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Abstract: The assessment of the robot accuracy is achieved by means of the geometrical, kinematic and dynamic errors.
The main source of appearance of these errors consists in the dimensional deviations and irregularities from every
driving joint of the robot. The main author has published a series of mathematical models devoted to accuracy. They
were based on classical transformations from robot kinematics and dynamics. The main author has included them in
the first variant of the SimMEcRob Simulator. Within of this paper about the robot kinematic and dynamic accuracy of
the robot structure will be applied formulations, having at basis the matrix exponentials of direct kinematics.
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1. INTRODUCTION

The essential parameters on assessment of the
kinematic accuracy are geometrical and
kinematic errors. In the size of geometrical
errors enter linear and angular deviations that
define the relative positions among the links of
the mechanical robot structure (MRS). With
these, the differences between nominal and
actual fact values of the generalized variables,
which express the relative motions from every
driving joint of the robot, are also added. The
kinematic accuracy is estimated by means of the
position and orienting errors, likewise called
locating errors of the end-effector. Beside these,
in the assessment to kinematic accuracy,
essential parts have the errors of the velocities
and accelerations. They correspond to relative
motions in every driving joint and absolute
motion of the end-effector. For define the
equations answerable to direct geometry and
kinematics (DKM) of the robots, the matrix
exponentials (ME), with important advantages
are applied. In this paper, at beginning the error
matrices with classical transformations, and in
the following the matrix exponentials are
applied in the kinematic accuracy of the robot.

1.1 The Matrices of the Input Data
Every kinetic link (i=1-n) is physically
connected through driving joints i ={R;T} , where

(R) is rotation and (T) prismatic joint. In keeping
with Fig.1, the position of the geometry center

end—effector

A/\/i

Fig. 1 Geometrical Parameters of MRS

O0; from every driving joint, as well as the
position of a point A; arbitrarily chosen on the
kinematic axis l?i(o), is defined with respect to
fixed frame {0}. According to [4] and [5] they are

defined for the nominal (errorless) as well as
actual mechanical robot structure (MRS). The

matrix of the (nominal and actual) geometry
M ,(gq) = { M ,(g,) ;M ,(gn) } is symbolically written as:
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The notation g={n;r} refers to nominal values,

and actual values respectively. In the same stage,
the matrix of the (nominal and actual)
configurations Mg, is also accepted under form:

) {Mg, ;M&}:[équkﬂ —»m]
o :[q/qk Gk Fowi =1 - ”]T

In the above matrix, gjq is called the generalized

3)

(mxn)

variable in the every driving axis, while
(k=1 m) is the number of robot configurations

taken into study. Considering the above matrices,
the primary errors are included in the parameters:

p =0 2p"): 5{) =pl) £ apl): @)

RO k0 ak0) qine =ainc £ a4 (5)

The input data matrices are established in the
design or simulating stage of the mechanical
structure. The primary errors are the result of the
dimensional deviations and link elasticity, as well
as clearances, wears and frictions respectively.
They are given in every driving joint and link.

1.2 The Matrices of the Geometrical Errors

This section is devoted to establishment of
geometrical errors between the adjoining kinetic
links of MRS with ndof., due to the parameters

from the input data matrices. It is known that the
relative position and (locating) orientation,
between two neighboring links (i-1) - (i) can be

expressed by means of the DH-type (Denavit-
Hartenberg) or GP-type (generalized) operators.
In keeping with [4] and [5], their actual values
are characterized by geometrical DH-type and
GP-type errors respectively, all included in the
SimMEcROb Simulator. In keeping with this, a
few matrix expressions devoted to geometrical
errors of the kinetic links are presented.

?yTok={{?;Dk ka} y={PQ; e; 9} k=1- m}; (6)
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EyTQk= [1T><5(n+1)] (D
e —[Aak Ab Ack Aak Aﬂk Ayk]

[1x6(n+1)]

In this paper the classical transformations based
on DH- or GP-type operators are substituted by
means of the matrix exponentials, with a few

significant advantages, in keeping with [6], [7]
and [8]. With the view of this, at beginning the
MRS (mechanical robot structure) is taken in the

initial configuration: & 0 = [g; =0;i=1-n].

