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Iuliu NEGREAN, Adina CRIŞAN 

 
Abstract: The assessment of the robot accuracy is achieved by means of the geometrical, kinematic and dynamic errors. 

The main source of appearance of these errors consists in the dimensional deviations and irregularities from every 

driving joint of the robot. The main author has published a series of mathematical models devoted to accuracy. They 

were based on classical transformations from robot kinematics and dynamics. The main author has included them in 

the first variant of the SimMEcRob Simulator. Within of this paper about the robot kinematic and dynamic accuracy of 

the robot structure will be applied formulations, having at basis the matrix exponentials of direct kinematics. 
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1. INTRODUCTION 

 
The essential parameters on assessment of the 
kinematic accuracy are geometrical and 
kinematic errors. In the size of geometrical 
errors enter linear and angular deviations that 
define the relative positions among the links of 
the mechanical robot structure (MRS). With 
these, the differences between nominal and 
actual fact values of the generalized variables, 
which express the relative motions from every 
driving joint of the robot, are also added. The 
kinematic accuracy is estimated by means of the 
position and orienting errors, likewise called 
locating errors of the end-effector. Beside these, 
in the assessment to kinematic accuracy, 
essential parts have the errors of the velocities 
and accelerations. They correspond to relative 
motions in every driving joint and absolute 
motion of the end-effector. For define the 
equations answerable to direct geometry and 
kinematics (DKM) of the robots, the matrix 
exponentials (ME), with important advantages 
are applied. In this paper, at beginning the error 
matrices with classical transformations, and in 
the following the matrix exponentials are 
applied in the kinematic accuracy of the robot. 
 
1.1 The Matrices of the Input Data 

Every kinetic link ( )n1i →=  is physically 
connected through driving joints { }T;Ri = , where 

( )R  is rotation and ( )T  prismatic joint. In keeping 
with Fig.1, the position of the geometry center 

iO  from every driving joint, as well as the 
position of a point iA  arbitrarily chosen on the 

kinematic axis ( )0
i

k , is defined with respect to 

fixed frame { }0 . According to [4] and [5] they are 
defined for the nominal (errorless) as well as 
actual mechanical robot structure (MRS). The 
matrix of the (nominal and actual) geometry 

( ) ( ) ( ){ }0
IDn

0
IDr

0
IDq

M;MM =  is symbolically written as: 

( )[ ]

( )
( ) ( )

( ) ( )[ ][ ] 























+→=








 +→=






=
×+ T

T0
qi

T0
qi

T

T0

qiA

T0
qi0

IDq

61n
1n1ikp

1n1ipp
 M ;   (1) 

( ) ( ) ( ) ( ) ( )0
qi

0

qiA

0
qi

0

qiA

0
qi

ppppk −






 −= .       (2) 

 
Fig. 1 Geometrical Parameters of MRS 
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The notation { }r;n  = q  refers to nominal values, 
and actual values respectively. In the same stage, 
the matrix of the (nominal and actual) 
configurations M qθ  is also accepted under form: 
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In the above matrix, iqkq  is called the generalized 

variable in the every driving axis, while 
( )m1 = k →  is the number of robot configurations 
taken into study. Considering the above matrices, 
the primary errors are included in the parameters: 
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The input data matrices are established in the 
design or simulating stage of the mechanical 
structure. The primary errors are the result of the 
dimensional deviations and link elasticity, as well 
as clearances, wears and frictions respectively. 
They are given in every driving joint and link. 
 
1.2 The Matrices of the Geometrical Errors 

This section is devoted to establishment of 
geometrical errors between the adjoining kinetic 
links of MRS with .f.o.dn , due to the parameters 
from the input data matrices. It is known that the 
relative position and (locating) orientation, 
between two neighboring links ( ) ( )i1i →−  can be 
expressed by means of the DH-type (Denavit-
Hartenberg) or GP-type (generalized) operators. 
In keeping with [4] and [5], their actual values 
are characterized by geometrical DH-type and 
GP-type errors respectively, all included in the 
SimMEcROb Simulator. In keeping with this, a 
few matrix expressions devoted to geometrical 
errors of the kinetic links are presented. 
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In this paper the classical transformations based 
on DH- or GP-type operators are substituted by 
means of the matrix exponentials, with a few 

significant advantages, in keeping with [6], [7] 
and [8]. With the view of this, at beginning the 
MRS (mechanical robot structure) is taken in the 
initial configuration:  ( ) [ ]Ti

