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Abstract: The main objective of this paper consists in the establishment of the generalized elastokinematics and
elastodynamics equations for robot structures with flexible links. For kinematics and differential matrices in the case of
the robot structures with rigid and elastic links will be applied, among of these, the matrix exponentials, in accordance
with the algorithms developed by the author. For dynamical study of robot structures with rigid links, the author of paper
will develop kinetic energy with important formulations. According to the author researches, in this paper will be also
presented new expressions for acceleration energies of higher order, corresponding to suddenly movements. For the study of
elastodynamics, author will establish with new formulations the kinetic energy, acceleration energy of first and second
order, corresponding in exclusivity to elastic structure. So, the expressions for generalized inertia forces typical to
suddenly motions will be determined, when the robot structures are dominated of elastic links.
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1. INTRODUCTION

This paper is divided in the two main parts.

First part will be devoted to establishment the
kinematics and dynamics equations for any serial
robot with rigid structure. The second part will
devoted to determination elastokinematics and
elastodynamics equations for any robot with
elastic and flexible structure. In the view of this
according to [5] — [7], transfer equations of any
kinematic chain [(R)-rotation and (T)-prismatic
joints, Fig.1 and Fig.2], are defined by means of
the locating transformations. So, the mechanical
robot structure (MRS) is initially represented in
the configuration: #© =[q, =0;i=1—->n]" .
In the kinematics of rigid and elastic structure
will be defined the linear and angular velocities
and accelerations using classical transformations
and matrix exponentials. In the dynamics of
robot with rigid structure, the author of paper will
develop, as well as new expressions for
acceleration energies of higher order, according to
suddenly movements. In the elastodynamics the
author will establish generalized inertia forces,
based on new formulations about the Kinetic
energy and acceleration energy of first and
second order, corresponding in exclusivity to
elastic structure and suddenly movements.

Fig.2 Mechanical Structure of Robot (MRS)
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2. KINEMATICS OF RIGID STRUCTURE

The kinematical and dynamical study from
this paper [5], [6], [7] is oriented on mechanical
structure with opened kinematical chain, where
the kinetic ensembles i=1-—n are physically
linked by driving joints of fifth order. (Example
mechanical structure of robot, see Fig.1).

Fig.3 Sequence of Kinetic Ensembles
This is characterized by (n d.o.f.), according to:

0 +0" )=[a(t) (1)
where g, (t ) is the generallzed coordinate from

every driving axis. But, considering the current
and sudden motions the generalized variables of
higher order are developed as follows:

{50): o(t); 5(t);---;(5)(t)}:
:{qi (t); of (t); if (t)Q"ﬁ((r]ni)(t)} ’

i=1—->n m>1

and (m) represents the time deriving order. The
main objective of this section consists in the
establishment of the absolute angular and linear
velocities and accelerations for every Kinetic
ensemble from MRS. Unlike the classical
approaches [3] — [5], [7] in the following a few
formulations based on the time derivatives of
locating matrices will be developed [7], [20].

So, in the Figure 3 a sequence of two kinetic
ensembles belonging to MRS is subjected to
kinematical study. According to [5] — [7], the
locating matrices, for the above sequence are:

"[T](t) = °[T1(0)- [T ](t) =
:{?[R]m mt)}:

000 1

i=1—>n]T,

(2)

3)

{ii[R]a)-i?[R] aa}

0 0 O 1

The matrix components from (3) are defined as:

_1.[R] i Rk (t)-4,), 4)
= 1p.f?i ( i)'qi(t)'l ki (5)
RIO= S [RID-FIR] (6)

P (1) =P s (O)+Pis =P O+ IR] " Piy, (D)

={[L i=RJ; [0, i=T]}. )

The symbol (9) shows the type of driving joint.
On the matrix (3) is applied first time derivative:

[ -10- F1O #0),
fm{ii[é]-im Mi[ﬂ-“w

000 1 (10)

000

1

[Ai"j[R]'l[R] (1—Ai)-di(t>-i_i[R]-iw1]

According to [7], matrix (14) is identical with:

[

000

_ {(V/i x) P

j—l—)l]

'Xp‘]‘?m(r)

0

(11)

and y; is orientation vector from {i} versus{0} .

