t 6 t

q t q
t 6

q t q
t 6

;  (14) 

The unknowns are represented by the 
generalized accelerations and are determined by 
solving the following matrix equation [8], [16]: 
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where −1A  represents the inverse of matrix A , 
the matrix of the coefficients of the unknowns, 
which is defined by the following expression: 
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In the same equation,  { }− −, ,..., ,j1 j 2 jm 2 jm 1b b b b  are 
defining the components of the column vector 
of free terms, denoted with jB , see [8] and [16]:  

( )⋅ −⎧ ⎫+
− ⋅ ⋅ −⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞⎪ ⎪− ⋅ ⋅ + ⋅⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

&

&&

j 2 j 0 1 2
j 0

2 2
j1 2

1 1
j0

2

6 q q t t6 q
t tb

t t16 q
2 3 t

;   (20) 

    
( ) ( )⋅ − ⋅ −⎧ ⎫

− +⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞⎪ ⎪⋅ ⋅ + ⋅ ⋅⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭
& &&

j0 j2 j3 j2

2 3
j2 2

1 1
j0 j0

2 2

6 q q 6 q q
t tb

t t16 q q
t 3 t

;   (21) 

( )− −

− −
−

−

⋅ −⎧ ⎫+
+ ⋅ ⋅ −⎪ ⎪⎪ ⎪= ⎨ ⎬⎛ ⎞⎪ ⎪− ⋅ ⋅ + ⋅⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

&

&&

jm 2 jn m 1 m
jm

m 1 m 1
jm 1 2

m m
jm

m 1

6 q q t t6 q
t tb

t t16 q
2 3 t

;   (22) 

( ) ( )− − −

− −
−

− −

⋅ − ⋅ −⎧ ⎫
+ −⎪ ⎪⎪ ⎪= ⎨ ⎬

⎪ ⎪− ⋅ ⋅ + ⋅ ⋅
⎪ ⎪⎩ ⎭

& &&

jm 3 jm 2 jm jm 2

n 2 n 1
jm 2 2

m m
jm jm

m 1 m 1

6 q q 6 q q
t tb

t t6 q 2 q
t t

  (23) 

By solving the system of equations from (15) 
are obtained the generalized accelerations as 
well as the generalized coordinates. Finally, the 
polynomial functions defined with (6), (13) and 
(14) can be written in a final form. Considering 
the initial input data, for the interpolation of the 
motion trajectory must be applied the kinematic 
and dynamic constraints (5) and are defined the 
maximum values for polynomial functions: 

( ) ( ) ( ) ( ){ }τ τ τ τ; ; ; .& && ji
ji ji ji mq q q Q  

The cubic polynomial functions, because of 
their interpolation order, exhibits some 
restrictions in the study of the accelerations of 
higher order, characteristic to the sudden 
movements of the multibody systems ( )MBS .  

 
2. HIGHER ORDER POLYNOMIALS 

 
Polynomial cubic functions usually provide 

continuity in position and velocity, but accelerations 
are presenting in some cases discontinuity intervals, 
which require the use of higher order polynomials. 

Depending on the constraints that are imposed by 
the work process, can be defined different types of 
trajectories in the configurations space. For example 
can be mentioned the ( )− −4 3 4  respectively 

( )[ ]− − − −5 4 3 4 5   type motion trajectories.  In the 
first case, the end segments of the trajectory are 
interpolated with polynomials of fourth degree for the 
position, while on each intermediary segment, 
= → −i 2 n 1  of the trajectory are applied cubic 

polynomial interpolation functions.  
For  ( )[ ]− − − −5 4 3 4 5   type motion trajectories 

developed in [4] and [8], the end segments are 
interpolated with polynomials of fifth order, first 
and last intermediary segment with polynomials 
of fourth order and for the other intermediary 
segments are used the cubic spline functions. 

