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MATRIX EXPONENTIALS IN ROBOT ELASTOKINEMATICS 
 

Iuliu NEGREAN, Adina CRIŞAN 

 
Abstract: The main objective of this paper consists in the establishment of the generalized elastokinematics equations 

for robot structures with flexible links. For kinematics and differential matrices in the case of the robot structures with 

rigid and elastic links will be applied the matrix exponentials, in accordance with the algorithm developed by the main 

author. Consequently, the matrix exponentials will stay at the basis of establishment the linear and angular transfer 

matrices. By means of the same matrix exponentials will be also determined all kinematic parameters. In the second 

part of this paper elastokinematics structure of the serial robot will be analyzed. Applying the properties of the matrix 

exponentials, the locating matrices and their time derivatives corresponding to small deformations will be also 

established. On the basis of these differential transformations, in the final part of the paper, will be determined the 

linear and angular velocities and accelerations, as well as Jacobian matrix. 
Key words: elastokinematics, elastodynamics, advanced mechanics, robotics. 

 

1. INTRODUCTION 

 

 According to [2] – [7], transfer equations of 

any kinematic chain, with (R)-rotation or 

(T)-prismatic joints, typical of MRS can be 

expressed WITH the locating transformations. 

The locating term substitutes the position and 

orientation between two kinetic links, shown in 

the Fig.1 and Fig.2. For analyze the transfer 

equations the mechanical robot structure (MRS) 

is represented in the initial configuration: 
   T

i
0

n1i;0q  . In the robot 

kinematics the linear and angular transfer 

matrices will be defined, in the following, by 

means of matrix exponentials. As a result the 

DKM Equations answerable to linear and 

angular velocities and accelerations will be 

presented by their defining expressions. 

Considering these transfer matrices, in the 

following, the study with matrix exponentials 

will be extended about robotic structures with 

flexible links. The kinematic transformations for 

structures with rigid and elastic links will be 

compulsively applied in the second part of this 

paper devoted to the establishment of the 

elastokinematics equations. In the view of this, 

new formulations about matrix exponentials and 

differential transformations will be applied. 

 

 
 

Fig.2 Mechanical Robot Structure 

 

Fig. 1 Geometrical Parameters of MRS 
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2. LINEAR TRANSFER MATRICES 

 

 In this section, according to [8]-[19] and 

[21], the expressions from the MEK Algorithm 

(MEK―Matrix Exponentials in Kinematics) 

will be presented. At beginning, the partial 

derivative, with respect to  iq  of the locating 

matrix between    n0   is established as: 
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 The last column from (3) is taken into 

account for establish the exponential of the 

linear transfer matrix. According to [3], first and 

second matrix exponential from (3) shows as: 
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    m 0 ; m i 1 ; 1; m i     . 

 In keeping with the transfer matrix 

algorithm [5], it is known that the ith column 

from the linear transfer sub-matrix will 

represent the last column from (3) expression: 
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Considering [4] and [6], the linear component 

iv
0

J  can be written under another matrix form: 
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 The above expressions are swinging 

for: n1i  . So, the exponential of the linear 

matrix     VJV
0

 , from Jacobian matrix 

 J
0 , will be characterized by the expression: 
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Remark: The second expression from (11) is 

matrix one. It can be easily applied in the DKM 

generalized algorithm. As a result, this will 

dignify a few advantages of the matrix calculus. 

 

3. ANGULAR TRANSFER MATRICES 

 

 In keeping with MEK Algorithm from [8]-

[19] and [21], at beginning, the first time 

derivative for the exponential (2) of the locating 

matrix between    n0  is defined, that is: 
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Performing the matrix product between the two 

matrices from (10), the expression is obtained: 
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The inverses of the exponentials (4) and (5) are 

characterized by the following expressions: 
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In keeping with MEK Algorithm, to above 

expressions another is compulsory added: 
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 The skew-symmetric matrix associated to 

column vector i  of the angular component 

from the velocity transfer matrix is the result of 

the following partial derivative: 
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Performing the product in (16), the  13   

column vector i  is a matrix exponential: 
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The angular matrix     J
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J

exp k q k i 1 n

  

 





  
      
        
      


(18) 
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Remark: When the driving joint (j) is prismatic 

one ( 0j  ), then it obtains:   3I0exp  . 

 Taking into consideration the same MEK 

Algorithm from [8] - [20], the Jacobian matrix, 

also named the velocity transfer matrix, can be 

determined by means of the matrices (6) - (11) 

and (18). In the view of this, the other new 

matrices are implemented as follows: 

 
   

     3i2i1i
in3126

i
0

JMEJMEJMEJME 


;  (19) 

 
   

   

 
   

 

 
  

   

 

i1
i1

( 6 6 ) i1

i 2
i 2

( 6 9 ) 3

i 3
i 3

39 12 3 n i

ME V 0
where ME J ,

0 ME V

ME V 0
ME J ,

0 I

ME V 0
and ME J

0 I





     

  
  

  
      

  
  

  
  
 

; 

  

     
T

T0 T 0 T0 T

iv k n ii i
12 3 n i 1

M v b ; k i n p k 

     

     
   

. 