The Fig. 2 shows that the screw parameters to
every driving axis (i), are defined with respect
to frame {0} as:{Ei(o) ;\7,.(0)}. The first, k) is the
unit vector of the driving axis, while the second:

V(O):{ﬁ(o) }k()w +(1- a) (0) (8)

lo (0)
2
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Fig. 2 The screw Parameters for MRS
Above, o;={{1 ,i=R};{0,i=T}}
operator, which defines the driving joint type.

In the equation (8), {5:'(0) x} expresses the skew-

represents an

symmetric matrix associated to position vector.
Considering (4) and (5), the new geometrical
errors of the kinetic links are defined with:

2470 =2 {{5’.(0)x} K0 Br,-}+(1—c7,-)Dd TR0
{BZ =l o "Z']} f:hn};(m)

[5 X; 8y 0z, ]
The generalized matrices of kinematical errors (6)
and (7) are completed with exponentials, thus:

T {EyTDk"?yTGk "EyTMEk} : 11
€,k {y={pQE;e; ket m (11)
=[lag;i=1-nllag;i=1-n]]; (12)

EB/QEkz{[E;T/QEk ?&]T E‘;{:[Aéf A%]}.(B)

Remarks. In the above matrices, the symbols:
g,qex and Egop are the column vectors of the

geometrical and generalized variable errors. They
are answerable of DH-type, GP-type operators,
and matrix exponentials. Unlike the classical
transformations, the primary errors are direct
implemented in the expressions based on the
matrix exponentials, this representing an
important model advantage.



THE KINEMATIC ERROR MATRICES

This section is devoted to apply the matrix
exponentials for define the direct kinematics
transformations and matrices of the errors. They
lie at the basis to determination of the kinematic
accuracy for any robot type taken into study.

2.1 Matrix Exponentials in Direct Kinematics

On the basis of the ME Algorithm from [6], [7]
and [8], in this section a few essential
expressions of the matrix exponentials in the
direct geometry and kinematics (DKM
Algorithm) are shortly presented.

The orienting and locating matrices, between
the two adjoining frames{i-1} - {i} are defined
by means of the matrix exponentials as follows:

{exp{{’?f(o) "} gi W'}:{Rn‘ 1‘R(’?,(0)i q ) } } (14)

=15 ey, +{l?,.( )X}sq +k OF tft —cq; )

:/1—9XP{ ) ;@) E{,,_,} } 0. as)

The matrix-deriving operator is substituted as:
k; BTX} kit -o;)
U-=T{’ ! ! 71 r=sgn 16
=gt o) (16)

On the basis of the Rodrigues’ formula, devoted
to position and orientation, the (3x1) column

vector is established by means of the expression:

- . I3+ { }[1 C(Q/ )] (0) (17)
kD w07 g, (g, )] .

Using the above expressions and the screw
parameters, another matrix exponential shows as:

{E’(o)x} g, B/} ‘

e =exp[A1g,] = | ©
0 0 01

Jliad

(18)
000 0

Considering (14), (15) and (18), the exponentials
for the locating matrices of the end effector are:

_ RxO 5 — d . (0)
{Txo{ooo J }—Dexp[A, @], . (19)

This expression contains the orienting matrix
and position vector. The first is expressed as:

25

mri} TR x ={n; n+1}:(20)

R = ﬁexp{{ k0%
=1

The exponential of the position vector is defined:

b= ,Zn;‘ { ﬁ)eXP{{ E/'(O)x}mf Wf}}fﬂ?-+
ofee{ 7 Ja) 0
i=1

In the following, the algorithm contains the
main expressions of the Jacobian matrix
exponentials, belonging to direct kinematics, in
keeping with [6], [7] and [8]. At beginning, the
three new kinematics matrices, based on
exponentials, are determined as below:

E (V1) = ijexp{{ k0 x }m, }; (22)

(3x3

E (VIZ):{IB i E{V?i(o)x}};

21)
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The matrices from the last expression show as:
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m=i—1 ;

k=i n 5m: {{O;m:/—1}}

{1, m=i}

ME1(Viy) =

(24)

ME2(V,5) = ﬂexp{{ k0 x }mkmrk}

On the basis of the matrices (22) and (23) other
new kinematics matrices are also implemented:

{ME{V i+ (o] } .

