
157

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
 Vol. 62, Issue I, March, 2019

EFFICIENT METHOD TO SOLVE THE GUARINI PUZZLE
GENERALIZATION USING BIPARTITE GRAPHS

Anca-Elena IORDAN, Florin COVACIU

Abstract: In this paper there it is presented an interactive software implemented in the C# programming

language using .Net Frameworks platform which allows a efficient solution of a puzzle obtained through

Guarini puzzle generalization. This consists in considering 6 knights placed on the chessboard of 3∙n

dimension. Three knights are white and are positioned on the first line of the chessboard, and the other

three are black and are positioned on the last line of the chessboard. The aim of this puzzle is to move the

knights through a minimum number of moves so on the first line we have all the black knights, and on the

last line we have all the white knights. This puzzle belongs to a category of problems which can be efficiently

resolved using graph theory, that represents a branch of discrete mathematics.

Key words: Bipartite graphs, Guarini puzzle, C#, .Net Frameworks, UML

1. INTRODUCTION

The generalization of Guarini puzzle [1-2]
consists in considering 6 knights placed on the
chessboard of 3∙n dimension: the three white
knights are at the first line, and the three black
knights are at the last line (figure 1a). The scope
of this puzzle is to exchange the knights to obtain
the position represented in figure 1b (particular
case n=5) in the minimum number of knight
movements, not permitting more than one knight
on a square at any time.

This puzzle belongs to a class of problems
which can be resolved using different types of
algorithms corresponding to areas such as
discrete mathematics (graph theory) or artificial
intelligence (heuristic methods, neural networks
[3]).

In this paper it is presented an efficient
method to solve the puzzle by using bipartite
graphs [4]. The process of modeling the problem
through the bipartite graph consists in
numbering the squares of the chessboard which
will represent the vertices of the bipartite graph.
The possible movements of the knights on the
chessboard, which look like the letter "L", will
represent the edges of the bipartite graph.

Fig. 1. a) Initial state b) Final state

2. BIPARTITE GRAPHS

In graph theory a multipartite graph is a graph
whose vertices can be divided into m different
independent sets [5]. In other words, it is a graph
that can be colored with m colors, so that no two
endpoints of an edge have the same color. When
m = 2 these are the bipartite graphs [6] (figure
2a).

A complete multipartite graph [7-8] is a
multipartite graph in which there is an edge
between every pair of vertices from different
independent sets. These graphs are described by
notation with a capital letter K subscripted by a
sequence of the sizes of each set in the partition
[9]. For example, in figure 2b it is presented the
complete bipartite graph K4,4.

158

Fig. 2. a) Example of a bipartite graph b) Complete

bipartite graph K4,4

3. ANALYSIS STAGE IN SOFTWARE
DEVELOPMENT

The scope of this paper is to present a
software which permits an optimal solution of
the puzzle presented in the first paragraph. The
mathematical modeling of this puzzle with the
aim of an optimal resolving can be used to teach
bipartite graph notion [10].

From the perspective of unified modelling
language [11], the analysis of the interactive
software includes the representation of the use-
case diagram and of the activity diagrams [12].
The use-case diagram offers simplified and
graphical representation of what the software
must really do. Use-case diagram (figure 3) is
based upon functionality and thus will focus on
the “what” offers the interactive software and
not how will be realized.

The use-case diagram corresponding to this
software includes:
• One actor - the user who is external entity

with that the software interacts;
• Four use-cases which describe the

performance of the software;
• Association relationships between player and

use-cases, and dependency relationships
between use-cases.
Also, in the analysis stage of the interactive

software, one activity diagram it is realizing for
each use case present in the diagram from figure
3. Figure 4 shows the activity diagram
corresponding to the "Generation of the bipartite
graph" use-case that includes seven activities.
For each activity will be implemented an
algorithm having final goal the graphical

representation of the bipartite graph associated
with the puzzle.

Fig. 3. Use-case diagram

Fig. 4. Activity diagram

4. DESIGN STAGE IN SOFTWARE
DEVELOPMENT

Conceptual modeling allows identifying the
very important elements for the interactive
software. Class diagram [13] is represented in
order to be observed the connection mode
between the classes and the interfaces that are
used and also the composition and aggregate
relationships between instances.

After identifying the specific elements of the
interactive software, they were been imple-
mented 3 interfaces and 9 classes grouped into
three packages.

159

Package “GameState” brings together
concepts that correspond to the algorithm
corresponding to the bipartite graph, consisting
of 2 classes and 2 interfaces (figure 5). For
memorizing a state configuration, there was
implemented “StateGame” class which
implements “IStateGame” interface. The
algorithm corresponding to bipartite graph is
implemented by using “Algorithm” class which
implements “IAlgorithm” interface. An instance
of this class is composed by one instance of
“StateGame” class and one instance of
“BipartiteGraph”, according to composition
relationship which exists in diagram.