According to [12], [13] the kinematical 
constraints, which apply in case of polynomial 
interpolation functions of fifth order, are: 
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The time functions for generalized variables of 
fifth order are defined with the expressions: 
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In case of polynomial interpolation functions of 
fifth order the unknowns are represented by the 
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generalized accelerations of third order [8]. The 
unknowns are determined as follows: 
             −⋅ = ⇒ = ⋅1A X B X A B ;             (32) 
In the equation (32) A  represents a matrix 
whose components are represented by the 
coefficients of the unknowns, B  is the column 
vector of the free terms and X  the column 
vector of the unknowns. Also, −1A  is the inverse 
matrix of the unknown coefficients matrix.  
The components of the column vector of the 
unknowns are presented in the following: 
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The column vector of free terms is defined as: 
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The matrix of unknown coefficients is written as: 
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[ ]

[ ]
××

⎡ ⎤
= ⎢ ⎥
⎣ ⎦[ ]

11
1

4 154 19 12

A
A 0

A
;                     (41)  

where   

[ ]

τ τ τ

τ τ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

3 2
0 0

0

11 22 4 0
0

1
6 2A

1 0
2

,  
[ ]

τ
×

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

0
12

2 4

1 0 0
A

1 0 0 0
. 

              
[ ]

[ ]
××

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

[ ]

411 412

4 421 422
7 107 19

431 432

A A
A 0 A A

A A
              (42) 

The components of matrix defined by (42) are: 

   
[ ]

τ τ τ

τ τ
×

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥= ⎢ ⎥⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

;

3 2 4 4
3 3 3 4

3

411 2 3 32 5 3 3 4
3

t t1
6 2 120 120

A
t t1 0

2 24 24

    (43) 

         
[ ]

τ τ τ

τ τ
×

⎡ ⎤
− − − −⎢ ⎥
⎢ ⎥=
⎢ ⎥
− − −⎢ ⎥⎣ ⎦

3 2
3 3

3

412 22 4 3
3

1
6 2A

1 0
2

;          (44) 

        
[ ]

τ

×

⎡ ⎤⎛ ⎞
−⎢ ⎥⎜ ⎟

⎝ ⎠⎢ ⎥=
⎢ ⎥⎛ ⎞⎢ ⎥+⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

2 2
3 4

3

421
2 5 3 4

t t1 0 0
6 6

A
t t1 0 0 0
2 2

;         (45) 

 

                
[ ]

τ
×

− −⎡ ⎤
= ⎢ ⎥−⎣ ⎦

3
422

2 4

1 0 0
A

1 0 0 0
;               (46) 

 

         
( )

[ ]
( )××

=431
3 53 5

A 0 ;  
[ ]

τ τ τ

τ
×

⎡ ⎤
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎣ ⎦

3 2
4 4

4

432 4
4 3

1
6 2

A 1 0 0
1 0 0 0

;    (47) 

      
[ ]

[ ]
( )

[ ]
× − × −×

= ⎡ ⎤
⎣ ⎦[ ] [ ]

i1 i 2i
4 5 i 2 4 20 5 i4 19

A AA 0 0 ;      (48) 

where 

    
[ ]

3 2 4 4
i 1 i 1 i 1 i

i 1

2 3 3
i 1 i 1 i

i 1

i1 2 24 5
i 1 i

i 1

i 1 i

t t1
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t t1 0
2 24 24

A
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6 6
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2 2

τ τ τ
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τ
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−
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−

×
−

−

−
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⎝ ⎠⎢ ⎥
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⎢ ⎥⎛ ⎞+⎜ ⎟⎢ ⎥
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;  (49) 
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τ τ τ

τ τ

τ

− −
−

−
−

×

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥= −⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

3 2
i 1 i 1

i 1

2
i 1

i 2 i 1
4 4

i 1

1
6 2

A 1 0
2

1 0 0
1 0 0 0

;          (50) 

The matrix −1A  from (32) represents the inverse 
of the matrix of the unknowns coefficients and it 
exists only if the following condition is met: 
{ }> = → −,kt 0 k 2 n 1 .Substituting the expressions 
(34) - (50)into expression (32), and by performing 
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the necessary transformations, it results a 
system of linear and nonhomogeneous equations 
whose solutions are the coefficients that 
couldn’t have been determined by (24)-(26). 
 