VEU= " el

(6x6)
o= {Mﬁ’\?} [’03]} {924[12+3[tn—, {MT{OV]B} [?3]}

T

(25)

_ — . T —
ME;, | _ [VIT lby k=i - n] p,(,")q
ME,,
{[r2+3qn=i )<}

MEI Vw _

The Jacobian matrix with its sub-matrices is
determined by means of the below expressions:

0
04(3)=| o ,:{ Jiv:|
g Lsg,)

i:1—»n]; (26)
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04, = Matri{ME{y ;,  ME{y ,,} ME{y 3} ME ..} . (27)

The next kinematics matrices lie at the basis to
calculus of the Jacobian matrix time-derivative:

ME{V;,}  [0]

ME | Lol MEN1 = ‘,'?E{;:,I'} o1},
ME Ju}= 0] ME{V }]"J“U”} _I [0 g J’
SEIE
i-1 [ j-1 _
=IZ{|_| exp{[kk x] oy B Wk}}WE‘/ (28)
j=1 k=0
where & ={{ 0;j>i-1}{1;j<i-1}}
ME1 = I'I‘_.:n ><]':il.l g H;,?:_;Exp [Irﬂm x]qﬂi Gy - ':Fﬂ'.ﬂ'

d
MEVaT} =
= i { ﬁ exp{[}fJ ) x} q, 3, mp}} IMEV1
1=i—1 | p=i=1
=0-i . 5 _ {0;1>Kk-1}
—1 Hn}’ PN 1 <k-1}
{0 (0
f-iE.‘VJ.:ir'-',- ]r? -y - [1¥ctexp [2h'r ><]r_?l.- ﬁr-crr];

[{E,' x}q, G-

MEV2 = I., T T I'I::,“ exp I, Wy :r..,l.
o o)

3(29)

ME2{Y.} = T3, {n ,exp

Through the application of the time-derivative
the column matrix ME;,, is changed as follows:

€19

ME, =[ME,., ME,, ME]

.
T _ _
MEjyq, = [ [Bsk=i = n] 0T OT} ;

.
_ T
/\ﬁE,-vw:{oT [Bgf{;k:iﬁn} o7 OT};

and E‘I =gexp i{?:,‘ x}q,‘ .:r,‘}}.:?"" “ iy

As a result, every column from Jacobian matrix
time-derivative is determined with exponentials:

{[us{,r},} mEly, ) Moy }
ME(), Y- MEYL Y ME{]} - ME |
MELL }- ME.}- ME{LL] J
On the basis of the same papers [6], [7] and [8]
the differential matrices of first and second
order, applied about the locating
transformations, are determined by means of the
exponentials expressions as below:

(32)

_,f =Tr

Jmd =i

i1 k
Ai=1Texo[ A G, B\,D{ exp[A @ ]}DF(O) (33)
ki {u I: j 1]} D | =1 k0

m—1

0

A :{|‘| exp[ A m,]}mm By T
1=0

By = Hi—j exp[A m,-]}m,- E{ ﬁ exp[ Ay m,,]}} .

Using the results from (19), (20) and (21), the
(locating) direct geometry equations are defined:

(o ()@5i=1 - n);j= ue‘]’}

- éf(t) {5 ={fr:j=1- 3o j=4- 6}

a
Mo =Matix Pxk Pyk Pzk @k Par Ve (34
(mx6) k=1-m
Using the Jacobian matrix with its time
derivative, above written by means of the

exponentials, the DKM equations with respect to
{0} and {n}, are defined with the next matrix:

é}.
&

~ T
{(n)oxﬁow[(”)oﬁf" (")O%EKJ] 35)

yLCI ()]

