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Abstract: The present paper aims to present a mathematical model of determining the Jacobian matrix by 

using the differential matrices of the homogenous transformations. The expressions for the Jacobian matrix 

were developed using the differential matrices of first and second order and are obtained by differentiating the 

expressions for the locating matrices that define the transformations between the systems. Based on these, are 

determined the expressions for the Jacobian matrix with projections on the fixed and mobile system. The role of 

Jacobian matrix is to establish the connection between the generalized velocities and operational velocities, 

both defining the forward kinematics equations for any robot mechanical structure.  
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1. INTRODUCTION   

 

In the kinematical modeling the Jacobian 

matrix plays an essential role in the process of 

robot control and analysis. The computation of 

this matrix is required when planning smooth 

trajectories, determining the singularities, 

transforming the control space, deriving the 

dynamics equations of motion or in designing 

the control schemes. The Jacobian-based 

algorithms are used to solve various kinematic 

control problems that emerge in case of serial or 

parallel robots, cooperative multi-arm systems, 

or in case of different robot structures used in 

special applications (underwater robots, 

spacecraft systems or flexible manipulators).  

The kinematic control of any robot structure 

consists in solving the motion control problem. 

There are two approaches in solving this 

problem. The first approach refers to applying 

the inverse kinematical model for transforming 

the desired trajectory of the end-effector into the 

corresponding joint trajectories, which will 

represent the reference inputs for some joint 

space control scheme [3]. The second approach 

consists in handling the manipulator outside the 

control loop, by this allowing that the 

singularities and redundancies corresponding to 

the robot structure to be solved apart from the 

motion control problem [3], [4]. The key point 

of kinematic control is the solution to the inverse 

kinematics problem. 

In case of a serial robot structure, the 

differential kinematic equations are established 

using geometric Jacobian. This matrix is usually 

obtained by following a geometric method 

which consists in computing the intake of each 

joint velocity to the linear and angular velocities 

at the end-effector [5]. In the scientific literature 

[2] - [22] is made a clear distinction between the 

geometric Jacobian and the analytical Jacobian. 

The geometric Jacobian is commonly used when 

physical quantities are of concern, while the 

analytical Jacobian is adopted when task space 

quantities are involved. In the kinematic 

modeling is possible to switch between one 

Jacobian to the other, excepting the case when a 

singularity case is reported. The parametric 

errors lead to Jacobian error which further 

causes velocity error in the Cartesian space. This 

is a result of the fact that the Jacobian matrix is 

a function of joint variables and it comprises the 

kinematical parameters.  

The present paper aims to present a 

mathematical model of determining the Jacobian 

matrix by using the differential matrices of the 

homogenous transformations. The expressions 

for the Jacobian, based on the differential 

matrices of first order, are determined with 

respect to fixed and mobile systems.  

 

 2.  MATRIX DIFFERENTIAL OPERATOR 

This section aims to establishing a matrix 

operator which is meant to replace the partial 
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derivative ( / ; 1iq q i n∂ ∂ = → ) in case of any 

homogenous transformation matrix. The use of 

this matrix operator in the kinematic and 

dynamic modeling of robot structures, leads to 

the generalization of the matrix and differential 

calculus. According to [10] - [15], the locating 

(position and orientation) of two systems { }i  

and { }1i −  attached in the geometrical center of 

two adjoined robot joints, can be defined by 

means of the homogenous transformation 

matrices (also known as locating matrices): 
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In the expressions (2) and (3) the matrix 1iiR −  

and ( )01
1

i
iip

−
−  characterize the initial configuration 

of the robot, while 1iτ = ±  expresses the sign of 

the generalized coordinate with respect to the 

versor of the driving axis.  

According to [10] - [16], the differential of the 

homogenous transformation is defined with the 

following expression: 
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In the expression above presented, the partial 

derivative of the homogenous transformation 

between { }i  and { }1i −  reference systems is: 
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According to (4) and (6), the matrix iU  which is 

defined with (7) and (8) substitute the classical 

partial derivative / ; 1iq q i n∂ ∂ = →  belonging 

to homogenous transformation. This matrix is 

also known as the matrix differential operator 

(Uicker). The expression of the Uicker operator 

changes due to the unit vector { }; ;i i i ik x y z=  

which characterizes the driving axis. The 

application of this operator to the right side or to 

the left side of the homogenous transformation 

matrix depends on the physical state of the 

driving axis (either fixed 1i
ik

−  or mobile i
ik ). 

 

3.  THE DIFFERENTIAL MATRCES OF THE 

HOMOGENOUS TRANSFORMATIONS 

 

The differential matrices of homogenous 

transformations play an essential role in the 

kinematic and dynamic modeling of the 

mechanical systems mainly because of their 

computational advantages. Based on these 

matrices can be determined the Jacobian matrix 

and the dynamics equations in a matrix form.  

In order to determine the differential matrices, 

the expressions for the locating matrices that 

define the position and orientation of the 

systems { } { }0i →  are applied: 
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where, 1i n= →  and 1j i= →  

The operational velocities are determined as the 

absolute derivative of the locating matrices, as: 
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In the expression (12) was introduced the 

notation ijA  which defines the first order 

differential matrix of the locating matrices, 

which can be written according to: 
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The components of the differential matrix of first 

order are symbolized as follows: 
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The partial derivative of the matrix function 

from (14) is substituted by the following property: 
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The first order differential matrices of the 

locating matrices for transformations around 

fixed or mobile axes are defined according to: 
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The first expression from (17) is applied when 

( ) 1j
j jq t k−⋅  and the second one for ( ) j

j jq t k⋅ .  