Considering the time derivative property (15), on
the matrix (10) a few transformations are:

O URGE
_r[R]'O[R]T p()- [R]RIA (¢

000 0 (12)
{{oax} a(n—{oax}-ﬁi(t)}
000 0
foaxg="[R]-\[R]". (@ ="[R] -'[R]: (23)

where properties (13) are according to [7] — [8].
The expression (12) is written again as follows:

IO uUNCE
= [Flo-"mo- T o+
+ S0 [Fo- o
The first matrix term from (14) becomes thus:
O m0-T 0= [0 0T
185 5. (0)-(3x) B (1)

000 0

(14)

(15)



where (v} |[R]- SIRT » (see (43))
The second matrix term from (14) is shown as:

Hu OO UNOE
e i1l 011 (16)
- Moo ST o) o)
:“dR(A-qi)} dp[(l—Ai)qq
000 0
where {4, -G, (t)- -k x}=a,- " [R]- R (17)

The components from (16) are developed thus:
[dR(A-4) [={a,-6,(1)- %k}, (18)
do|(1-4)4, ] =(1-4,)-G (t)-°k - (19)
_{Ai q| (t) OE X}'{E\—l + ij [R] HE\M}

Taking into account on the one hand (12), and on

the other hand (14) with the components (15), as

well as (16) — (19) the following matrix and
differential identity is obtained below:

{{"a’%} b(t)—{‘JwX}'pi(t)}:

000 0

{{"“’1*} P (t)—{ 0@, %} |o,1(t)}+ . (20)

000 0

+[[dR(Ai G)] dp[(1-a

000 0

Identifying the angular (rotation) components
from the above matrix identity (20), it obtains:
(0@ X}:{OcT)i_lx}+{Ai-qi (t)-OEx}. (21)
In above identity of skew-symmetric matrices,
vector equation of angular velocity is selected:
°@, (t) =@, (t)+A, -G (t)- %k (t). (22
It represents the equation of definition of the
angular rotation velocity vector, corresponding to
absolute rotation of the kinetic ensemble from
MBS with opened kinematical chain (see Fig.3).
The last column from (12) — (20) is changed as:

ﬁi (t) :Efl (t)+{00_)‘71 X} ’ i—j [_R] i_lﬁiifl + . (23)
+(1—Ai)~qi (t)- ok
Using the definition of the linear velocity for the
origin of frames: {i} and{i—1}, (see [5] and [7]),
the equation (23) is written below as follows:
0\Ti = O\Ti—l +{067)i—1 X} : i—?. [Rl i%lﬁii—]. + . (24)
+(1-4,)-q, (1) %k
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It represents the equation of definition of the linear
velocity vector, corresponding to absolute motion
of the origin O, e{i} belonging to Kinetic
ensemble from MRS with opened chain (Fig.4).

lk iql

elementd i1 Vg

elerrartu'i_

Fig. 4 Kinematical Parameters for MRS
Applying the absolute time derivatives of first
order on (22) and (24), and performing a few
differential transformations, the equations of
definition for angular and linear accelerations

vectors are obtained:°z and respectivelyov, .

But, especially in the dynamics equations the
above kinematical parameters are required by the
components with respect to own frame{i} . The

angular and linear velocities and accelerations,
corresponding to every kinetic ensemble (Fig.3)
are below presented by means of the definition
equations with respect to frame {i} and {0} , thus:

(o)ia:(o)i[R] B B +A. ql (0):[R]'iE;(25)

i -1
(0)| (0)| _1 i1+
R )
[ ]{ I.l'i(_o)| a) a4 X p||—1}+ ,(26)
+(1-4)-6- " [R]- 'k,
(0)|a—)I (O)i[R]_
- (27
ca {UR] - k[
(O)I_ (O)I [R] I:I 1_| 1+ pii—1+
+@ < X! pii—l:' . (28)
(1 4 ) o [R]-(Z- i‘T’i x; - iEi + - IK)
They are function in exclusivity of parameters

included in [0;i] kinematical interval [7]. So,

they are applied by outward iterationsi=1—n.
When (i =1), within of the equations (25) — (28)
the kinematical parameters of the fixed basis
from MBS are substituted, according to next:

(°@ =0, %, =0, °%, =0,%, =0}  (29)

_1_
|l+

a)llx



240

When (i =n), the kinematical parameters of the last

kinetic ensemble from MRS are obtained. They are
operational velocities and accelerations:

(n)o (6&[5“);5(0}:

. . 43 (30)
{(n) 7 [a(t);é(t)] @] [5(0?5@)”
"X [F0a0)- &1

. . . . T

{<“>°v; [20):3():0()] “Pa [a(t);é(t);é(t)]} .
The above expressions (30) and (31) represent
linear and angular velocities and accelerations
corresponding to motion of the last kinetic
ensemble of the mechanical structure of the robot
relative to absolute Cartesian frame, [5] - [7].