M XVQE:Matr iX

(mx12) where k=1_-m

Above, Myqe 1s the generalized matrix of the
locating equations, while Myyqe represents the

generalized matrix of the operational velocities
and accelerations. They describe the absolute
motion of the end-effector. On the basis of the
polynomial interpolating functions, as well as the
above matrices, the kinematic control functions
(generalized variables) are symbolically defined
in the configuration space, with the next matrix:

q i (T) “Fﬁk (T) % (T)

M 2F = Matrix , (36)

(mxn)| k=1-m j=1-n
Remarks. It comes out that the matrix
exponentials enjoy important advantages

specifically its compact form, and especially
they avoid the frames answerable to every
kinetic link. It is obvious that all the above
matrices are expressing the absolute motion of
the mechanical robot structure, defined in the
nominal state, without to take the primary errors
in this calculus. At the same time, all locating



and differential matrix functions, symbolically
described within of this section, lie at the basis to
determination of the robot kinematics accuracy.

2.2 The Differential Matrices of Errors

A new model for the kinematic error matrices is
established. The geometrical errors: (11) and (13)
can, essentially, influence the kinematic
accuracy. This is dignified by means of the
differentials  applied about the  matrix
exponentials, defined in the previous section. In
keeping with [5], applying a few differential

transformations the error matrices are,
symbolically, established:
i-1]_iq =
i[Jj T]yQEk ; i[dT(X)]yQEk
= =
[AT] e = i[5TX]yoEk ; i[ATX]yQEk ; 37
where x :{1;2,'3} and k=1 -m
i=15n j:1 Ny
2w . A0 &y 0y VT
Adog= A6 2° KON [AOJ(H)g;Ek} - (38)
x={t:23 k=1-m
Apo = AN oe = AAjler LA aer = DAl ok . (39)
k=1-m;i=1-n;j=1-5i;l=1]

The above expressions (37), (38) and (39)
characterize the kinematic error matrices
answerable to locating, Jacobian matrices and
differentials of the locating transformations. For
increase the kinematic accuracy of the robot, the
differentiating order is dignified by means of the
index: x = {1,‘2;3}. Using [9], the error matrices

from (37) are developed below:

[5 /"T] _{, [TleetTl[o T]yQEg’J [T]QE} (40)

wherei=1n+1;j=1-

{"[ [

= AT, 10 Tiioe
j-1

iAxt) k[ K[
lar?) yQE:;EZ::j k[dj 1T]yoE'§J o)
ji—1 X 1
] i[A TX]yQE :{k§1 ]

. [5r<k>]yQE}d—;[r]QE - (43)

{ v 5f(o)r A

o] yog = ; (41)

yaes (42)

where Poe = E’-(O)T;Aq,'k }D E@/QE’( 5 (44)
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ATI(I )1E IEXP{U' m} . (45)
// 1[‘ﬁexp{U m }}[al mq/

As a result, substituting, directly, the primary
errors from (44) and error matrices expressed
with exponentials (45), in the (40)-(43), the new
matrix expressions of the locating errors are
obtained. It is obvious that the expressions: (42)
and (43) show the differential model of x order.
In the following, using the same model from
[9], the error matrices, from (38) and (39), show
in the symbolically form as:

A ew[AG]} = A[exp[[l?"w)x] q’mf’]] b1 ae)

AEi: , /3_|]yi+{_Ei(0) x}[1 —C(Qiai )]+ |],-I'(O) - (47)
+ki(0) u{i(O)T ; -slgioi)]

and ATII -1E — {

j=1 i
a1t =af | Jeets alj it ffpoin 0 1|
=0 p=J
=
M = { [ ex0[An @ ]} @ B 1)
=0

j~1 i
B = { [ exp[ A, (4, | (A, 7] exp[A, mr]}
=l r=p

; (49)

OJ( )QE Matr/x[A JjIQE'I 1-6i=1-> n] (50)

AAY

niQj4 j=1-3

= _ ; (5D
(=18 {J,D[ARX]mek,}j:4 )