0 n1i;0q →===θ . 
The Fig. 2 shows that the screw parameters to 
every driving axis (i), are defined with respect 

to frame { }0  as: ( ) ( ){ }0
i

0
i

v;k . The first, ( )0
ik  is the 

unit vector of the driving axis, while the second: 
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Above, { } { }{ }  T=i ,  0 ; R=i ,   1   = iσ  represents an 
operator, which defines the driving joint type. 
In the equation (8), ( ){ }×0

i
p  expresses the skew-

symmetric matrix associated to position vector. 
Considering (4) and (5), the new geometrical 
errors of the kinetic links are defined with: 
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The generalized matrices of kinematical errors (6) 
and (7) are completed with exponentials, thus: 
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Remarks. In the above matrices, the symbols: 
yQEkε  and yQEkθε  are the column vectors of the 

geometrical and generalized variable errors. They 
are answerable of DH-type, GP-type operators, 
and matrix exponentials. Unlike the classical 
transformations, the primary errors are direct 
implemented in the expressions based on the 
matrix exponentials, this representing an 
important model advantage. 
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Fig. 2 The screw Parameters for MRS 
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THE KINEMATIC ERROR MATRICES 

 

This section is devoted to apply the matrix 
exponentials for define the direct kinematics 
transformations and matrices of the errors. They 
lie at the basis to determination of the kinematic 
accuracy for any robot type taken into study. 
 
2.1 Matrix Exponentials in Direct Kinematics 

On the basis of the ME Algorithm from [6], [7] 
and [8], in this section a few essential 
expressions of the matrix exponentials in the 
direct geometry and kinematics (DKM 

Algorithm) are shortly presented. 
The orienting and locating matrices, between 
the two adjoining frames{ } {}i1i →−  are defined 
by means of the matrix exponentials as follows: 
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The matrix-deriving operator is substituted as: 
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On the basis of the Rodrigues’ formula, devoted 
to position and orientation, the ( )13 ×  column 
vector is established by means of the expression: 
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Using the above expressions and the screw 
parameters, another matrix exponential shows as: 
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Considering (14), (15) and (18), the exponentials 
for the locating matrices of the end effector are: 
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This expression contains the orienting matrix 
and position vector. The first is expressed as: 
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The exponential of the position vector is defined: 
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In the following, the algorithm contains the 
main expressions of the Jacobian matrix 

exponentials, belonging to direct kinematics, in 
keeping with [6], [7] and [8]. At beginning, the 
three new kinematics matrices, based on 
exponentials, are determined as below: 
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The matrices from the last expression show as: 
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On the basis of the matrices (22) and (23) other 
new kinematics matrices are also implemented: 
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The Jacobian matrix with its sub-matrices is 
determined by means of the below expressions: 

( )
( ) 













→=












==

×
n1i

J

J
JJ

i
0

iv
0

i
0

16

0

ω
θ ;      (26) 



26 
 

 

{ } { } { }{ }ωiv3i2i1ii
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The next kinematics matrices lie at the basis to 
calculus of the Jacobian matrix time-derivative: 
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Through the application of the time-derivative 
the column matrix ωivME  is changed as follows: 
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As a result, every column from Jacobian matrix 
time-derivative is determined with exponentials: 

.   (32) 

On the basis of the same papers [6], [7] and [8] 
the differential matrices of first and second 
order, applied about the locating 
transformations, are determined by means of the 
exponentials expressions as below: 

[ ] ( )i 1 k
0

ki j j i l l k0
j 0 l i

A exp A q A exp A q T
−

= =

      = ⋅ ⋅ ⋅ ⋅ ⋅     
     

∏ ∏ (33) 

[ ] ( )

[ ]

m 1
0

kjm l l m kjm k0
l 0

j 1 k

kjm i i i p p

i m p i

A exp A q A B T

B exp A q A exp A q

−

=
−

= =

   = ⋅ ⋅ ⋅ ⋅  
   

        = ⋅ ⋅ ⋅ ⋅      
        

∏

∏ ∏
. 