Package “GraphicalUserInterface” brings
together concepts that correspond to the
graphical user interface corresponding to the
interactive software, consisting of 3 classes
(figure 6). For designing the graphical interface
of the software, it was implemented the
„MainInterface” class. An instance of this class
is composed by one instance of
“BipartiteClassRepresentation” class and one
instance of “StateGameRepresentation” class,
according to composition relationship which
exists in diagram. The “StateGameRepre-
sentation” class was implemented for show the
current state of the puzzle, and the
“BipartiteGraphRepresentation” class was
implemented to present the bipartite graph
associated to the current state of the puzzle.

Fig. 5. The structure of “GameState” package

Package “Graph” (figure 7) brings together

concepts that correspond to the graph used to
solve the puzzle, consisting of 4 classes and one
interface. The concept of a vertex from a graph
is implemented by using “Vertex” class which
implements “GraphicalRepresentation” inter-
face.

Fig. 6. The structure of “GraphicalUserInterface”

package
The concept of an edge from a graph is

implemented by using “Edge” class which
implements “GraphicalRepresentation” inter-
face. An instance of this class is composed by
two instance of “Vertex” class.

The concept of graph is implemented by
using “Graph” class which implements
“GraphicalRepresentation” interface. An
instance of this class is composed by several
instances of “Vertex” class and several instances
of “Edge” class, according to composition
relationship which exists in package diagram.

The concept of bipartite graph is implemented
by using “BipartiteGraph” class which inherits
from “Graph” class. In the design phase, it also
performs statechart diagrams that specify the
dynamic behavior of class instances. Figure 8
shows the statechart diagram associated with an
instance of the “Algorithm” class.

Also, collaboration diagrams [14] are
developed in the design stage with the aim to
show the interactions between objects to solve
the use-cases presented in figure 3. Figure 9
shows the collaboration diagram that includes
the interactions between 8 types of objects that
allow drawing of the bipartite graph.

Fig. 7. The structure of “GameState” package

160

Fig. 8. Statechart diagram

Fig. 9. Collaboration diagram

5. IMPLEMENTATION STAGE IN
SOFTWARE DEVELOPMENT

Using UML, the implementation stage
consists in a deployment diagram that describes
the collection of components that ensure the
functionality of the application [15]. In this type
of diagram (figure 10) it can see how the

software is divided, but also the dependencies
between the 12 modules.

Fig. 10. Deployment diagram

6. GRAPHICAL USER INTERFACE

The interactive software is accomplished
using the C# object-oriented programming
language [16-17] on the .Net Framework
platform [18]. Given that specified requisites in
use-case diagram (figure 3) it was designed
graphical user interface.

After the level of difficulty was selected, it is
generated the bipartite graph associated to the
start state (figure 11), and the player can begin
the game. The application permits movements of
any knight between two adjacent vertices, such
that any vertex of the bipartite graph does not
contain more than one knight at any time.

After each movement, the current state of the
puzzle is updated (figure 12) and it is checked
whether the final state (figure 13) has been
reached.

7. CONCLUSION

In this paper the graph theory, which is a
branch of discrete mathematics, was applied to
the game theory to efficiently solve the puzzle
presented in figure 1. Because the graph theory
is a difficult field of discrete mathematics, the
computer games can be of helpful in the

161

teaching/learning process [19] of manifold
aspects regrading to graphs.

Fig.11. Graphical user interface corresponding to the

initial state of the 6 knights puzzle

Fig.12. Graphical user interface corresponding to the

intermediate state

The utilization of interactive software signifies
an efficient way of stimulation and development
of the student motivation.

The interactive software presented in this
paper contributes to the qualitative assimilation
of the knowledge and to the competences

development related to the bipartite graphs,
having great educational opportunities.

Fig.13. Graphical user interface corresponding to the

final state of the 6 knights puzzle

8. REFERENCES

 [1] Levitin, A., Levitin, M., Algorithmic

Puzzles, Oxford University Press, ISBN: 978-
0-19-974044-4, New York, USA, 2011

[2] Devadas, S., Programming for the Puzzled:

Learn to Program while Solving Puzzles,
MIT Press, ISBN: 9780262534307,
Cambridge, MA, USA, 2017

[3] Barabás, I., Todoruţ, A., Cordoş, N., An

Artificial Neural Network Approach to

Estimate the Viscosity of Biodiesel-Diesel-

Ethanol Blends, Acta Technica Napocensis,
Series: Applied Mathematics, Mechanics,
and Engineering, no. 59 (3), pp. 245- 250,
ISSN: 1221 – 5872, 2016

 [4] Asratian, A., Denlev, T., Haggkvist, R.,
Bipartite Graphs and their Applications,
Cambridge University Press, ISBN:
9780511984068, Cambridge, United
Kingdom, 2011