OﬁH)QE Matrlx[ﬁ j,Q,_: j=1-6i=1- n];(52)

Z:AAnleMWk j=1-3
a08% =

(=19 { E{ZAA,kQ,m}m'E,};

Therefore, substituting the above locating errors
under exponential form in the (49)-(53) the new

Xy Xy 0 Xy
Ahg> AAjgc, A7 (g)QE are

(53)

expressions for:
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determined as error matrices. But the error
matrix functions for the Jacobian matrix and its
time-derivative are directly obtained, as follows:

25 =y el s el ) |
nx

{AME{VUE}, j:1,2,3}
{AME{JUXVE}; j:123} :
AME™.: AMEY . : AMEY,

iwE”’ vwE

[ ME(f (s ) ey & i
{ i1 } {JIZ}WE
ME{J ;1 ME{J o} IME{J 5}

ame{s2} = (54)

’

)
(55)

Above, the error matrices are defined by means
of (22)-(25) and (28)-(31), through applying the
differentials in function of errors: (10) and (12),
as well as the differentiating order x ={1,2;3} .

Remarks. Unlike the classical transformations,
the calculus of the geometrical parameters,
based on the primary errors, between the two
adjoining links is eliminated. They ensure the
determination of whole error and differential
matrices asked in the kinematic accuracy.

0y —
2°RY = ATrd| M

amefylhanefybanmefn
AME{fF} = .m'-'ur hiame{p Y amE{f

"L”'_ g+ AME] 'I H ..J"r’”-_

4. THE KINEMATIC ROBOT ACCURACY
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Fig.3 The Kinematic Errors for MRS

The generalized equations of the kinematic
accuracy are, symbolically, described below by
means of a few expressions, in keeping with the
SimMEcROb Simulator, fully described in the
[4] and [5].The main symbols of the kinematics
errors, devoted to assessment of the accuracy,
are shown in Fig.3.

The direct modeling of the locating errors, as
well as velocity and acceleration errors of the
end-effector in the Cartesian space is shown as:

- T
T T
0y — Xy Xy —_ Xy .
( aX chyEk) {dQEk} {JQEk} } = E ok Eyaex 3 (56)
k=1-m =

_ T
d gk [deXQEk dy oex dxyZQEk]

.
JQEk [5xy Xoex 0 Yqex 07 ZQEk]

4‘0)_(%&—{ )’%Ek} { %{:‘k} }

(k=1-m)
4% [y (@ -"w-";.~}"Jr]
= . ;“ 7 . L (57)
L zl [La in) fadn}]

Above, the £,z column vector of the errors is

Xy .
=E ace @HyOEk >

_.-_n_

determined with new expressions based on the
matrix exponentials, according to (10) and (13).
The above expressions also contain £y, and

E;{Qk. The first is called the transfer matrix of
the geometrical errors, whose size is defined as:

{{6x5tn;Q=D};{6x61n,Q=6};{6x6(n;Q=ME}} . The
second is the transfer matrix of the kinematics
errors with (12xNq (n) size. They are developed
on the basis of the above matrix exponentials
and likewise error matrix functions.

Considering the optimizing model analyzed in
the papers [4], [5] and [9], the matrix of the
turning values for kinematics errors is
symbolically presented below:

Values{{max; min} ;{x Y k}}

EYQE = Matrixl: }:I . (58)

Yoe =14 Xqe 14 X yqe

The inverse modeling of the generalized errors of
(position-orientation) locating, as well as velocity
acceleration from the end-effector is defined as:

.
&,Qek :{Ec)%QEk} [{oné)Ek {{déEk}T {SQXE"}T} };
Evoe =Matrix[Values {x;y;k} &l 6_'f;yQEk] (59

- IS
=fp
Ergan = LBy



-1 -1
Xy Xy
where {Ed&)Ek } and {EanEk } represent the

inverses of the transfer matrices of the
geometrical and kinematic errors respectively,
and Eyge is the generalized matrix of the errors.

These models are included in the generalized
algorithm devoted to assessment and simulation
of the kinematic and dynamic robot accuracy.