3. DYNAMICS EQUATIONS OF HIGHER 

ORDER FOR 2TR ROBOT STRUCTURE 
 

According to the scientific literature [6], in 
1879, Gibbs defines differential equations of 
nonholonomic motion. These research are 
developed by Appell who, in 1899, performs a 
detailed study based on these equations. Today 
these equations are known as Gibbs-Appell 
equations and are applied for holonomic and 
nonholonomic systems, where the kinetic energy 
was substituted through the acceleration energy, 
also known as Appell’s function. Unlike the 
studies, above mentioned, in the papers [7] – [11] 
the author established the higher order 
acceleration energies in a generalized form, for a 
multi body system involved in a general motion.  
According to [12], [15], the generalized driving 
forces for any mechanical system, including the 
robots, is determined in a general form [13]: 

    
( ) ( ) ( )

( ) ( )m

i 2 i i
m m i g

im
SU

m

Q t Q t Q t
11 Q t

1 3

θ

Δ

Δ Δ
Δ
Δ

⎧ ⎫⎡ ⎤= ⋅ ⋅ + +⎣ ⎦⎪ ⎪
−⎨ ⎬

+ − ⋅ ⋅⎪ ⎪+ ⋅⎩ ⎭

ö
;      (51) 

{ } ( ) { }≥ = ≥ + =k 1 k 1 2 3 4 5 m k 1 m 2 3 4 5; ; ; ; ; ;... ; ; ; ; ; ;...

( ) ( ) ( ){ }
{ } { }

m i i1; SU; M ; 0;SU ; 1; M

1; ; 0 ; 0; ; 0θ θ θ θ θ

⎧ ⎫Δ = −⎡ ⎤⎣ ⎦⎪ ⎪
⎨ ⎬⎧ ⎫⎡ ⎤ ⎡ ⎤Δ = ≠ =⎨ ⎬⎪ ⎪⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎩ ⎭⎩ ⎭

& && & &&  

where mΔ  highlight the gravitational load by ( )iM  
and the manipulating load by the symbol ( )SU ; 

θΔ  characterizes the mechanical behavior of the 
system (0 – statics; 1 – dynamics). 
The k order time derivative of the generalized 
driving force, from every robot joint is defined as: 

      

( )
( )

( )
( )

( )
( )

( )
( )

( )

θ

Δ

⎧ ⎫⎡ ⎤
⎪ ⎪= Δ ⋅ Δ ⋅ + +⎢ ⎥
⎪ ⎪⎢ ⎥⎣ ⎦⎨ ⎬
⎪ ⎪−Δ

+ − ⋅ ⋅⎪ ⎪+ ⋅Δ⎩ ⎭
m

k k k
i 2 i i
m m i g

k
im
SU

m

Q t Q t Q t

11 Q t
1 3

ö

;  (52) 

The generalized inertia forces are defined by 
considering the acceleration energy of first order 
[12] – [16].  The general expression for higher 
order time derivatives is determined: 

( )
( )

( )
( ) ( ) ( )

( )
( )

( ) ( ) ( )
( )

θ θ θ θ

θ θ θ

−⎧ ⎫⎧ ⎫⎡ ⎤∂ ⎪ ⎪⎪ ⎪=⎢ ⎥⎨ ⎬⎣ ⎦⎪ ⎪⎪ ⎪⎨ ⎬∂ ⎩ ⎭
⎪ ⎪⎡ ⎤⎪ ⎪= ⎣ ⎦⎩ ⎭

& && L

&

m 2 m
1

Am

j
2

j
i

E t t t t
q

Q t t t

; ; ; ;