Considering the above notations, the new 

expression of the Jacobian matrix is: 

   
0

0 0iV
i iv0

i

J
J i 1 n ME J M

J





   

       
   

.   (20) 

and          0 0
i i iv

d
J ME J M , i 1 n

d t
   & ;       (21) 

where (21) is the first time derivative for every 

column from Jacobian matrix as exponentials. 

 

4. KINEMATICS EQUATIONS 

 

 Considering the same MEK Algorithm from 

[8] and [20], the DKM Equations can be likewise 

defined by means of the matrix exponentials. So, 

for every n1i   the next expressions are: 
 

 (22) 

      
11

0 0i 0
i j j iji 0

j i

R exp k q  




  
      
  

 ; 

 

 

; (23) 

      
k 1i

0 0

j m m m kj

k j m j 1

C k exp k q b



  

    
       

   

  ; 

 

 (24) 

On the basis of the same papers [3], [4] and [6], 

the differential matrices of first and second 

order, are determined with the exponentials: 

 
 

i 1 k
0

ki j j i l l k 0

j 0 l i

A exp A q A exp A q T



 

      
          

     

  ; 

 
 

 

m 1
0

kjm l l m kjm k 0

l 0

j 1 k

kjm i i i p p

i m p i

A exp A q A B T

B exp A q A exp A q







 

   
      
   

 
      

          
       



 

(25) 

Remarks: The matrix exponentials (ME) enjoy important 

advantages due to their compact form, easy geometric 

visualization and especially they avoid the frames typical 

to every kinetic link. As a result the matrix exponentials 

will stay at the basis of defining the dynamic control 

functions for whatever mechanical robot structure, 

regardless of its building complexity. 

 

5. EXPONENTIALS AT FLEXIBLE ROBOT 

 

This section is devoted to define the generalized 

elastodynamics equations, when the robot links 

are dominated of flexibility properties. At first, 

a few kinematic transformations are described. 

In the aria of the small deflections, and 

considering the aspects from Fig.3, the time 

functions for the angular and linear 

deformations of the link  i  are written, 

according to [30] and [22] – [29] as follows: 

   




















































 


z i j

y i j

i jx
im

1j

i ji j
i

im

1j

i j

iz

y i

ix

i
i

tqtq















    (26) 

   













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




































 


i j

i j

i j
im

1j

i ji j
i

im

1j

i j

iz

y i

ix

i
i

w

v

u

tqdtq

w

v

u

d    (27) 
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The functions:  tq i j  are time amplitude of the 

proper modes im1j  , and they are 

completing the generalized variables  tq i . The 

position vector for an elementary mass md  is: 

i
i

i
ie

i
i

drr  ;  i
i

i
ie

0i
e
i

e
i

0
drRpr  .  (28) 

The symbol  e  highlights the elasticity of the 

kinetic link. After a few kinematic 

transformations, the new locating matrix, 

between adjoining elastic links, shows as: 

 i ii
i ie 3 i

i i 1 ii 1

dI r
T T

0 0 0 1 0 0 0 0


 

     
     
     

;     (29) 

 

 i

i ii
i i3 i

e
ij

i imi
ij ij3 i

ij

j 1

dI r

0 0 0 1 0 0 0 0
T

dI r
q

0 0 0 1 0 0 0 0








    
    
     

  
    
   
     



;      (30) 

 i

i

e e
i i 1 ii 1 ij

m
ij ijee

i i 1 i i 1 ij

j 1

m
ee

i i 1 i i 1 ij ij

j 1

T T T

d
T T q

0 0 0 0

T T q T







 

 



 



   
 

    
        

     
 

   
     

   





;    (31) 

i 1
e e

i 0 j j 1 i i 1

j 1

T T T



 



  ; 

 j

i 1
e e

i 0 j j 1 i i 1

j 1

mi 1
jk jkee

j j 1 j j 1 jk i i 1

k 1j 1

T T T

d
T T q T

0 0 0 0





 





  



 
   

  
       

       
        





(32) 

The locating matrix 1iiT   is answerable to rigid 

link, while e
ijT  to small deformations of link. 