S. DYNAMIC ACCURACY OF ROBOTS

The generalized equations of the dynamic
accuracy are, symbolically, described below by
means of a few expressions, in keeping with the
SimMEcROb Simulator, fully described in [4]
and [5]. The main symbols of the kinematics
and dynamics errors are shown in the Fig.2.

Ag, Jrae
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Fig.4 The Dynamic Errors for MRS

At beginning, the generalized matrices of the
kinematics errors are considered (11) — (13).
The direct modeling of the locating errors, as
well as velocity and acceleration errors in the
Cartesian space (56) and (57) are considered.
On the basis of the mathematical model, in
keeping with [1] - [30], the generalized matrices
of dynamics have been established. In this
paper, the symbolical expressions for dynamics
matrices of errors will be defined. First of all,
generalized matrix of the MD-type errors is:

T
Ewmpek . i= A\ i
£ MDQk k=14>m, i=1>n

A= Al )

Alsoe O Al = Matrix
Rk iQk [j=1—>3/=7—>j

(3x3)
. ) Al = A/Ijk
E O A'l,eior = Matrix g
MDQk psiQk (4x4) [j=1_,4/=1—»j

where  A'figr and A'[p5qk  Tepresent the error

matrices of the inertial and pseudo-inertial tensor

29

respectively, while £pq is the column vector of

the MD-type errors (mass distribution errors).
The generalized matrix of dynamic errors is
determined, and its symbolical expression is:

sy = | 2180 VAN Mo Mo AW |
{AMX@yka 2={n; o} ; k=1-m]

au(g)”; oV (5.8 ; 28(5)" 2)

AC(B)" 80, ()" 405, 4QR ) oy

where AM’ngk represent the differentials of the

AM}&JZK:{

dynamic matrices with respect to £,q¢ and Zypq -

AM; :A{Zn:TrHexp{iAj q jH [, By H ; (30)
k=i j=0

K
where Ay; = {exp{z A m,}}u’k(g) ﬂlpsk m:]T'k

I=i

el

n =
AV :A{ > T {exp{ZAj E‘UH (A mlkjm} (€29)
k=max(i;)) j=0
k
where Ay, = {GXP{Z A lg }} U}(g) sk B
=i

m-=1 (0)
Ayjm = exp{ A m/} (A, LAy O

I=
1 k

and Ay = {exp{jz A, m,} 2, @xp{z A, mp}}
i=m p=i

The dynamic errors (30) and (31) are included
in the dynamics matrices, [1] and [2], as below:

AMI.].:A{ 3 Tr[Ak,df/pskm[j]} 32)
k=max i)

wherei=1>nand j=1-n

f .arr'_[ﬁ":??} :j{é" AWs i=1-4]. é};} =
bl [P )

As(é):“ > T Ag Bl B | (34)
k=max (i;j;m)

i=1-nj=1-n-1,m=j+15n

m(8)=




30

n
a9 T Ay ]
k=max (i)
i=1-n,j=15n

2(8)= (35)

The above dynamic errors are answerable to
inertia matrix (32), column matrix (33) which is
containing the matrix of the Coriolis terms (34)
and centrifugal terms (35). Analyzing (30) and
(31), it comes out that their components are
expressed by means of the matrix exponentials.

Therefore, the dynamic error of the generalized
driving forces is symbolically defined with:
a2 - g - {,’-ﬂ'éj- E+V |:Ei :E']} +

+a5 - Qgi'ﬂ"u +
F(—1)Tm =0 g (6)

+! T
According to algorithm of [4] and [5], and
considering the above symbolically expressions,
the matrix equation for the inverse model of the
dynamics errors is written as symbolical form:

AQ,(8) = 4 . (37)

ny = E%Ok CE yook - (38)
where Y, = {A MBean(T) 1 AMYprou (T)}

DQpg DXy =| A% A @Q]

€ ydok = [ yak € MDQk:|

Yao = 39)
In the above expressions, the symbol { Yko} is
devoted to transfer matrix of the dynamics errors,
whileY,q is answerable to 4Q,, generalized
driving forces and A X ¢ operational variables.