; ;ö

;  (53) 

( )
( )

( )

( ) ( )

0
1 1

A Awhere E E j 1 n k 1
m k 1 2 and k are time deriving orders

⎧ ⎫
⎪ ⎪= = → =⎨ ⎬
⎪ ⎪≥ ⎡ + = ⎤⎣ ⎦⎩ ⎭

,
,

; 

The higher order time derivative of generalized 
inertia forces, from every robot joint is defined: 

   

( )
( )

( )
( )

( )
( ) ( )

( ) [ ]

( )
( ) ( ) ( )

( ) ( )

ö ö

ö

ö

i

i

i

k k
i 0 0
i i X

m k mk 1
0 0

i X
m 1

k m 1m 1k
0 0

i X
m 1

Q t J t

k 1 !
J t

m! k m 1 !

k 1 !
J t

m 1 ! k m !

θ

θ

θ

∗

−−
∗

=

− −⎡ ⎤− ⎣ ⎦
∗

=

⎧ ⎫
⎪ ⎪⎡ ⎤= ⋅ +⎣ ⎦⎪ ⎪
⎪ ⎪

−⎪ ⎪⎡ ⎤+ ⋅ ⋅ =⎨ ⎬⎣ ⎦− −⎪ ⎪
⎪ ⎪

−⎪ ⎪⎡ ⎤= ⋅ ⋅⎣ ⎦⎪ ⎪− −⎩ ⎭

∑

∑

; (54) 

In (52), 
( )
( )

k
i
gQ t  defines the k order time derivative 

of  the generalized gravitational force, which 
according to [16] has the following expression: 

( )
( )

( )
( )

( )
( ) ( )

( ) [ ]

( )
( ) ( ) ( )

( ) ( )

ö

ö

ö

i

i

i

k k
i 0 0
g i X

m k mk 1
0 0

i X
m 1

k m 1m 1k
0 0

i X
m 1

Q t J t

k 1 !
J t

m! k m 1 !

k 1 !
J t

m 1 ! k m !

θ

θ

θ

−−

=

− −⎡ ⎤− ⎣ ⎦

=

⎧ ⎫
⎪ ⎪⎡ ⎤= ⋅ +⎣ ⎦⎪ ⎪
⎪ ⎪

−⎪ ⎪⎡ ⎤+ ⋅ ⋅ =⎨ ⎬⎣ ⎦− −⎪ ⎪
⎪ ⎪

−⎪ ⎪⎡ ⎤= ⋅ ⋅⎣ ⎦⎪ ⎪− −⎩ ⎭

∑

∑

; (55) 

The ( )k  order time derivative of the generalized 
manipulating force is defined as follows: 

 

( )
( )

( )
( )

( )
( ) ( )

( ) [ ]

( )
( ) ( ) ( )

( ) ( )

ö

ö
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k k
0 0

SU X

m k mk 1
0 0

X
m 1

k m 1m 1k
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X
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Q t J t

k 1 !
J t
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J t
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θ θ

θ

θ

−−

=

− −⎡ ⎤− ⎣ ⎦

=

⎧ ⎫
⎪ ⎪⎡ ⎤ ⎡ ⎤= ⋅ +⎣ ⎦ ⎣ ⎦⎪ ⎪
⎪ ⎪

−⎪ ⎪⎡ ⎤+ ⋅ ⋅ =⎨ ⎬⎣ ⎦− −⎪ ⎪
⎪ ⎪

−⎪ ⎪⎡ ⎤= ⋅ ⋅⎣ ⎦⎪ ⎪− −⎩ ⎭

∑

∑

;  

(56) 
In the above equations, (54)-(56), ( )0J tθ⎡ ⎤⎣ ⎦  is the 

Jacobian matrix and 0
X (i)ö  characterizes the force 

– moment Cartesian vector, along with their 
higher order time derivatives [8], [12], [15]. 
The expressions (52)-(56) are compulsory in 
establishing of the motion differential equations of 
various orders. In the following, is presented an 
application of the theoretical model presented in 
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this paper. For this purpose, is considered a 2TR 
robot structure which is in fact an (MBS), whose 
kinematical structure is presented in the Fig1.  