Using algorithm of the matrix exponentials of
kinematics (MEK Algorithm) from [7], [8] and
[20], [21] the kinematics equations can be also
defined by means of matrix exponentials [22]. So,
for every i =1—n the next expressions are:

Ow; = {H’ _,exp {{l},(co) x}qk 'Ak}} . ]}],(0) -4 - 4
(32)

'Ak}}'Aj Ay - ]}j(o) -4 - dx
Op;, = Z} 1 {]_[k 0 exp {{IEIEO) x}qk .Ak} . 13}.(0) +)

(
[ iy enp (K < a5 + ;

+4; - ]_[k 0 €XP {{IEIEO) x}qk .Ak} . C].*} -4

S, = Siea (M) ME(V) - ME() M) 4y +
+ T { (ME () - ME(V) - ME(%5) - M3} - 4

(34)
where I%/IXE Hexp{{ } } (35)
ME (V) =1, i-{ﬁ(O)x}; (36)

_ - . )
Miv)] =[vi(°)T [bk;k:|—>3] D, }; (37)

[9+3:(n-i)]xt
ly [0] [0] }
o 10 W) )| €
k-1
S
m=i 1e }q Am}

Viez ) where k=i —n

5 = {{0; m=i-1}; {1; m=i}}

and ME (Vg ) Hexp{{ }qk Ak} (39)

Remarks: The matrix exponentials (ME) enjoy important
advantages due to their compact form, easy geometric
visualization and especially they avoid the frames typical
to every kinetic link. As a result the matrix exponentials
will stay at the basis of defining the dynamic control
functions for whatever mechanical robot structure,
regardless of its building complexity.

3. DYNAMICS OF RIGID STRUCTURE

For understanding mechanical significances of
the energies of higher order, at beginning the
kinetic energy is defined, according to [1] - [32].
First of all is taken in study the rigid body in
general motion (Fig.5). The starting equation of
the kinetic energy is below written as follows:

E. =l-.[vfﬂ -dm :l.j\m v, -dm =
2 . 2 (40)
_ vaiRval
_E-ITrace[vM -y, |-dm
1 ¢ _ _ 1 - _ _

= Z?J.(VO +oxpy,) (Vo +@xpy,)-dm. (41)

Equation of kinetic energy for general motion is:
E. :%-M-v§+M v, -(m,sc)%-ﬁ @ . (42)

WhenO =C, p. =0, and I =1, (42) becomes:
1 1

Ec=—M-vi+—w
€2 €2

P—

1@

(43)



This is known as Konig’s theorem of the kinetic
energy under the explicit form, as well devoted
to general motion. In the case of the systems (see
Fig.6), above theorem is modified [19] as:

1-4 . .
(_1)AM' y '{%'Mi"‘TCT"‘Tc}JF
’ .(44)
1.
U

4B Cm =EL[a 0]

To this, the operator is added with significance:
A= {(1 ;general motion ), (0; transfation ), (1 rotafion )}

{i*}on E{i}og
{0*}OR E{O}OR

OR —orientation

Jo

Fig. 6 Kinetic Ensemble from Robot (MRS)
Considering the notions from others papers of the
author [4] —[9], the total kinetic energy of MRS is
written by means of the components as follows:

E.[o(0:00)]=
~SER[7 ), 9(t)]+ZE'R°T [6®:0)]

i=1

, (45)

241

The translational and rotation components are
changed due to substitution of linear and angular
velocities, in accordance with [19]. They are:

SER[T0:F0)]=
i=1
A . a(mﬂ) (46)
w0 oy 5L ok
(=) 1+3:A, 2 ; i J-Zzllm+1 ag,) B
YEF 500 (1)]
i=1
N k*-“a@ U (47)
ST l//.
i=1| j=1 an plaqp

The expressions (44) and (47) include the inertia
tensor axial and centrifugal, relative to {|} ;

X Xy X
1= [(T)-(TT)dm=| 1 < | ag)
R

The*“advanced notions™” are found in the
analytical dynamics [1]. They are focused on the
motion energies, whose central functions are
named the accelerations of higher order. They are
developed in any sudden and transitory motion of
the mechanical systems. The author developed
new mathematical formulations on the
expressions for acceleration energies of first,
second, third and fourth order [7] and [9] — [20].
In this section they will be presented, only in
explicit form, typical to the rigid structure.