For the particular case when i n=  and j i= , 

results the following expression for the 

differential matrices: 
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where the first expression is applied for 

( ) 1i
i iq t k

−⋅  and the second  for ( ) i
i iq t k⋅ .   

In the same way, according to [….] are 

determined the defining expressions for the 

second order differential matrix of the 

homogenous transformations: 
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In case j i= , i n=  and 1k i= → , the 

expressions for the differential matrices of 

second order that are applied in these cases are: 
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The differential matrices presented in this 

section can be applied in the study of operational 

velocities and accelerations as well as for the 

computing of the Jacobian matrix also known as 

the velocities transfer matrix.  

 

4.  THE JACOBIAN MATRIX BASED ON 

DIFFERENTIAL MATRICES 

 

4.1. The Jacobian matrix with respect to the 

fixed reference system { }0    

 

 Each column ( )6 1×  included in the Jacobian 

matrix as well as its first order time derivative, 

with respect to fixed and mobile systems, 

according to [6] – [10] can be defined as follows: 
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  The components of the Jacobian matrix 

projected on the { }n  mobile system are defined: 
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where n
R  represents the differential matrix 

operator which ensures the transfer between the 

fixed { }0  and mobile system { }n . 

The Jacobian matrix with respect to the fixed 

reference system is defined according to [ ], as: 
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The components of the column ( )i  from the 

componence of the velocities transfer matrix are: 
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In the expressions (25) and (26), 0
id  and 0

iδ  

represent the components of the differential vector 

describing the motion in the Cartesian space.  

 

4.2. The Jacobian matrix with respect to the 

mobile reference system { }n    

 

When the Jacobian matrix and its time 

derivative are known, this matrices can be 

transferred to the mobile system { }n . The 

mathematical model based on differential 

matrices allows the direct formulation with 

respect to the mobile system for the Jacobian 

matrix. The same Jacobian matrix with 

projections on the mobile reference system is: 
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The expressions (24) and (27) define the 

Jacobian matrix based on differential matrices.  

If the Jacobian matrix with projections on the 

mobile system is known, it can be obtained its 

absolute derivative with respect time: 
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The mathematical model presented in this paper 

aims to the computing of the Jacobian matrix 

also known as the matrix of partial derivatives of 

the locating equations or the velocity transfer 

matrix. The Jacobian matrix establishes the 

connection between the generalized velocities 

and operational velocities, both defining the 

forward kinematics equations. According to the 

model presented in this paper it is observed that 

the Jacobian matrix can be determined by using 

locating equations, linear and angular transfer 

matrices or by applying the differential matrices 

of the homogenous transformations.  

  

5. CONCLUSION  

 

The present paper aims to determine a 

mathematical model which can be applied to 

compute the most important differential matrix 

from robot kinematics known as Jacobian matrix 

or the velocities transfer matrix. The velocity of a 

robot link with respect to the previous link usually 

depends on the type of joint that connects them. 

The velocity of the end effector is a result of the 

contribution made by the local velocities from 

each joint of the robot. that the Jacobian matrix is 

a function of joint variables and it comprises the 

kinematical parameters. The expressions for the 

Jacobian matrix were developed using the 

differential matrices of first and second order. The 

differential matrices are obtained by 

differentiating the expressions for the locating 

matrices that define the transformations between 

the systems. Based on these, were determined the 

expressions for the Jacobian matrix with 

projections on the fixed and mobile system.  

The role of Jacobian matrix is to establish the 

connection between the generalized velocities 

and operational velocities, both defining the 

forward kinematics equations. 
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Determinarea matricei Jacobiene pe baza matricelor diferențiale 

 
Lucrarea are drept scop prezentarea unui model matematic de determinare a matricei Jacobiene bazat pe matricele 

diferențiale ale transformărilor omogene. Expresiile matricei Jacobiene au fost dezvoltate utilizând matricele diferențiale de 

ordinul întâi și de ordinul al doilea, obținute prin derivarea matricelor de situare ce definesc transformările ce au loc între 

sistemele de referință atașate fiecărei cuple cinematice a robotului. Aceste matrice diferențiale stau la baza determinării 

expresiilor pentru matricea Jacobiană și a derivatei ei atât în raport cu sistemul de referință fix cât și în raport cu sistemul de 

referință mobil. Modelul matematic propus în cadrul acestei lucrări evidențiază rolul matricei Jacobiene de a realiza legătura 

între vitezele generalizate și cele operaționale, ce definesc ecuațiile cinematicii directe pentru orice structură de robot.  

 

Adina CRIȘAN Senior lecturer Ph.D., Department of Mechanical Systems Engineering, Technical 

University of Cluj-Napoca, aduca@mep.utcluj.ro, Office Phone 0264/401750. 

Iuliu NEGREAN Professor Ph.D., Member of the Academy of Technical Sciences of Romania,  

Director of Department of Mechanical Systems Engineering, Technical University of Cluj-

Napoca, iuliu.negrean@mep.utcluj.ro, http://users.utcluj.ro/~inegrean, Office Phone 

0264/401616. 

 