 
 

Fig.1 The kinematical structure of 2TR robot 
According to [9] – [15], the sudden motion of a 
MBS (also the robot structure), the transient 
motion phases, as well as the mechanical systems 
subjected to the action of a system of external 
forces, with a time variation law, are 
characterized by linear and angular accelerations 
of higher order. The expressions for the 
acceleration energy of first, second and third 
order have been determined for the 2TR robot 
structure. These are further used to write the 
expressions for the differential equations of 
motion of first, second and third order. 
In this case, the acceleration energy of first order 
for the 2TR robot structure is expressed as: 
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M a sq q q
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;    (57) 

Based on aspects regarding the polynomial 
interpolation functions presented in the previous 
sections, are determined the differential 
equations of second order, written in the form: 
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mik 2 3 2 ikQ M M q g ;    (59) 
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3 2 3
mik 3 2 z 3 ik

3 2 3 ik 1ik

Q M a I q

M a sq q
;    (60) 

The equations (58)-(60) define the differential 
equations of second order, for every robot joint. 
 

The acceleration energy of second order is: 
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The differential equations of third order are: 
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 Considering the kinematical constraints, in 
general form, (24)-(26), applied for the 2TR robot 
structure, as well as the time functions for 
generalized variables of fifth order defined with the 
expressions (27)-(31) and by applying expressions 
(33)-(50) are obtained the polynomial time 
functions for generalized coordinates. 
In Table 1 is presented a selection from a sequence 
of the working process containing the polynomial 
time functions for the generalized coordinates from 
the first and second robot joint. By deriving the 
polynomials for the generalized coordinates are 
obtained the polynomial functions for velocities, 
accelerations and accelerations of higher order.  
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              Table 1 
Int
. 

Polynomials for generalized coordinates 

1ikq m  2 ikq m  

1 τ⋅ 50.7681  τ⋅ 51.0973  

2 
τ τ
τ τ

τ

− ⋅ + ⋅ −
− ⋅ + ⋅ −

− ⋅ +
3

5

2

42.3045 2.3045
0.6913 0.1037

0.0077 0.0002
 

τ τ
τ τ
τ

− ⋅ + ⋅
− ⋅ + ⋅

− ⋅ +

−
−3

5

2

43.2921 3.2921
0.9876 0.1481

0.0111 0.0003
 

3 
τ τ
τ τ

τ

⋅ − ⋅
+ ⋅ − ⋅

+

+

⋅
+

−
3

5 4

2
2.3045 4.609
3.4567 1.1407

0.1788 0.0109
 

τ τ
τ τ

τ

⋅ − ⋅
+ ⋅ − ⋅

⋅
+

+ −

+5 4

3 2
3.2921 6.5843
4.9382 1.6296

0.2555 0.0156
 

4 
τ τ
τ τ
τ

− ⋅ + ⋅
− ⋅ + ⋅

− ⋅ +

−
−3

5

2

40.7681 2.3045
2.7654 1.6592

0.4511 0.0457
 

τ τ
τ τ

τ

− ⋅ + ⋅
− ⋅ + ⋅

− ⋅ +

−
−3

5

2

41.0973 3.2921
3.9506 2.3703

0.6444 0.0653
 

 
 

In order to determine the time variation laws for 
the generalized variables, driving forces and 
acceleration energies of higher order, the time 
polynomial functions of fifth order are applied. 

The study is extended to the energies of 
higher order. Using the research of the author, 
have been determined the variation laws for the 
acceleration energy of first, second and third 
order in case of the 2TR robot structure. 

