
13

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 62, Issue I, March, 2019

A JAVA CLIENT-SERVER MODEL TO SOLVE THE FORWARD AND THE

INVERSE ROBOT KINEMATICS

Tiberiu Alexandru ANTAL

Abstract: The paper describes a client-server model that can be used to solve the forward and the reverse

kinematics of robot over the Internet. The client sends over the Internet a request coded in a string, the

server decodes the request to find the required demand, extracts the parameters for which the solution is

required, solves the request under the given conditions and sends the response back to the client. The

implementation is done in the case of a 2R serial robot with two degrees of freedom along with all the

numerical algorithms required to obtain the proposed solutions. Results can be viewed numerically or

graphically by interfacing Java with AutoCAD and Canvas X.

Key words: client, forward kinematics, inverse kinematics, java, robot, server.

1. INTRODUCTION

Java is an object-oriented programming

language developed by the Green Team made up

of James Gosling, Mike Sheridan, and Patrick

Naughton, from Sun Microsystems (which is

now a subsidiary of Oracle Corporation), as a

part of a project called Green in June 1991.

Initially, called “Greentalk” by James Gosling,

the language was renamed to “Oak” after the tree

that was planted outside of James Gosling’s

office window. In 1995, “Oak” was renamed as

"Java" because it was already a trademark by

Oak Technologies [1]. The first demonstration

of the language involved building a PDA

(Personal Digital Assistant) prototype called

Star7 that was able to manipulate the VCR in

order to obtain some interactivity with the TV

set connected to de VCR. Star 7 had a GUI

(Graphical User Interface) and a smart agent

called "Duke" to assist the user. Since then Java

went through may changes, leaving aside the

technical evolution, some of these were

rebranding and renaming. Today, OpenJDK -

released under license GPL v2 - is an open

source implementation of the Java Standard

Edition platform with contributions from Oracle

and the open Java community while Oracle JDK

- previously called Sun JDK - is licensed under

Oracle Binary Code License Agreement. The

cost of a commercial Oracle JDK license can be

obtained only by contacting oracle, while

OpenJDK is completely free and can be used in

accordance with the GPL v2 license. Despite of

the licensing differences the main features were

kept the same so the simple developer could

choose easily to recompile his code under the

desired license. The robustness and flexibility of

language has, in time, attracted programmers

from all areas, including mechanics, as Java

could be used from building portable graphical

interfaces [2], [4], [5], interact with CAD

software like AutoCAD [3] under certain

restrictions, communicate with microcontrollers

who run different processes or drive robots [6] -

[10], [18] - [21] connect to databases [11], [12],

or to solve numerically nonlinear equation or

systems of equations specific the mechanical

field [13], [14]. One area with huge application

in robotics is the client-server applications [8],

[9] where Java excels due to specialized

packages over the Internet communication.

14

2. THE CLIENT-SERVER APPROACH IN

THE FORWARD AND INVERSE

KINEMATICS PROBLEM

The client server application involves remote

communication between the client and the server

using the public Internet network. The server

will provide solutions to the forward and to the

invers kinematics of the robot, while the client

will issue the calls for the resolution of the

forward or invers kinematic problem. At this

stage the type of the robot is not important what

counts is the information that needs to be placed

in a request for the server to handle the request.

Forward kinematics is based on the kinematic

equations of a robot and computes the position

of the end-effector for given values of the joint

parameters. The reverse process that computes

the joint parameters for a given position of the

end-effector is known as inverse kinematics.

This means that the client must use some code

for the forward kinematics followed by the set of

the parameters necessary to solve the kinematic

equations. To request the reverse kinematics

solution a different code must be used followed

by the end-effector position. Considering a 2R

(two rotations) dof (degree of freedom) planar

robot the two ‘kinematic’ problems are shown in

Figure 1 and Figure 2.

Fig. 1. – Forward kinematic model for a 2 dof planar

robot.

Fig. 2. – Inverse kinematic model for a 2 dof planar

robot.