The above kinematic transformations can be 

also obtained by means of the matrix 

exponentials. In keeping with [8], [12] and [30], 

the exponentials are applied for elastic links: 

   

 
 

   

i

i i

i

m
ee 0 0U qe

i i 1 ij iji i 1 i i 1

j 1

m
ee 0 0

i i ij iji i 1 i i 1

j 1

T T e T exp T q

T exp U q T exp T q






  



 



   
       
   
 
 
     

 
 





;(33) 

 
 

 

ij ij
ij ij ij

ij ij ij

d
exp T q exp q

0 0 0 0

exp q b
exp

0 0 0 1






    
     
      
 

    
    

      

;      (34) 

zij yij

zij xij ij xij ij

yij xij

0 0 0 0

exp 0 q exp 0 0 1 q

0 1 00

 

  

 

    
     

          
          

 

yij ij zij ij

0 0 1 0 1 0

0 0 0 q 1 0 0 q

1 0 0 0 0 0

 

   
   

         
       

;  (35) 

 
zij yij

ij ij zij xij ij

yij xij

0

exp q exp 0 q

0

 
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 

  
   

      
  
    

; (36) 

     ix xij ij iy yij ij iz zij ijexp U q exp U q exp U q           ; 

 
 

     
0 0 Tiu uij ij

xij iji i

exp U q
u u 1 c q

where u x ; y ; z




   
           

      
0

3 xij ij uij iji
I c q u s q       ;  (37) 

      
 

     
 

j

i 1
ee 0 0e

i 0 j j i ij j 1 i i 1
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jk jk i ij j 1 i i 1

j 1 k 1

T T exp U q T exp U q
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

 

(38) 

On the matrix (38) which it expresses the 

locating of the frame  i  with respect to fixed 

basis, are applied the time derivatives of first 

and second order as follows: 
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Fig. 3 Elastic Link from MRS 
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; 

 (39) 

;   ; 

 

 (40) 

 

;  (41) 

 

 (42) 

In these expressions are substituted the matrices 

defined by means of the exponentials above 

shown. Considering (41) and (42), the angular 

rotation velocity and acceleration are defined as: 

 

; 

 

 
T

0 e 0 e 0 e 0 e
i ix iy izvect      

 
; 

 

; 

 

. (43) 

 

The linear velocity and acceleration of the 

elementary mass md  are defined by means of 

the time derivative applied on the position 

vector (3). As a result, the next expressions are: 
 

 0 e e e i i e i
i i i0 i i i0 ir p R r d R d      ; 

;  (44) 

 

 (45) 

 

Unlike MRS dominated of stiffness hypothesis, 

the column vector of the generalized variables, 

in the case of the structures with flexible links, 

is completed with (26) and (27) as below: 

 

   
T

eTe
iij

t t j 0 m i 1 n       
  

;  (46) 

        eT
i ijij

t q t if j 0 ; q t if j 1    ; 

 

; 

;    (47) 

; 

;      (48) 
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e
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
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







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

















. (49) 

The above expression shows that every column 

of Jacobian matrix is function of generalized 

variables. Considering [8] and [30], its 

expression is defined by means of the classical 

transformations or matrix exponentials. 

 

6. CONCLUSIONS 
 

Within of this paper, the generalized 

elastokinematics equations have been analyzed 

for robot structures with flexible links. For 

define the kinematics and differential matrices 

functions in the case of the robot structures with 

rigid and elastic links have been applied the 

matrix exponentials, in accordance with the ME 

Algorithm. They are characterized through 

important advantages with respect to classical 

transformations. So, the matrix exponentials 

(ME) enjoy important advantages due to their 

compact form, easy geometric visualization and 

especially they avoid the frames typical to every 

kinetic link. As a result the matrix exponentials 

will stay at the basis of defining the linear and 

angular transfer matrices. By means of the 

matrix exponentials have been also determined 

all kinematic parameters. They characterize the 

equations of direct and control kinematics for 

any mechanical robot structure, regardless of its 

constructive complexity. 

In the second part of this paper an elastic 

structure of the serial robot was analyzed from 

view point of elastokinematics behavior. As a 

result, using the properties of the matrix 

exponentials, the locating matrices and their 

time derivatives corresponding to small 

deformations been established. On the basis of 

these differential transformations, in the final 

part of the paper, have been determined the 

linear and angular velocities and accelerations, 

as well as Jacobian matrix as function of the 

column vector of the generalized variables. 
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Exponențiale de matrice în elastocinematica roboților 

 

Rezumat: Obiectivul principal al lucrării constă în stabilirea ecuațiilor generalizate ale elastocinematicii structurilor de 

roboți cu elemente flexibile. Pentru cinematica și matricele diferențiale ale structurilor de robot cu elemente rigide și 

elastice se vor aplica exponențiale de matrice, în conformitate cu algoritmul dezvoltat de autorul principal. Ca urmare, 

exponențialele matrice  vor sta la baza stabilirii matricelor de transfer liniare și unghiulare, determinându-se toți parametrii 

cinematici. În partea a doua a lucrării se va analiza structura elastocinematică a unui robot serial. Utilizând aceleași 

proprietăți ale exponențialelor de matrice, se vor stabili matricele de situare și derivatele în raport cu timpul 

corespunzătoare deformațiilor mici. Pe baza transformărilor diferențiale în partea finală a lucrării se vor determina vitezele 

și accelerațiile lineare și unghiulare, precum și matricea Jacobiană. 
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