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Abstract: The purpose of the present paper consists in highlighting of the higher order accelerations that occur in 
the oscillatory motion of a spring as well as in the rotational motion of a cam, both of them part of a cam and follower 
mechanism. The cam is acted by means of an electrical engine, the rotational motion of the cam being the source of the 
oscillatory motion performed by the spring. Because the higher order accelerations are characteristic to sudden 
motions, this paper will demonstrate that the perturbing force applied to the spring as well as the torque are both 
characterized by a variation law with respect time. The study conducted on the accelerations of higher order will be 
accomplished by the instrumentality of polynomial interpolation functions of higher order. The results will have at 
basis, in the future papers, measurements performed on the spring and cam which consists in determining the linear 
velocity of the spring and of the linear velocity of a point from the circular cam ring periphery respectively. 
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1. INTRODUCTION 
 

The cam – follower system represents an 
extremely versatile machine element which allows 
for almost any specified motion to be performed. 
This type of mechanism can be used in a wide 
variety of industrial applications, especially the 
one which require a higher level of accuracy and 
repeatability or when is a need for operating at 
high speeds.  

The simple motions, such as rotation or 
translation, can be transformed into any other type 
of motions by using cam mechanisms, these 
providing the simplest and most compact way to 
transform motions. The mechanism usually 
consists of two moving elements, the cam and a 
follower, mounted on a fixed frame.   

A cam and follower mechanism is a profiled 
shape, mounted on a shaft that imparts a 
predetermined motion to another element called 
the follower (Fig.1). Cams are converting the 
rotation motion into linear motion. So, when the 
cam performs a rotation motion, the follower rises 
and falls in a process known as reciprocating 
motion, but in the same time it maintains contact 
with the cam through the force of gravity or by 
means of a spring. The stroke is the total range of 
movement produced by the cam. The movement 
of the follower is restricted to a predetermined 

pattern by means of a slideway, the range of 
motion depending on the distance measured from 
the shaft, which is supporting the cam, to the 
upper and lower points of the rotation circle. 

 

 
Fig. 1 The cam and follower system 

 

 The cams are usually designed in different 
individual shapes in order to generate specific 
types of motion. There is a large variety of cams 
in what concerns the shapes and sizes, but the 
most common used in practice are the circular 
cams with an off-center hole, pear shaped and 
snail shaped cams. When the cams rotate, the 
followers carry out a reciprocate motion 
according to the profile of the cam. For 
example, in case of the cams characterized by a 
circular shape, sometimes referred to as 
eccentric cams, the movement will be 
characterized by a smooth rise and fall, with no 
pause, motion also known as harmonic motion.  
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2. THE KINEMATIC STUDY 
 

The mechanism consisting of a cam and a 
follower is usually defined by one degree of 
freedom which can be represented by the 
rotation angle ϕ  of the cam or by the linear 
displacement of the follower, x . 

 
Fig. 2 The geometry of cam and follower 

 

The motion of a point on the periphery on the 
cam circle can be described using the 
polynomial interpolation functions.  
According to the research of the main author, 
example [12] – [15], polynomial interpolation 
functions can be expressed in a general form as: 
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In the expression presented above, m  represents 
the deriving order of the polynomial function (

≥ =, , , , ,Km 2 m 2 3 4 5 ), = →p 0 m , 
= →j 1 n are the degrees of freedom of the 

analyzed mechanical system. In the same 
equation, δp  represents the space travelled during 

it  period of time, being defined by the following 
identity: ( ) ( ){ }δ = = ≥, ; ;p 0 p 0 1 p 1 .  

If in case of the real interpolation function, δp  
represents the space travelled during time interval 

it , for the normalized function, it travels a space 
of unity length in a given time interval. Also, 
= →i 1 s  defines the intervals of motion 

trajectories, τ  is the actual time variable
τ τ τ−∈ [ ]i 1 i , and τ τ −= −t i i i 1 is the actual time 
corresponding to each trajectory interval ( )i . For 
every trajectory interval ( )= →i 1 s , ( )+m 1  
represents the number of unknowns, defined as: 
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where ( )jika are the integration constants, as well 
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m

ji 1q  the generalized accelerations of ( )m  order. 

To determine the unknowns defined by the 
expression (2), is required to apply geometrical 
and kinematical constraints [11], [15] – [18]: 
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The continuity conditions from (3) are applied 
to each ( )τ i , where = → −i 1 s 1 . Finally, the 
results from (1) will be substituted in the 
kinematic and dynamic equations. 