Using the results from (19), (20) and (21), the 
(locating) direct geometry equations are defined: 
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Using the Jacobian matrix with its time 
derivative, above written by means of the 
exponentials, the DKM equations with respect to 
{0} and {n}, are defined with the next matrix: 
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Above, M XQE  is the generalized matrix of the 
locating equations, while M XVQE  represents the 
generalized matrix of the operational velocities 
and accelerations. They describe the absolute 
motion of the end-effector. On the basis of the 
polynomial interpolating functions, as well as the 
above matrices, the kinematic control functions 
(generalized variables) are symbolically defined 
in the configuration space, with the next matrix: 
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Remarks. It comes out that the matrix 
exponentials enjoy important advantages 
specifically its compact form, and especially 
they avoid the frames answerable to every 
kinetic link. It is obvious that all the above 
matrices are expressing the absolute motion of 
the mechanical robot structure, defined in the 
nominal state, without to take the primary errors 
in this calculus.  At the same time, all locating 
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and differential matrix functions, symbolically 
described within of this section, lie at the basis to 
determination of the robot kinematics accuracy. 
 
2.2 The Differential Matrices of Errors 

A new model for the kinematic error matrices is 
established. The geometrical errors: (11) and (13) 
can, essentially, influence the kinematic 
accuracy. This is dignified by means of the 
differentials applied about the matrix 
exponentials, defined in the previous section. In 
keeping with [5], applying a few differential 
transformations the error matrices are, 
symbolically, established: 
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The above expressions (37), (38) and (39) 
characterize the kinematic error matrices 
answerable to locating, Jacobian matrices and 
differentials of the locating transformations. For 
increase the kinematic accuracy of the robot, the 
differentiating order is dignified by means of the 
index: { }3;2;1x = . Using [9], the error matrices 
from (37) are developed below: 
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As a result, substituting, directly, the primary 
errors from (44) and error matrices expressed 
with exponentials (45), in the (40)-(43), the new 
matrix expressions of the locating errors are 
obtained. It is obvious that the expressions: (42) 
and (43) show the differential model of x order. 
In the following, using the same model from 
[9], the error matrices, from (38) and (39), show 
in the symbolically form as: 

[ ]{ }
( ){ }{ }{ }0

i i ii
i i

exp k q b
exp A q

0 0 0 0

∆ σ ∆
∆

 × ⋅ ⋅ =
 
  

; (46) 

( ){ } ( )[ ]
( ) ( ) ( )[ ]

( )













⋅















−⋅⋅+

+−×+⋅
= 0

i

iii
T0

i
0

i

ii
0

ii3
i v

qsqkk

qc1kqI
b

σ

σ
∆∆ ; (47) 

{ } ( )











 ×⋅=
0000

vk
A

0
iii

i

i
∆σ∆∆ .        (48) 

[ ] ( )
j 1 i

0xy
l l j p pijEk i0

l 0 p j

A exp A q A exp A q T∆ ∆
−

= =

       = ⋅ ⋅ ⋅ ⋅      
        
∏ ∏ ; 

[ ] ( )

[ ]

l 1
0xy

m m l ijlijlEk i0
m 0

j 1 i

ijl p p p r r

p l r p

A exp A q A B T

B exp A q A exp A q

∆
−

=
−

= =

   = ⋅ ⋅ ⋅ ⋅  
   

    = ⋅ ⋅ ⋅ ⋅    
   

∏

∏ ∏
; (49) 

( )
( )

[ ]n1i61jJMatrixJ
xy
jiQE

0

n6

xy
QE

0 →=→==
×

∆θ∆ ; (50) 

( ) [ ]


















→=






 ⋅⋅

→=
=

→= 64jkR

31jA

J

i
i

yQ
x0

ii

xy
4niQj

xy
jiQ

0

61j ∆σ

∆
∆ ;   (51) 

( )
( )

[ ]n1i61jJMatrixJ
xy
jiQE

0

n6

xy
QE

0 →=→==
×

&& ∆θ∆ ;(52) 

( )
































⋅







 ⋅⋅

→= ⋅

=

=

=

→= i
i

i

1k
k

xy
3ikQji

n

1k
k

xy
4nikQj

xy
jiQ

0

61j kqA

31jqA

J

&

&
&

∆σ

∆
∆ ;     (53) 

Therefore, substituting the above locating errors 
under exponential form in the (49)-(53) the new 

expressions for: xy
ijek

A∆ , xy
ijlEk

A∆ , ( )xy
QE

0 J θ∆  are 



28 
 

 

determined as error matrices. But the error 
matrix functions for the Jacobian matrix and its 
time-derivative are directly obtained, as follows: 
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 (55) 

Above, the error matrices are defined by means 
of (22)-(25) and (28)-(31), through applying the 
differentials in function of errors: (10) and (12), 
as well as the differentiating order { }3;2;1x = . 
Remarks. Unlike the classical transformations, 
the calculus of the geometrical parameters, 
based on the primary errors, between the two 
adjoining links is eliminated. They ensure the 
determination of whole error and differential 
matrices asked in the kinematic accuracy. 
 
