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Abstract: the article describes the process of obtaining the dynamic equations of the 6R articulated 

industrial robot used in welding processes. The paper uses the previously determined geometric and 

kinematic model. The aim of this analysis is getting the expressions of the generalized driving forces of the 

robot, representing the equations of the inverse dynamic model. 
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1. INTRODUCTION  

 

The dynamic model of an industrial robot has 

a significant importance, due to the complexity 

of factors that influence the actual performance 

of the robot. Among them, we can mention the 

mass distribution parameters (masses, mass 

centers, position of mass centers, moments of 

inertia), the useful forces and moments applied 

at the end-effecter, factors that are ignored in the 

process of determining the equations of 

geometric and kinematic model. 

The paper determines the equations of the 

inverse dynamic model of the 6R articulated 

industrial robot, shown in fig. 1.   

 

 
Fig. 1. 6R articulated industrial robot 
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One of the most advantageous methods for 

dynamic modelling is Newton-Euler 

formulation, described in [1] and applied in [2], 

[3], [4], [5]. As a pre-requisite, the geometric [6] 

and kinematic [7] model of the 6R robot had to 

be determined. 

An easy way to get the equations of the 

dynamic model is Robot_Symbolic, a MATLAB 

toolbox having the following components: 

Robot_Definition [8], Robot_ Geometry [9], 

Robot_Kinematics [10] and Robot_Dynamics 

[3].  

 

 

2. MASS DISTRIBUTION PARAMETERS 

 

Beside the geometric and kinematic 

parameters, the mass distribution parameters are 

necessary to be established in order to apply 

Newton-Euler formulation [11]. Some 

simplifying hypotheses are useful for setting the 

mass distribution parameters: 

a. The mass centers Ci will be chosen into 

the origins Oi of the frames Oixiyizi,                 

i = 1÷6, such that the position vectors of 

the mass centers to be null. 

b. The mobile frames will be chosen such 

that their axes to be the main directions of 

inertia corresponding to the origins of 

these frames, the centrifugal mechanical 

moments of inertia being zero. 

The mass distribution parameters are: the 

mass of element i, the position vectors of mass 

centers and the inertia tensors. 

The masses are: 

 M1,  M2,  M3,  M4,  M5,  M6. (1) 

The position vectors of mass centers, 

considering the first simplifying hypothesis, are: 
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The inertia tensors, considering the second 

simplifying hypothesis, are the following: 
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The non-zero components of the inertia 

tensor, i*

xJ , 
i*

yJ , 
i*

zJ , i = 1÷6 are the axial 

mechanical moments of inertia with respect to 

the frame i, having the origin in the mass center 

Ci and having the same orientation as the frame 

attached to each of the robot’s links.  

The accelerations corresponding to the mass 

centers are determined according to [12]. The 

following accelerations are established: 
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Due to the complexity of the equations 

corresponding to the mass centers 4 5 and 6 

accelerations, they do not fit in this paper. Their 

computation formulae are the following: 
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3. OUTWARDS ITERATIONS  

 

According to [1], [11] and [12], the 

mechanical structure of the robot is parsed by 

outwards iterations, obtaining the system of 

external forces and their moments. 

The external forces, applying the 

computation relations, are: 
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The equations of external forces of the other 

three links are also very complex and they 

cannot be presented here. Their computation 

equations are: 
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According to [12], the moments of the 

external forces are obtained as: 
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4. INWARDS ITERATIONS  

 

The second part of Newton-Euler formulation 

is dedicated to parsing the mechanical structure 

of the robot by inwards iterations. The 

connection forces and their moments are 

determined, as well as the generalized driving 

forces from the robot’s joints.  

The connection forces, according to [1], [11], 

[12], [13], have the following computation 

expressions: 
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and the moments of the connection forces have 

the expressions: 
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giving complex equations, available at the 

reader’s request to the email address of the first 

author. 

According to [1] and [13], the generalized 

driving forces have the following computation 

formulae: 
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In this case of articulated robot, all the 

generalized driving forces have the significance 

of moments. 

 

 

5. CONCLUSION  

 

The dynamic study of articulated robots 

allows choosing the proper motors for their 

joints, as well as the optimal arrangement of 

modules in a modular robotic structure, such that 

the energy consumption to be minimum for a 

given task.  

The obtaining of the dynamic equations was 

possible using the component Robot_Dynamics 

[3] from the toolbox Robot_ Symbolic [1], [8], 

[9], [10], [3], written in MATLAB. 

 

 

6. FUTURE WORK 

 

There are many possible ways of further 

development of this work. One of them is to 

study the errors in the 6R articulated industrial 

robot, by means of geometric, kinematic and 

dynamic operation precision [14].  

Another way is to plan the motion of the 

robot, based on polynomial functions, having a 

given task in a given environment [15], [16], 

[17].  

The latest research published in [18] - [21] 

opens a new approach in modeling the dynamics 

of the sudden motions in robotics and multibody 

systems, based on the acceleration energy. 
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MODELUL DINAMIC AL ROBOTULUI INDUSTRIAL ARTICULAT 6R, FOLOSIND 

FORMALISMUL NEWTON-EULER 
 

Rezumat: Articolul descrie procesul de obținere a ecuațiilor dinamice ale robotului industrial articulat 6R, 

utilizat în procese de sudură. Lucrarea utilizează ecuațiile modelului geometric și cinematic, determinate 

în prealabil. Scopul acestei analize este obținerea expresiilor forțelor generalizate ale robotului, 

reprezentând ecuațiile modelului dinamic invers. 
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