[5] Chartrand, G., Zhang, P., Chromatic Graph

Theory, CRC Press, ISBN: 978-1-58488-
801-7, Boca Raton, Florida, USA, 2009

[6] Pena, J., Rochat, Y., Bipartite Graphs as

Models of Population Structures in

Evolutionary Multiplayer Games, PLoS ONE
7(9), ISSN: 1932-6203, 2012

162

[7] Allagan, J., Serkan, C., Bell Numbers of

Complete Multipartite Graphs, Computer
Science Journal of Moldova, vol.24,
no.2(71), pp. 234-242, ISSN: 1561-4042,
2016

[8] Dobocan, C.A., Blebea, I., Popescu. D., A

Mathematical Model Applied to an

Economical Process, Acta Technica
Napocensis, Series: Applied Mathematics,
Mechanics, and Engineering, no. 56(1), pp.
115- 120, ISSN: 1221 – 5872, 2013

[9] Gethner, E., Hogben, L., Lidický, B.,
Pfender, F., Ruiz, A., Young, M., On

Crossing Numbers of Complete Tripartite

and Balanced Complete Multipartite Graphs,
Journal of Graph Theory, vol. 84(4), pp. 552-
565, ISSN: 1097-0118, 2017

[10] Wang, G., Liu, G., Rainbow Matchings in

Properly Colored Bipartite Graphs, Open
Journal of Discrete Mathematics, vol. 2, pp.
62-64, ISSN: 2161-7635, 2012

[11] Bruegge, B., Dutoit, A., Object Oriented

Software Engineering Using UML, Prentice-
Hall, Inc. Upper Saddle River, ISBN: 978-0-
13-606125-0, NJ, USA, 2013

[12] Dennis, A., Wixom, B., Tegarden, D.,
Systems Analysis and Design with UML, John
Wiley & Sons Ltd, Hoboken, NJ, USA, 2012

[13] Rumpe, B., Modeling with UML, Springer
International Publishing AG, ISBN: 978-3-
319-33932-0, Switzerland, 2016

[14] Lincke, S., Knautz, T., Designing System

Security with UML Misuse Deployment

Diagrams, Proceedings of the IEEE Sixth
International Conference on Software
Security and Reliability Companion, pp. 57-
61, ISBN: 978-0-7695-4743-5, Gaithersburg,
Maryland, USA, June 2012

[15] Gaşpar, M.L., Firescu, V., New Skills and

Qualifications Required by the Current

Approaches in the Software Development

Industry, Acta Technica Napocensis, Series:
Applied Mathematics, Mechanics, and
Engineering, no. 61, pp. 97- 106, ISSN: 1221
– 5872, 2018

[16] Doyle, B., C# Programming From Problem

Analysis to Program Design, Cengage
Learning, ISBN: 978-1285096261, Australia,
2013

[17] Purdum, J., Beginning Object Oriented

Programming with C#, John Wiley & Sons,
Inc., ISBN: 978-1118336922, Indianapolis,
Indiana, USA, 2012

[18] Thuan, T., Hoang, L., .Net Framework

Essentials. Introducing the .NET Framework,
O'Reilly & Associates, Inc. Sebastopol,
ISBN: 978-0596005054, CA, USA, 2015

[19] Popescu, D.I., Teaching Computer Aided

Design for Engineering Students, Acta
Technica Napocensis, Series: Applied
Mathematics, Mechanics, and Engineering,
no. 58(3), pp. 331- 336, ISSN: 1221 – 5872,
2015

METODĂ EFICIENTĂ DE REZOLVARE A UNEI GENERALIZĂRI A PUZZLE-ULUI
GUARINI UTILIZÂND GRAFURI BIPARTITE

Rezumat: În această lucrare este prezentat un soft interactiv implementat în limbajul de programare C# utilizând

platforma .Net Frameworks care va permite o rezolvare eficientă a unui puzzle obținut prin generalizarea puzzlel-ului
Guarini. Acesta constă în considerarea a 6 cai plasați pe o tablă de șah de dimesiune 3∙n. Trei cai sunt albi și sunt
plasați pe prima linie de pe tabla de șah, iar ceilalți trei sunt negri și sunt plasați pe ultima linie de pe tabla de șah.
Scopul acestui puzzle constă în a muta caii printr-un număr minim de mutări astfel încât pe prima linie să fie toți caii
negri, iar pe ultima linie toți caii albi. Acest puzzle aparține unei categorii de probleme care poate fi rezolvată eficient
utilizând teoria grafurilor, ce reprezintă o ramură a matematicii discrete.

Anca-Elena IORDAN, PhD, Lecturer, Polytechnic University of Timisoara, Department of

Electrical Engineering and Industrial Informatics, anca.iordan@fih.upt.ro, Revolutiei 5 Street,
Hunedoara, 331128, ROMANIA, +40724578986

Florin COVACIU, PhD Eng., Lecturer, Technical University of Cluj-Napoca, Department of Design
Engineering and Robotics, florin.covaciu@muri.utcluj.ro, Blvd. Muncii 103-105, Cluj-Napoca,
400641, ROMANIA, +40755566491