4. THE KINEMATIC ROBOT ACCURACY 

 

 
The generalized equations of the kinematic 
accuracy are, symbolically, described below by 
means of a few expressions, in keeping with the 
SimMEcROb Simulator, fully described in the 
[4] and [5].The main symbols of the kinematics 
errors, devoted to assessment of the accuracy, 
are shown in Fig.3. 

The direct modeling of the locating errors, as 
well as velocity and acceleration errors of the 
end-effector in the Cartesian space is shown as: 
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Above, the yQEkε  column vector of the errors is 

determined with new expressions based on the 
matrix exponentials, according to (10) and (13). 
The above expressions also contain Ε δ

xy
Qkd

 and 

E
xy
vaQk

. The first is called the transfer matrix of 

the geometrical errors, whose size is defined as: 

{ } { } { }{ }MEQ;n66;GQ;n66;DQ;n56 =⋅×=⋅×=⋅× . The 
second is the transfer matrix of the kinematics 
errors with ( )nN12 Q ⋅×  size. They are developed 

on the basis of the above matrix exponentials 
and likewise error matrix functions. 

Considering the optimizing model analyzed in 
the papers [4], [5] and [9], the matrix of the 
turning values for kinematics errors is 
symbolically presented below: 

{ } { }{ }
{ }









=
=

vQE
0

QE
0

QE
YQE

X;XY

k;y;x;minmax;Values
Matrix

∆∆
Ε .    (58) 

The inverse modeling of the generalized errors of 
(position-orientation) locating, as well as velocity 
acceleration from the end-effector is defined as: 
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   (59) 

Fig.3 The Kinematic Errors for MRS 
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where { } 1xy
QEkd

−
δΕ and { } 1xy

vaQEk

−
Ε represent the 

inverses of the transfer matrices of the 
geometrical and kinematic errors respectively, 
and Ε *

YQE  is the generalized matrix of the errors. 
These models are included in the generalized 
algorithm devoted to assessment and simulation 
of the kinematic and dynamic robot accuracy. 

 
5. DYNAMIC ACCURACY OF ROBOTS 

 
 The generalized equations of the dynamic 
accuracy are, symbolically, described below by 
means of a few expressions, in keeping with the 
SimMEcROb Simulator, fully described in [4] 
and [5]. The main symbols of the kinematics 
and dynamics errors are shown in the Fig.2.  

 
 

At beginning, the generalized matrices of the 
kinematics errors are considered (11) – (13). 
The direct modeling of the locating errors, as 
well as velocity and acceleration errors in the 
Cartesian space (56) and (57) are considered.
 On the basis of the mathematical model, in 
keeping with [1] - [30], the generalized matrices 
of dynamics have been established. In this 
paper, the symbolical expressions for dynamics 
matrices of errors will be defined. First of all, 
generalized matrix of the MD-type errors is: 
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where  I  iQk
i∆ and   I kpsiQ 

i∆  represent the error 

matrices of the inertial and pseudo-inertial tensor 

respectively, while MDQε  is the column vector of 

the MD-type errors (mass distribution errors). 
The generalized matrix of dynamic errors is 
determined, and its symbolical expression is: 
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where  M
xy

Qzk
∆ represent the differentials of the 

dynamic matrices with respect to ε yQk  and ε MDQ . 
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The dynamic errors (30) and (31) are included 
in the dynamics matrices, [1] and [2], as below: 

( ) ( )

n
k T

ij ki psk kj

k max i ; j

M Tr A I A
M

where i 1 n and j 1 n

∆ ∆∆ θ
=

     = ⋅ ⋅  =     = → = → 

 (32) 

 (33) 

( ) ( )

n
k T

ki psk kjm

k max i ; j ;m

Tr A I A
B

i 1 n, j 1 n 1, m j 1 n

∆∆ θ
=

     ⋅ ⋅  =     
= → = → − = + → 

 (34) 

Fig.4 The Dynamic Errors for MRS 



30 
 

 

( ) ( )

n
k T

ki psk kjj
k max i ; j

Tr A I A
C

i 1 n, j 1 n

∆∆ θ
=

     ⋅ ⋅  =     
= → = → 

   (35) 

The above dynamic errors are answerable to 
inertia matrix (32), column matrix (33) which is 
containing the matrix of the Coriolis terms (34) 
and centrifugal terms (35). Analyzing (30) and 
(31), it comes out that their components are 
expressed by means of the matrix exponentials. 
Therefore, the dynamic error of the generalized 
driving forces is symbolically defined with: 

. (37) 

 According to algorithm of [4] and [5], and 
considering the above symbolically expressions, 
the matrix equation for the inverse model of the 
dynamics errors is written as symbolical form: 
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In the above expressions, the symbol { }Ε xy
YdQk  is 

devoted to transfer matrix of the dynamics errors, 
while dQY  is answerable to mQQ∆  generalized 

driving forces and dQX∆  operational variables. 