The forward kinematic problem is simple

being based on the following equations:

��� = ��� cos��� + ��� cos����
�� = ��� sin��� + ��� sin���� (1)

If ��� and ��� lengths of the links are known,

for a given set of {�, ��} the coordinates (xE,

yE) of the end-effector are computed directly

from (1). The invers kinematical model is not

that simple, as Figure 2 shows, two solutions are

possible. No special mathematics is needed to

solve this selection between the two solutions

however, in the following, an iterative numerical

method will be used to solve this system of non-

linear equations. The scientific literature

describes the NR (Newton-Raphson) method as

being one of the most widely used for finding

solutions of non-linear systems of equations.

Compared to the general NR case, in this work,

the method is customized for the concrete

situation of the robot in Figure 1. Consider the

problem of determining the solutions (α, β) of

the following system of equations:

����, ��� = 0
���, ��� = 0 (2)

The NR method will create two series (φ1)n

and (φ2)n starting from an initial point {(φ1)0,

(φ2)0} that will which will converge to (α, β).

The relationships for the definitions of these

series are recurrent and have the following form:

����� = ���� − � ∙ ���
� − � ∙ ���

�
∆ (3)

and

������ = ����� − � ∙ ��!
� − � ∙ ��!

�
∆ (4)

where:

∆ = ��!
� ∙ ���

� − ���
� ∙ ��!

� (5)

The following notations were used for partial

derivatives:

15

��!
� = "�

"�
 (5)

���
� = "�

"��
 (6)

��!
� = "�

"�
 (7)

���
� = "�

"��
 (8)

The recursive procedure used to generate the

(3) and (4) terms of the numerical solution series

should be stopped when the amount from (9)

|����� − ����|

+ |������ − �����| (9)

will be less than a fixed maximum error (usually

marked with ε). At that moment it can be said

that (φ1)n+1 and (φ2)n+1 are the approximate

solution of the system (2). The numerical

approximate derivatives of the formulas (5) to

(8) will be calculated as follows:

��!
� ��, ��� = ��� + ℎ, ��� − ��� − ℎ, ���

2ℎ (10)

���
� ��, ��� = ���, �� + ℎ� − ���, �� − ℎ�

2ℎ (11)

��!
� ��, ���

= ��� + ℎ, ��� − ��� − ℎ, ���
2ℎ

(12)

���
� ��, ���

= ���, �� + ℎ� − ���, �� − ℎ�
2ℎ

(13)

3. JAVA CODING AND PARAMETERS

USED FOR THE FORWARD AND

INVERSE KINEMATICS FOR THE 2 DOF

PLANAR ROBOT

The client will send strings to the server using

the following syntax:

• for the direct kinematics: DK �, ��.

• for the inverse kinematics: RK

�� , �� , ���&, ����&

The string will be parsed at the server by the

following method:

void parseString(String s) {

 String k;

 double a, b, f10, f20;

 StringTokenizer tk = new

StringTokenizer(s, " , ");

 try {

 k = tk.nextToken();

 a =

Double.parseDouble(tk.nextToken());

 b =

Double.parseDouble(tk.nextToken());

 if (k.equals("DK")) {

 f1 = Math.toRadians(a);

 f2 = Math.toRadians(b);

 dirK();

 }

 if (k.equals("RK")) {

 xe = a;

 ye = b;

 f10 =

Double.parseDouble(tk.nextToken());

 f20 =

Double.parseDouble(tk.nextToken());

 invK(f10, f20);

 }

 }

 catch (Exception e) {

 System.out.println("Parse error ->

" + e);

 }

}

With the help of the StringTokenizer class the

kinematics coding and the parameters are

extracted and the corresponding method is called

to solve the problem. For the direct kinematics

the method is:

void dirK() {

 xe = l1 * Math.cos(f1) + l2 *

Math.cos(f2);

 ye = l1 * Math.sin(f1) + l2 *

Math.sin(f2);

