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effects. The most realistic estimation of the dissipation is due to the rigidity k, the exciting pulse ω, together 

with the viscous damping coefficient c, to the kinematic excitations defined by periodic functions in relation 

to time. The linear viscoelastic behavior corresponds to the Voigt-Kelvin model without attached mass, so 

as to reproduce a real test stand, through a scheme of type (c, k).              
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1. INTRODUCTION  

 

This study highlights the fact that the 

amortization of the insulator from the elastomer, 

as a mass-free system (c, k), is determined on 

experimental bases by drawing the hysterical 

loop. Thus, a ζeq is defined which can be 

correlated with that of a viscoelastic system with 

mass a mass (m, c, k). 

In this case, the applied kinematic excitation 

must be capable of a dynamic response in direct 

correspondence with the viscoelastic or 

hysteretic force Q(t). 

The modeling of the viscoelastic system, 

without mass, is described by a first-order 

differential equation, of the form ��� + �� = �(	)                      

(1) 

In the differential equation (1) the instantaneous 

deformation )t(xx = was introduced that 

coincides with the instantaneous displacement 

as the applied kinematic excitation parameter 

(displacement control). 

For each case, depending on the nature and 

laws of excitation, the following energies will be 

determined as follows: 

- dW∆ energy dissipated for a complete cycle 

of π2  or T period; 

- max
el

W maximum elastic energy that 

corresponds to the time moment Tt
4

1= , for the 

periodic movement is harmonic as  

tsinA)t(xx ω== . 

The equivalent amortization for either a 

viscoelastic system without mass (c, k)   marked  

eqζ , either for a system with hysterical behavior 

marked 
k

cωηη == 0 , is assessed on the basis of 

the definition relationship 
eqmax

el

d

W

W ζ
π

η 2
2

=
∆

=  or 

            
max

el

eq
W

W

π
ζ

4

∆=                            (2) 

 

2. VARIETIES OF HARMONIC 

    KINEMATIC EXCITATIONS 

 

The harmonic cinematic excitement will be 

modeled by circular trigonometric functions, 

defined by the amplitude of displacement A and 

the excitation pulse ω, where these are constant 

measures of a stable stationary regime. 

 

2.1. Harmonic excitation with symmetric 

       alternant cycles. 

 

We consider the instantaneous displacement 

function such as   

               tsinA)t(x ω=                  (3) 

which determines the instantaneous speed given 

by the relation 

    �� (	) = �� �
� � 	                 

(4) 
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In this case, the energetic measures dW∆ , 

max
el

W   may be written as 
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and the parametric measures of dissipation may 

be expressed as such 
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Noting 
k

cωηη == 0 , we have 0
2

1ηζ =eq  which 

constitutes the defining parameters for 

harmonization in harmonic excitation regime. 

   

2.2. Periodic excitation with null pulsing   

       cycles  

Instantaneous displacement defined by the 

haversin trigonometric function is as   

  ( ) tsinhavtcosA)t(x ωω =−= 1
2

1                 (7) 

with speed expressed by the relation 

              �� (	) = �
� �� ��� � 	           (8) 

Figure 1 presents the variation over time of 

the two functions )t(xx =  and �� = ��(	). 

      

a) 

 
b) 

 
Fig. 1. Excitation functions versus time 

a) Displacement function 

( ) tussinhavertcosA)t(x ωω =−= 1
2

1
  

b) Speed function  

��(	) = 1
2 �� ��� � 	 

Dissipated energy dW∆  may be determined 

based on the harmonic variation of speed x&as 

follows 

  ��� = � ����
� �� = � ��� ��

� �	             (9) 

where �� (	) = �
� �� ��� � 	  

In this case, we have 

       tdtsinAcW
T

d ωω =∆
0

222

4

1               (10) 

or 
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0 0
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from where it emerges 

              22

4

1
AcWd ωπ=∆                      (12) 

 

Maximum elastic energy max
el

W is 

determined based on the integral relation, as 

follows  

                    = kxdxW max
el

                         (13) 

where ( )tcosA)t(x ω−= 1
2

1 , and  tdtsinAdx ωω
2

1= .  