 
 

 

Fig.2 The time variation laws for coordinates, 
velocities and accelerations for 2TR robot 

The polynomial functions are further used to 
draw the time variation law of the generalized 
coordinates, velocities and accelerations.  
 Based on this, in Fig.2 are represented the 
variation laws for generalized coordinates, 
velocities, accelerations, accelerations of first, 
second and third order as well as of acceleration 
energy of first, second and third order in case of the 
second joint of the 2TR robot. In order to determine 
the time variation laws for the generalized variables 
(Fig.2), higher order accelerations (Fig. 3) and 
acceleration energies of first, second and third order 
(Fig. 4), the time polynomial functions of fifth 
order were applied (Table 1).  
 

 
Fig.3 The time variation laws for accelerations of 

first, second and third order for 2TR robot   

Considering the aspects presented in the previous 
sections, the corresponding time variation laws 
that characterize the dynamic behavior of a 2TR 
robot structure have been drawn (Fig. 4). 
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Fig.4 The time variation laws for the generalized 

forces of first, second and third order 
 

The graphical representation of the variation law 
for the first order acceleration energy is presented: 
 

 
 

Fig.5 The time variation laws for the energies of 
accelerations of first and second order 

 
Fig.6 The time variation laws for the energies of 

accelerations of third order 
 

 The graphical representations from Fig.5 and 
Fig.6 are based on the main author original 
approaches regarding the acceleration energies of 
first, second and third order [10], [15].  
 These were applied for a multibody system 
(MBS), represented in this case by a robot 
structure characterized by 3 d.o.f’s. 
 

4. CONCLUSIONS 
 

The present paper is devoted to the research of 
the main author, in what concerns the importance 
of polynomial interpolation functions in generating 
the motion trajectory of an industrial robot. Unlike 
the classical polynomial functions, already 
mentioned in the scientific works, the first and 
second sections of the paper is using the previous 
research of the main author are developed the 
expressions for the polynomial interpolation 
functions of higher order, with applications in 
higher order acceleration energies and dynamic 
equations of higher order, as it results from the 
fourth section of the present paper. Unlike the third 
order polynomials the higher order polynomials 
have the advantage of ensuring the continuity in 
accelerations of higher order. In the next section 
are presented, in explicit form, the expressions of 
definition for the acceleration energy of first, 
second and third order. They are corresponding to 
the current and sudden motions of rigid body and 
multi body systems. The formulations contain the 
absolute time derivatives of higher order of the 
advanced notions, according to differential 
equations of higher order, characteristic to 
analytical dynamics. In the final part of the 
paper, the presented notions are applied to 
describe the dynamic behavior of a 2TR robot. 
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Funcții polinomiale de interpolare în dinamica avansată 
 

Lucrarea de față este dedicată cercetării întreprinse de autorul principal, în domeniul utilizării funcțiilor polinomiale de 
interpolare în generarea traiectoriei de mișcare a roboților industriali. În acest scop sunt prezentate câteva formulări clasice 
privind funcțiile polinomiale de interpolare de ordinul trei cu restricții. Spre deosebire de varianta clasică, varianta care 
utilizează polinoame de ordin superior asigură continuitatea în accelerații de ordin superior. Sunt prezentate, în formă 
explicită, expresiile pentru energia de accelerație de ordinul întâi, al doilea și al treilea, corespunzătoare mișcărilor curente și 
bruște ale sistemelor multicorp, acestea fiind utilizate în continuare pentru a defini ecuațiile de mișcare. În ultima parte a 
lucrării, modelele matematice prezentate anterior sunt aplicate pentru a descrie comportamentul dinamic al unei structuri de 
robot de tipul 2TR. În acest scop, se determină expresiile pentru energiile de accelerații de ordinul întâi, al doilea și al treilea, 
obligatorii în definirea ecuațiilor dinamice. Au fost de asemenea definite legile de variație în raport cu timpul pentru 
coordonatele generalizate, viteze, accelerații, energii de accelerații și forțe generalizate de ordinul întâi, al doilea și al treilea. 
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