}

For the invers kinematics the method is:

public void invK(double xk0, double

yk0) {

 double xk1, yk1, xk, yk, aux1, aux2;

 xk = Math.toRadians(xk0);

 yk = Math.toRadians(yk0);

 do {

 aux1=(F(xk, yk) * Gd1f2(xk, yk) -

G(xk, yk) * Fd1f2(xk, yk)) / delta(xk,

yk);

 aux2 = (G(xk, yk) * Fd1f1(xk, yk) -

F(xk, yk) * Gd1f1(xk, yk)) / delta(xk,

yk);

 xk1 = xk - aux1;

 yk1 = yk - aux2;

16

 xk = xk1;

 yk = yk1;

 } while (Math.abs(aux1) +

Math.abs(aux2) > eps);

 f1 = xk1;

 f2 = yk1;

}

For the sake of simplicity, the above-

provided code omits the safety measures that

should stop it after a predefined maximum

number of iterations if the required convergence

conditions are not met.

The calculation of partial derivatives is based

on the following methods:

public double F(double f1, double f2) {

 return l1 * Math.cos(f1) + l2 *

Math.cos(f2) - xe;

}

public double Fd1f1(double f1, double

f2) {

 return (F(f1 + h, f2) - F(f1 - h, f2))

/ 2. / h;

}

public double Fd1f2(double f1, double

f2) {

 return (F(f1, f2 + h) - F(f1, f2 -

h)) / 2. / h;

}

The above methods are given for the function

f from (2) for the function g the methods can be

deduced easily based on (11) and (12).

4. PRESENTATION OF THE RESULTS

The results obtained can be presented directly

in Java by creating classes to simulate the robot

operation. However, in this work, I preferred to

make the connection between Java, Canvas X

and AutoCAD. Based on the scripting

technologies given in (15) and (16), (17) the

computed positions of the 2 dof planar robot can

be stored as files. AutoCAD is a well-known

CAD software while Canvas X is an illustration

software with good scripting capabilities. If the

system of axes in AutoCAD is the one used in

mathematics and engineering, the one in canvas

is specific to illustration programs, so the Oy

axis grows down. Consider the following piece

of Java code to output the results, where

autocad and canvas are boolean variables used

to select one of the two possible output cases:

if (autocad) {

 System.out.println("pline");

 System.out.printf("0.0,0.0\n%5.4f,

%5.4f\n", xa,ya);

 System.out.printf("%5.4f,%5.4f\n\n",

xe, ye);

}

if (canvas) {

 System.out.print("aly.CreateLine ");

 System.out.printf("%5d,%5d,%5.4f,

%5.4f\n", tx,ty, xa+tx, ya+ty);

 System.out.print("aly.CreateLine ");

System.out.printf("%5.4f,%5.4f,%5.4f,

%5.4f\n", xa+tx, ya+ty, xe+tx, ye+ty);

}

AutoCAD can be programmed very simply

using script files [16]. A script file is a text file

that has the scr extension and contains

AutoCAD commands. If the autocad variable is

set to true the output will be formatted for

AutoCAD. The pline command is used to draw

the robot from the example using two lines (OA

and AE segments), for each computed position.

If the canvas variable is set to true the output

will be formatted for CanvasX. Canvas X ca be

programmed in VBScript and the Java code will

create two lines (one line is created with the

CreateLine statement) for each computed

position of the robot. These must be stored in a

text file with the vbs extension and loaded into

Canvas X as described in (15) and included at

the right position in the vbs file as shown in the

following piece of code:

' Declare variables and constants.

Set cv =

GetObject(,"Canvas.Application")

Set doc = cv.Documents.

Add(cvsIllustrationDocument)

Set aly = cv.ActiveDocument.ActivePage.