In this case, we obtain the relation 

   ( ) −= tdtsintcosAkW
el

ωωω 1
4

1 2           (14) 

in which we use the trigonometric 

transformations as  

            

22
2

2
21 2

t
cos

t
sintsin

t
sintcos

ωωω

ωω

=

=−
 

Consequently, the relation (14) may be 

written as follows 

   dt
t

cos
t

sinAkW
el 22

4
4

1 32 ωωω =            (15) 

We note  
2

t
sinu

ω=  and dt
t

cos
t

du
22

ωω= , so 

that we have  
4

2
1

2
4

232 u
kAduuAkW

el
==

ω
ω   or 

           
22

1 42 t
sinkAW

el

ω=  

The maximum value for πω =t , it emerges as 

                  2

2

1
kAW

max
el

=               (16) 

For a complete cycle that is πω 2=t  it emerges 

0≡
el

W , that is the elastic system is non-

dissipative only with restoration feature for the 

periodic movement.  
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The equivalent amortization eqζ  at haversine 

excitation emerges as 
max
el

d
eq

W

W

π
ζ

4

∆
=  or  
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Considering 
k

cωη =0  the relation (17) 

becomes 

            
eq

h
eq , ζηζ 250

8

1
0 ==                    (18) 

It is found that in case of excitation with 

function tsinhav)t(xx ω== , the equivalent 

amortization h
eqζ  represents 0.25 of the 

equivalent amortization corresponding to the 

harmonic excitation eqζ . 

 

3. KINEMATIC EXCITATIONS 

DEFINED BY TRIANGULAR 

PERIODIC FUNCTIONS   

 

In the testing technique, two types of 

triangular periodic excitations are used, namely: 

symmetrical alternating and null pulsing, 

applied to a (k, c) Voigt-Kelvin rheologic mass-

free system. Usually symmetrical alternating 

triangular cycles are used. 

 

3.1. Cinematic excitation with symmetrical 

       alternating triangular cycles. 

 

Image 2 presents the excitation function,  

)t(xx = , speed �� (	), acceleration �� (	) as well as 

the reaction force �(	) = ��� + �� as response 

to the given excitation. Thus, these functions are 

defined as:   

a) Displacement function 
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b) Speed function  
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c) Acceleration function – null identical �� = 0 

d) Reaction force function 
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Figure 2 presents in temporal concordance 

the functions �, �� , ��and Q, with the particularity 

the instantaneous acceleration �� ≡ 0 for any 

value of  ( )+∞∈ ,t 0 . 

 
Fig. 2. Response Q(t) versus time to the symmetrical 

triangular cinematic excitation )t(xx =  

a) variation of instantaneous displacement )t(x ; 

b) variation of instantaneous speed �� (	); 

c) null instantaneous acceleration; 

d) variation of reactive force Q(t). 

 

In Fourier harmonic expression, the functions 

)t(x  and �� (	) may be expressed as follows: 
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Maximum values of functions x and ��  
emerge from the relations (22) and (23) as 

follows: 

- for maximum displacement we have: 
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 - for maximum speed, it is obtained: 

    ��ABC  (0) = ∓ 3"#
$4 E�
� 0 + �

- �
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�
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� 0 +. . . . G                (25) 

or 

    ��ABC  (0) = ∓ 3"#
$4 E1 + �
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but taking into account 
T

πω 2=  we have 

            ( )
T

A
vx maxmax

4
0 ==&  

 

3.2. Dissipative characteristic of the dynamic 

       system 

     

 The dynamic system is characterized by 

structural parametric measures c, k and by 

excitation parametric measures, expressed by ω, 

A. 

Dissipated energy dW∆  may be expressed on 

temporal intervals in a complete cycle, as 

follows  

  ��� = � ���I����/!
� + � ���II���-�/!