On the basis of the above dynamics error 
functions, the generalized expressions 
symbolically written: 
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where ( )τ∆ M
xy
DE

 and ( )τ∆ M
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XDF

 are the 

generalized matrices of the errors corresponding 
to generalized dynamic forces and dynamic 
functions of operational variables respectively. 
 The optimization model of the dynamic 

accuracy consists in the determination of the 
global maximum and minimum of the dynamic 
errors corresponding to the generalized driving 
forces and operational variables respectively. The 
results are included in the generalized matrices: 

{ } { }{ }
YdQ

dQmQ

Values  max; min ; x ;  y ;  i ;  k
=  

    Q X
Ε ∆ ∆

 
 
 

;(41) 
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


m 1=k
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M  xy
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xy
YdQk

YdQ

dYQ Ε
Ε

∆
. 

Remark. In the generalized matrices are included 
all dynamic errors. They have been determined 
through the application of the matrix 
exponentials. Considering the other papers of the 
author, it remarks that they assure the directly 
assessment of the whole differential matrices of 
kinematic and dynamic errors, while calculus of 
locating errors between links is avoided. 
 
5. CONCLUSIONS 

 

In the assessment of kinematic accuracy, an 
essential role is played by the locating, velocity and 
acceleration errors. To define the equations 
answerable to direct geometry and kinematics of 
robots, the matrix exponentials, have been applied. 
This paper is devoted to new formulations based on 
matrix exponentials in the kinematic accuracy. The 
matrix exponentials enjoy important advantages 
given by its compact form, and especially by the fact 
that by their use in mathematical modeling the 
frames answerable to every kinetic link are avoided. 
Unlike the classical transformations they ensure the 
direct computation of all error matrices, and 
therefore the calculus of the geometrical errors 
between the kinetic links is avoided. 
 In the assessment of the dynamic accuracy 
in Robotics, the dynamic errors have an 
essential role. They are referring, on the one 
hand, to the locating, velocities and 
accelerations. On the other hand the dynamic 
errors have been extended about the generalized 
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dynamics forces. For defining the generalized 
equations answerable to kinematics and 
dynamics of robots, the matrix exponentials 
have been applied. This paper aims to the 
developing of a new mathematical model based 
on matrix exponentials in the dynamics of robot 
accuracy. It comes out that the matrix 
exponentials enjoy important advantages given 
by its compact form, and especially by the fact 
that they avoid the frames answerable to every 
kinetic link. Unlike the classical modeling, they 
ensure the direct assessment of all differential 
matrices of errors, while the calculus of the 
locating errors between the links is avoided. 
That is why, from viewpoint of the calculus and 
implementing of the algorithm in the robot 
dynamic control, the study of the dynamics 
accuracy is dominated by a few advantages. As 
a result, the generalized equations symbolically 
presented in this paper will complete the 
SimMEcROb Simulator. This is devoted to the 
assessment of geometry, kinematics, dynamics 
and accuracy for any mechanical robot structure 
regardless of its complexity and configuration. 
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Formulări asupra preciziei în mecanica avansată a roboților 

 

Rezumat: Evaluarea preciziei roboților se realizează prin intermediul erorilor geometrice, cinematice și dinamice. 
Principala sursă de apariție a acestor erori o reprezintă abaterile dimensionale și neregularitățile care apar la un moment 
dat în cuplele motoare ale robotului. Autorul principal al acestei lucrări a publicat un număr mare de articole dedicate 
modelării matematice a preciziei roboților industriali. Aceste modele se bazează pe transformări clasice din cinematica 
și dinamica roboților ele fiind incluse în prima variantă a simulatorului SimMEcRob. În cadrul acestei lucrări vor fi 
aplicate o serie de formulări asupra preciziei cinematice și dinamice a structurilor de roboți care au la bază având la 
bază modelele matematice cu exponențiale de matrice din cinematică directă. 
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