ActiveLayer

' aly.CreateLine statements must be

' inserted here

aly.CreateLine 15,15,6.72,9.38

aly.CreateLine 6.72,9.38,16.00,17.00

' first position above
aly.CreateLine 15,15,5.10,16.43

aly.CreateLine 5.10,16.43,17.00,18.00

' second position above …
doc.Selection.SelectAll

Set grp = doc.Selection.MakeGroup

grp.DrawObject.Flip cvsVertical

17

If the client sends to the server requests, using

the serverRQ() method, a set k of points on a

line (y=x+1) as shown in the following code, the

server response will be that from Figure 3.

for (x = 1.; x <= 15.; ++x) {

 y = x + 1.; //line equation

 serverRQ("RK " + x + "," + y +

",90.,10.");

}

Fig. 3. – Response of the server at the inverse

kinematic request for a set of points on a line.

As shown in Figure 3, although all E points are

on the line, the first two A points (A1 and A2) are

not consecutive to the rest of the points Ak of the

solution. This situation is normal because the

NR numerical method used is iterative and the

obtained solutions are depending on the chosen

starting points. As these staring points are

transmitted as parameters to the NR solver in the

request, the client should change the staring

points from 90,10 to 150,0 as shown in the

following code in order to obtain consecutive A

points:

for (x = 1.; x <= 15.; ++x) {

 y = x + 1.;

 if (x > 3.)

 serverRQ("RK " + x + "," + y +

",90.,10.");

 else

 serverRQ("RK " + x + "," + y +

",150.,0.");

}

5. REFERENCES

[1] https://www.javatpoint.com/history-of-java.

[2] ANTAL, T. A., GUI's in JDeveloper, Acta

Technica Napocensis, Series: Applied

Mathemathics and Mechanics, Nr. 52, Vol.

IV, 2009, p.27-32, ISSN 1221-5872.

[3] ANTAL, T .A., Programming AutoCAD

using JAWIN from Java in JDeveloper, Acta

Technica Napocensis, Series: Applied

Mathemathics and Mechanics, Nr. 53, Vol.

III, 2010, p.481-486, ISSN 1221-5872.

[4] ANTAL, T. A., Elemente de Java cu

JDeveloper - îndrumător de laborator,

Editura UTPRES, 2013, p.150, ISBN: 978-

973-662-827-6.

[5] ANTAL, T. A., Java - Iniţiere - îndrumător

de laborator, Editura UTPRES, 2013, p. 246,

ISBN: 978-973-662-832-0.

[6] ANTAL, Tiberiu Alexandru. Raspebrry Pi 3

programming, in java, using Blue J and

JDeveloper based on Pi4J. Acta Technica

Napocensis - Series: Applied Mathematics,

Mechanics and Engineering, [S.l.], v. 60, n. 1,

p. 13-18. 2017. ISSN 1221-5872.

[7] ANTAL, Tiberiu Alexandru. Arduino

Leonardo programming under Windows, in

Java, from JDeveloper using Ardulink. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics and Engineering,

[S.l.], v. 60, n. 1, p. 7-12. 2017. ISSN 1221-

5872.

[8] ANTAL, Tiberiu Alexandru; CHELARU,

Julieta Daniela. A multithreaded java client-

server model for robot interaction. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics and Engineering,

[S.l.], v. 60, n. 3, p. 331-336. sep. 2017. ISSN

1221-5872.

[9] ANTAL, Tiberiu Alexandru. Considerations

on the serial PC - Arduino Uno R3

interaction, in Java, using JDeveloper, for a

3R serial robot, based on the Ardulink

library. Acta Technica Napocensis - Series:

Applied Mathematics, Mechanics and

Engineering,, [S.l.], v. 61, n. 1, p. 7-10. mar.

2018. ISSN 1221-5872.

[10] ANTAL, Tiberiu Alexandru. 3R serial

robot control based on Arduino/Genuino

Uno, in Java, using JDeveloper and Ardulink.

18

Acta Technica Napocensis - Series: Applied

Mathematics, Mechanics and Engineering,,

[S.l.], v. 61, n. 1, p. 11-15. mar. 2018. ISSN

1221-5872.

[11] ANTAL, T. A., ACCESS to an ORACLE

DATABASE using JDBC, Acta Technica

Napocensis, Series: Applied Mathemathics

and Mechanics, Nr. 47, Vol. III, 2004, p.63-

68, ISSN 1221-5872.