�/! +
� ���I��-�

-�/!                   (27) 

where  ��I = �
$ �� and ��II = + �

$ ��so that it 

may be obtained: 
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from where we have the expression of dissipated 

energy such as 

                            28
cAWd ω

π
=∆                    (28) 

Maximum elastic energy max
el

W  is 

determined based on formulating the expression 

el
W , as follows 

     �KL = � ���� = � � ����	 

where �� = �
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Elastic energy on cycle may be written down 
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from where 
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Maximum energy max
el

W  corresponds to 

t=T/4, that is it emerges 
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The equivalent amortization for symmetrical 

triangular cycles t
eqζ  is as 
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el

t
eq

W

W

π
ζ

4

∆
=                     (32) 

or  

           
k

c

kA

Act
eq

ω
ππ

ωζ
22

2 4

2

1
4

8 ==                (33) 

where we take into account 
k

cωη =0
 and thus we 

have: 

                           eq
t
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π
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where eqζη 20 =  is the structural amortization for a 

harmonically excited dissipative system.  

 

4. CONCLUSIONS 

 

The qualification of the antiseismic 

elastomeric insulators requires specially 

designed stands. According to the size of the 

reaction forces, the amplitude of the movement 

of the driving actuator, the size of the driving 

masses in the symmetrical alternating 

movement, the constructive and functional 

variety involves distinct approaches. For 
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example, at symmetrical harmonic excitations or 

null pulsing (haversine), the influence of the 

mass of the moving equipment may introduce 

significant influences at the assessment of the 

reaction force strictly individualized for the 

elastomeric element. 

In case of reduction of the inertial forces with 

significant values, actuators are used which give 

symmetrical alternating triangular movement 

excitations; in which case speed is linear on time 

intervals and acceleration is null. In this case, 

there are some disadvantages related to the 

command and control system. Thus, by 

computer and automation methods, the 

command system must correct the singularities 

and discontinuities in the critical points of the 

excitation function graphs. 

a) For the cinematic excitation by applied 

instantaneous displacement such as 

tsinA)t(x ω0=  of a dynamic system (c, k), 

generates a linear reaction force of )t(Qkxxc =+& . 

Based on the hysteretic loop and on the 

maximum elastic energy, there may 

experimentally be determined, the critical 

amortization report 
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W

W

max
el

d
eq

24

ω
π
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b) For the pulsing-null cinematic excitation 

by the instantaneous displacement such as 

( ) tsinhavtcosA)t(x ωω =−= 1
2

1
0 , a hysteretic loop has 

smaller area than in the previous case. Thus, 

amortization h
eqζ  of the system (c, k), excited 

with function tsinhavx ω=  is given by

eq
h
eq , ζζ 250=     

c) For the cinematic excitation in the 

instantaneous triangular displacement it is 

characteristic the fact that the deformation speed 

is steady on temporal parts and acceleration is 

null which enables the influence of the inertial 

force to be neglected. In this case, the 

amortization of system (c,k), is eq
t
eq , ζζ 80= . 

In view of the above, it is found that the 

amortization for mass-free systems of type (c,k) 

can be experimentally assessed and measured 

only under well-specified structural conditions, 

of actuator driving that generate instantaneous 

controlled displacements based on defined 

excitation functions. Essentially, the 

amortization defined by eqζη 20 = is different 

from one driving system to another being 

dependent on the excitation function. In this 

case, the hysteretic loop of force Q(x) in relation 

to the instantaneous displacement x = x(t) 

depends on the excitation function. 

The triangular excitement is also used in the 

case of heat action tests for fluid dissipators. In 

this case, the period of the heat movement is 

very high, of (4 ... 20) hours, following the 

variation of force Q, according to EN 15129. 
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Evaluarea parametrică a dispozitivelor anti-seismice potrivite la natura excitației cinematice 

 
Rezumat: Materialele elastomerice sunt caracterizate în regim dinamic, atât prin efecte elastice, cât și pe cele disipative. 

Estimarea cea mai realistă a disipării se datorează rigiditatea k, pulsul excitant ω, împreună cu coeficientul de 

amortizare vâscous c, la excitațiile cinematice definite de funcțiile periodice în raport cu timpul. Comportamentul 

vâscoelastic liniar corespunde modelului Voigt-Kelvin fără masă atașată, astfel încât să se reproducă un stand de testare 

real, printr-un sistem de tip (c, k). 
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