Considering papers [9] — [20], in following the
acceleration energies of order (p>1) will be

defined. The starting equation shows as follows:

(k-1) . (p+k)
E(P) [é(t);ﬁ_(t);---;g(t)} =

l ZTrace{.p{R]“'"* T dm+ T j } E;] }
dk (p+1) (F”l)
+ ZTrace{dt {p M }} Id =
- ZTrace dk 1{[)[;2][ MG T } [pI;] }
dk (p+1) (p+l)
+ ZTrace{d “{ [ }} ,

(49)

i=1
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where p>1, k>1, {p; k} ={1;2;3;4;5;.....}

)

and EP . (50)

>[§<t>;§<t>-...-f9—"iiﬂ=

i i)

=EP|G(1);6(t);-;0(t)

The expression (49) includes the inertia tensor

planar and centrifugal, relative to the frame {|} ;
T Ly g

¥ :IT* ST edm=

il* il* il*
ZX

zy 2z

. (51)

The acceleration energies will be also defined
for rigid body and multibody systems.
In the view of this input parameters of advanced
kinematics and mass properties become [3] —[7].
According to papers [9] — [20], the author was
established the acceleration energy in the
generalized form, corresponding to rigid body
founded in the general motion. This was named
acceleration energy of first order, as follows:

o :%-jafﬁ -dm :%-_[\7“} v, -dm =

1 ‘0 ; (52)
= —-J'Trace [V ¥y |-dm

where a, =V, =(8 +&x p, +@xDxp, );

/(53)

+g (oxly-0)+=-@ | @

WhenO =C, p. =0, and |g =15, (98) becomes:

Tl g+
S
2

E/gl)z_.M.aC 5C (54)
1
2

+2" (@x1;- @)+ [a—f 1@ @

EO[a(D:8(0);0 ()] =

ﬂ \ |:£M| (I)\Tg (|) le

1+3-A, T2 i
(i) =T (i)l (i)

N3 R P H o)

=1
+A2 _Z[(i)a;)iT'((i)a—)l X(i)li*'(i)a)i )}r
+E{) [7():0* )]

(—1)™ .

i=1

where
> 1 -1
AM’Z > @ -
i=1

According to [7] - [20], in the case of multibody
systems (MRS), the definition equation of the
acceleration energy of first order is (55) / (56).
Considering the notions from papers [7] — [19],
the two components (translational and rotation) of
acceleration energy of first order show thus:

D7 ®;8*0)]=
|:(i)5_‘l' O (i)a‘l':l‘ (i)CT)_T} .(56)

(m)
1 n
:?;Mi le_; “m m (m) -G; -,
=! j=l p= 8(]] aqp
62(nrrl)
[
+ < 7 ()C‘u'q"qp*' (57)
(m+2) 5909,
qj' qp
a@) a(m+l)
1 f L. 1
mel (::n) G -G, _E‘ZMi aé.
2q; aq, =1
E(l)ROTg 1 & R 8
A 5 & &= (5 )
2 ‘3
1 a e a(ﬂ) 1 (rr:rl) "
=| 0, Z =
2 Z m B0 m+1 .m 7 q; | I8
i=1l j=1 aqj aq]
a(m) 1 a(m_+1)

*  — * Wi l//i .
Im-e =l Z EREAYRL] mal a5
=Log, aq,

{Egl)ROTws — ZaT (5 Xll* CT)I) — (59)
i=1
I L S i
ZZ %'AJ a; + 1 :/;l) R ES)ROTW
i=l j=1 8q] aqj
E/(\l)ROTa)w :(_| Xll a)l ) = (60)
ok a(m) a(m)
n =NK =n l/7 '//
_ ) li' —w |44 ql qp
i=l j=1 p=l aqj 6qp

According to the author researches, [9] — [20], the
sudden motion of MRS, transient motion phases,
as well as mechanical systems subjected to the
action of a system of external forces, with time
variation law, are dominated by linear and angular
accelerations of higher order. As a result
acceleration energies of higher order are defined.