 
Fig. 3 The motion of the circular cam 

 
When the polynomial interpolation functions 

of third order are used, is achieved continuity in 
position and velocity, but accelerations are 
presenting in some cases discontinuity intervals, 
which require the use of higher order polynomials. 
There can be defined different types of trajectories 
that can be described by the cam – follower 
mechanism in the configuration space depending 
on the constraints that are imposed by the work 
process. According to [12], [13] the kinematical 
constraints that are applied in case of polynomial 
functions of fifth order, for the follower are: 
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The time functions for generalized variables of 
fifth order are defined with the expressions: 
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The kinematical constraints which are applied 
for the circular cam, for i 1 n= → , are:  
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In the following are established the kinematical 
expressions between the linear displacement 
( )x τ  of the spring and the rotation angle ( )ϕ τ  

which characterizes the rotation motion of the 
cam. According to Fig.1-3, are determined the 
trigonometric functions for ( )ψ τ  an angle whose 
value is dependent of the rotation angle ( )ϕ τ :  
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Also is determined the dependence between the 
angle ( )ϕ τ and linear displacement ( )x τ such as: 
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Expression (23) is substituted in (24), resulting: 
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from where the value of angle ( )ϕ τ  is determined:  
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( ) ( )[ ] ( )[ ]{ } ( )[ ]Atan2 s ; c f xϕ τ ϕ τ ϕ τ τ= =  (29) 
According to expressions previously presented, 
it results that assembly cam – spring is defined 
by an independent parameter: ( )ϕ τ  or ( )x τ  
whose the significance was mentioned above. 
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3. THE DYNAMICS OF THE 
EQUIPMENT 

 
The main purpose of the present paper is to 

establish the time variation law for the perturbing 
force that generates the motion of a cam and 
follower mechanism. The system which is going 
to be analyzed consists of a rotating cam and a 
translating roller type follower (Fig.1, Fig. 2).  

The cam profile is represented by a circle of 
radiusR . The rotation center of the cam is 
situated eccentric from the geometrical center, at 
distancee . The cam produces a smooth motion 
also known as harmonic motion (Fig. 3). 

 
Fig. 4 The distribution of forces for the cam 

 
The follower consists of a spring 

characterized by the elastic constant k  and 
undistorted length L . The assembly is situated in 
the vertical plane z 0= , the cam being attached 
on a shaft and acted by means of an electrical 
engine. A follower with a small roller attached, 
pushes against the cam (Fig. 4).  

 
Fig. 5 The motion of the roller 

 
As the shaft rotates, the roller follows the cam 

profile causing the follower to rise or to fall. The 
rotation motion of the cam will generate a 
perturbing force in the theoretical contact point 

which will impose an oscillatory motion to the 
spring, around 0x  axis (see Fig. 4).  

The fundamental theorems that characterize 
the motion of the equipment are represented by 
the theorem of motion of the center in case of the 
spring and the theorem of angular momentum for 
the circular cam. These theorems are known, in 
accordance with scientific literature, [8], [10]. 
The main objective of this section consists in 
presenting some reformulations of the theorems, 
applied for a rigid body involved in   general 
motion, in this case the circular cam (see Fig.3).  
According to [10], [12], the theorem of the 
motion of the mass center, applied for the 
component of the system engaged in a oscillatory 
motion, in this case the spring, can be written as: 

( ) ( ) ( ) ( )r C r C r CM a M v M r Rτ τ τ τ⋅ = ⋅ = ⋅ =&&& ;  (30) 

where rM  represents the mass of the spring, 

C C Ca v r= = &&&  the acceleration which characterizes 
the motion of the spring’s mass center and 
finally, R  is the resultant vector of active forces 
applied on the elastic spring. 

The next component of the analyzed system is 
represented by the source of motion, which is, in 
this case the circular cam. According to Fig. 3 
this component (the cam) is engaged motion by 
an electrical engine, performing a rotation motion 
around a fixed axis which passes through a point 

0O  positioned eccentrically from the geometrical 
center of the cam and denoted with C .  

The motion of the cam is studied by 
considering the general form of angular 
momentum theorem, in case of a rigid body 
which is performing a general motion: 
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The expression (32) represents the theorem of 
angular momentum with respect to mass center.  
where, CM  is the resultant moment of the active 
forces relative to the mass center of the cam, 
[ ]( )0

S R t is the resultant rotation matrix between 
the mobile system attached to cam and the fixed 
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system, and finally, ( )SI t∗ represents the inertial 
tensor, axial–centrifugal, relative to mass center.  
If applied in case of the circular cam, which 
means by applying the constraints specific to the 
rotation around a fixed axis, expression (32) is: 

( ) ( )Z Z zK M Iτ ϕ τ= = ⋅& && ;                           (33) 
where ϕ&&  is the angular acceleration of the cam 
and zI  is expressed with the following formula: 

            
2

2c
z c

M RI M R
2
⋅

= + ⋅ ;                (34) 