[12] ANTAL, T. A., Utilization of the

relational databases in the storage and

retrieval of mechanisms. Acta Technica

Napocensis, Series: Applied Mathemathics

and Mechanics, Nr. 47, Vol. IV, 2004, p.7-14,

ISSN 1221-5872.

[13] ANTAL, T .A., An object oriented

implementation for the study of the sliding

equalization, at the points where the gearing

starts and ends, Acta Technica Napocensis,

Series: Applied Mathemathics and

Mechanics, Nr. 50, Vol. I, 2007, p.33-38,

ISSN 1221-5872.

[14] ANTAL, T .A., ANTAL, A., An object

oriented model for the study of the specific

addendum modifications based on the sliding

and relative velocities equalization at helical

gears, Acta Technica Napocensis, Series:

Applied Mathemathics and Mechanics, Nr.

51, Vol. II, 2008, p.45-50, ISSN 1221-5872.

[15] ANTAL, T.A., Programming Canvas X Pro

16 using scripting technologies, acta

technica napocensis, Acta Technica

Napocensis, Series: Applied Mathematics,

Mechanics, and Engineering, Vol. 58, Issue

II, 2015, p.151-156, ISSN 1221-5872.

[16] TIUCA, T., PRECUP, T., ANTAL, T.,

Dezvoltarea aplicaţiilor cu AutoCAD şi

AutoLISP, Editura Promedia Plus Computers,

1995, p. 303, ISBN 973-96862-2-2.

[17] ANTAL, T. A., Mechanism displacement

analysis with AutoLisp in AutoCAD, Series:

Applied Mathematics and Mechanics, Nr. 45,

2002, U. T. PRESS - The Technical

University form Cluj-Napoca, Romania,

p.19-24, ISSN 1221-5872.

[18] Detesan, OA, The geometric and kinematic

model of rttrr small-sized modular robot,

Acta Technica Napocensis Series-Applied

Mathematics Mechanics And Engineering.

Volume: 58, Issue: 4, Pages: 513-518, 2015,

ISSN: 1221-5872

[19] Detesan, OA, The numerical simulation of

trr small-sized robot, Acta Technica

Napocensis Series-Applied Mathematics

Mechanics And Engineering, Volume: 58,

Issue: 4, Pages: 519-524, 2015, ISSN: 1221-

5872.

[20] Aurora Felicia Cristea, Carmen Monica

BĂLCĂU, Dorian Cosmin Deac - Studies

and researches regarding the calculation of

resistance and designing the vibrating

plate/table „MEVI” - ACTA Technica

Napocensis, Series: Applied Mathematics

and Mechanics, 2017, vol II, nr. 60, pag. 235-

238, ISSN 1221-5872.

[21] Aurora Felicia Cristea - Calculation of

foundation screw regarding the vibrating

table „MEVI” - ACTA Technica Napocensis,

Series: Applied Mathematics and Mechanics,

2017, vol III, nr. 60, pag.389-392, ISSN

1221-5872.

UN MODEL JAVA, CLIENT-SERVER, PENTRU SOLUTIONAREA PROBLEMEI CINEMATICII

DIRECTE SI INVERSE A UNUI ROBOT

Lucrarea descrie un model de aplicaţie Java, client-server, care poate fi folosit pentru a rezolva problema cinematică
directă şi inversă a unui robot prin Internet. Clientul transmite o cerere codificată sub forma unui şir de caractere,

serverul decodifică cererea pentru a determina operaţia de efectuat, apoi extrage parametrii necesari pentru a gasi

soluția, rezolvă cererea în condițiile date și trimite răspunsul înapoi clientului tot sub forma unui şir. Implementarea

este realizată în cazul unui robot serial 2R cu două grade de libertate împreună cu toţi algoritmii numerici necesari

soluţionării problemelor propuse. Rezultatele se pot vizualiza numeric sau grafic prin interfaţarea coului Java cu

produsele software AutoCAD şi Canvas X.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