On the basis of the above dynamics error
functions, the generalized expressions
symbolically written:

Mpeq { M, DED(G) ’ am )E?;:'ME}

Xy = .
Mo MBequ; Z2={4n: 26} [
k=1-m
I (7) = .
=AM%FQ(T)={ AMXDFD ( ); AMYorue(T )} ’
AMpe(7) =

{ IMYorau(7); 2= { 4 26}

k=1-m

O (1) ={ 07X (1):2 R (7): %, (1)

Ydox = { AMBeou (1); AMYproy (T)} (40)
where  AMEE (r) and AmY Yoe (r) are the

generalized matrices of the errors corresponding
to generalized dynamic forces and dynamic
functions of operational variables respectively.
The optimization model of the dynamic
accuracy consists in the determination of the
global maximum and minimum of the dynamic
errors corresponding to the generalized driving
forces and operational variables respectively. The
results are included in the generalized matrices:

"}}} 1)
A Mook

} . {A Mdvo}z Eiae Y dox

k=1_-m ’ EYdQ k=1_m

Remark. In the generalized matrices are included
all dynamic errors. They have been determined
through the application of the matrix
exponentials. Considering the other papers of the
author, it remarks that they assure the directly
assessment of the whole differential matrices of

kinematic and dynamic errors, while calculus of
locating errors between links is avoided.
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4 Msz{

5. CONCLUSIONS

In the assessment of kinematic accuracy, an
essential role is played by the locating, velocity and
acceleration errors. To define the equations
answerable to direct geometry and kinematics of
robots, the matrix exponentials, have been applied.
This paper is devoted to new formulations based on
matrix exponentials in the kinematic accuracy. The
matrix exponentials enjoy important advantages
given by its compact form, and especially by the fact
that by their use in mathematical modeling the
frames answerable to every kinetic link are avoided.
Unlike the classical transformations they ensure the
direct computation of all error matrices, and
therefore the calculus of the geometrical errors
between the kinetic links is avoided.

In the assessment of the dynamic accuracy
in Robotics, the dynamic errors have an
essential role. They are referring, on the one
hand, to the locating, velocities and
accelerations. On the other hand the dynamic
errors have been extended about the generalized



dynamics forces. For defining the generalized
equations answerable to kinematics and
dynamics of robots, the matrix exponentials
have been applied. This paper aims to the
developing of a new mathematical model based
on matrix exponentials in the dynamics of robot
accuracy. It comes out that the matrix
exponentials enjoy important advantages given
by its compact form, and especially by the fact
that they avoid the frames answerable to every
kinetic link. Unlike the classical modeling, they
ensure the direct assessment of all differential
matrices of errors, while the calculus of the
locating errors between the links is avoided.
That is why, from viewpoint of the calculus and
implementing of the algorithm in the robot
dynamic control, the study of the dynamics
accuracy is dominated by a few advantages. As
a result, the generalized equations symbolically
presented in this paper will complete the
SimMEcROb Simulator. This is devoted to the
assessment of geometry, kinematics, dynamics
and accuracy for any mechanical robot structure
regardless of its complexity and configuration.
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Formuliiri asupra preciziei in mecanica avansati a robotilor

Rezumat: Evaluarea preciziei robotilor se realizeaza prin intermediul erorilor geometrice, cinematice si dinamice.
Principala sursa de aparitie a acestor erori o reprezintd abaterile dimensionale si neregularitétile care apar la un moment
dat in cuplele motoare ale robotului. Autorul principal al acestei lucrari a publicat un numar mare de articole dedicate
modelarii matematice a preciziei robotilor industriali. Aceste modele se bazeaza pe transformari clasice din cinematica
si dinamica robotilor ele fiind incluse in prima variantd a simulatorului SimMEcRob. In cadrul acestei lucrari vor fi
aplicate o serie de formuldri asupra preciziei cinematice si dinamice a structurilor de roboti care au la baza avand la
baza modelele matematice cu exponentiale de matrice din cinematica directa.
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