In the expression (34), zI  is the axial moment of 
inertia of the cam with respect to the rotation 
axis, camM  is mass of the cam and R  its radius.  
As mentioned before, the mechanical system 
consisting of a cam and a follower is 
characterized by a single degree of freedom 
which can be the either the angle of rotation ϕ  or 
the linear displacement x , which are unknown. 
  The motion laws for the two components of the 
analyzed system (cam and follower) are 
determined by solving the differential equations: 

( ) ( ) ( )r pM x k x Fτ τ τ⋅ = ⋅ −&& ;             (35) 

where   ( ) ( )[ ] ( )[ ]pF F c sντ ψ τ μ ψ τ⎡ ⎤= ⋅ + ⋅⎣ ⎦ ; (36) 

In expression (36), ( )pF τ  is the perturbing force 
and is characterized by a time variation law, Fν  
represents the normal downforce at the contact 
surface between the circular cam and spring and 
μ  is the sliding friction coefficient between the 
contour of the cylindrical cam and the roller 
situated at the extremity of the follower. 
The expression (35) represents the differential 
equation of motion that characterizes the 
movement of the follower (spring). By 
experimental measurements, the linear 
acceleration of the follower x&&  can be determined 
by using the polynomial interpolation functions 
which leads to the defining of the time variation 
law characteristic to the perturbing force. 
The polynomial interpolation functions for the 
rotation angle ϕ  along with their higher order 
time derivatives are determined for the circular 
cam as well. Also, the differential equation of 
motion for the circular cam is written as follows: 

( )( ) [ ]( ) ( )[ ]( )
( )[ ] ( ) ( )cam m z

F R e x s c

M g c M I

ν τ ψ τ μ ψ τ

ϕ τ τ ϕ τ

⎧ ⎫⋅ + − − ⋅ −⎪ ⎪
⎨ ⎬
⎪ ⎪− ⋅ ⋅ + = ⋅⎩ ⎭&&

(37) 

In the equation presented above, e  represents 
the eccentricity, mM  the driving moment, x  is the 
displacement of the contact point between the cam 
and follower and ψ  is an angle which according 
to Fig. 3 is dependent on the rotation angle ϕ . 

The equation (37) is further used to 
determine the time variation law for the driving 
moment ( )

mM τ  which imparts rotation motion 
to the circular cam and withal the oscillatory 
motion to the arc as well.  

 
4. CONCLUSIONS 

 
By means of the researches of the author, in 

the first two sections of this paper formulations 
concerning the classical theorems from 
dynamics were presented, with application for a 
system consisting of a circular cam and a 
follower. So, the theorem of the mass center, 
and theorem of the angular momentum, were 
defined in the explicit form and applied for the 
cam and follower mechanical system. 

The purpose of the present paper consists in 
highlighting of the higher order accelerations 
that occur in the oscillatory motion of a spring 
as well as in the rotational motion of a cam, 
both of them part of a cam and follower 
mechanism. The cam is acted by means of an 
electrical engine, the rotational motion of the 
cam being the source of the oscillatory motion 
performed by the spring. Because the higher 
order accelerations are characteristic to sudden 
motions, this paper will demonstrate that the 
perturbing force applied to the spring as well as 
the torque are both characterized by a variation 
law with respect to time. The study conducted 
on the accelerations of higher order will be 
accomplished by the instrumentality of 
polynomial interpolation functions of higher 
order. The results were based on the 
measurements performed on the spring and cam 
which consists in determining the linear velocity 
of the spring and the linear velocity of a point 
from the circular contour of the physical cam. 
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Studiul dinamic al unui ansamblu camă – resort 

 
Rezumat: Scopul principal al prezentei lucrări îl reprezintă evidențierea accelerațiilor de ordin superior in 

mișcarea oscilatorie a unui resort elastic, respectiv în mișcarea de rotație a unei came circulare, ambele fiind 
componente ale unui sistem de tip camă – palpator, în care cama circulară reprezintă sursa generatoare a mișcării 
oscilatorii a resortului. Prin aplicarea accelerațiilor de ordin superior ce corespund mișcărilor rapide, în cadrul 
acestei lucrări se va arata ca forța perturbatoare aplicată resortului elastic, precum și momentul motor sunt 
caracterizate print-o lege de variație în raport cu timpul, a cărei determinare este unul dintre obiectivele lucrării de 
față. Studiul accelerațiilor de ordin superior se va realiza prin aplicarea funcțiilor polinomiale de interpolare de ordin 
superior. Rezultatele obținute vor avea la bază, în lucrări viitoare, măsurători experimentale asupra accelerației 
liniare a resortului, respectiv a vitezei liniare ce caracterizează mișcarea unui punct situat pe periferia camei circulare. 
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