4. EXPONENTIALS
ROBOT

AT FLEXIBLE

This section is devoted to define the generalized
elastodynamics equations, when the robot links
are dominated of flexibility properties. At first, a
few kinematic transformations are described. In

Fig. 7 Elastic Link from Robot Structure
the aria of the small deflections, and considering
the aspects from Fig.7, the time functions for the
angular and linear deformations of the link (i) are

written, according to [2], [12], [21] - [28] and
[32] as:
Oyi . . Oyi
5, = 5yi :{Zqij(t)'igij}zzqij(t)‘ 0y (61)
0y
{J un - un { ” (62)

v
w
where g )are time amplitude of proper modes,
and they are completing variablesq;(t). The
position vector of the elementary mass dm is:
'Fe=if +id,;Of =pf +RG - (ri+i5i). (63)
The symbol (e) highlights elasticity of kinetic

link. After a few transformations, the locating
matrix between adjoining elastic links shows as:

Tg_lzT“_l{[olgo lH{Oi | z} (64)

The locating matrix T;;_; is answerable to rigid
link, while for the small deformations of link is

corresponding to matrix operator AT;?, written as:
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ATS = . SRR ¥ (65)
ERENERK
000 1] 55 [ 000 O
T =Ty AT} =
=T+ i 9 Q0 { : b=l
w05
=Tiic1 + i {ZQU 'ATiJ}
=
i1
T =HTjej—1 il =
o~ (67)

o o 1%

The above kinematic transformations (66)/(67)
can be also obtained by means of the matrix
exponentials. According to [12], [21] and [32],
the exponentials are applied for elastic links as:

Tes =Tl ep{U;-q }+T ) ‘HeXp{ATu -q; } ;(68)
=1

X g b= ex {ax} di
ep{ATU qu} ep{{o(l)o_ 0] i ; (69)
000 1

0 & dy
eXP{@j X}Qij=eXP G 0 =64 |05 ¢=; (70)

Zexp{uix'gxij'qij}'exp{ui yij qu} eXp{U|z 5ZIJ ql]}

{exp{uiuﬁuij-qij}} 7@ gor [1 ¢(8y qu)]

where u={x;y;z}| N

+3- (5xu qij)+{ o } (5‘1'1 qij); (1)
Ti%:ﬁ{TJl(l) ep{U; g }} URECURY
-1 (72)

+H{ O, Tl o AT;k}} T ee(U )

k=1
On the locating matrix (72), which it expresses
the locating of the frame {i} with respect to fixed

basis, the time derivatives of first and second
order are applied. The expressions are:
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‘e I:\.’ieo p;ie _
i0— -
000 O

1 me ; (73)
ZTkO U Tk -G + 20D Taea AT T -Gy
ka1 kel a1

. RS p°
Ti%:{ 0 l} T A+T B+T|0C; (74)

000 O
_1 m| .
|0A_2Tk0 Ug Tk -G + D0 D Teks - AT -Tif -G (75)
=) ki

Ti%B =
+ ke 121' kTico " U Tiie - Uy - Tu qp -
Z Zl 1Tkk 17 AT - T - Qe+ G

} (76)
i-1mp i

Tioc =202 2 Tkkr AT Tk U Tif -l -G (77)
k=L 1= m—l

In these expressions are substituted the matrices
defined by means of the exponentials above
shown. Considering (73) and (74), the angular
rotation velocity and acceleration are defined as:
vect{ *wf x} = vect{RE, - R } =
"wf,  Cwf, Cwf];

O@e =vect RS - RS +RS RS T } (78)
The linear velocity and acceleration of the
elementary mass dm are defined by means of the
time derivative applied on the position vector
(63). As a result, next expressions are:

O e 4R+ 3 )+RE-

{Z;‘cl anzl T7$10 : Um : Tlfm ' Uk l‘;{ C'Im C'Ik

{ﬁrie=5f+Rfo‘( i+ ;) + R - i, =

}; (79)

=pf + wf xRG - (' + 'd) +RG - 'd;
y Ope — je 4 2. 9we xRS - d; + RS- 'd; + }
O_O.)f X Rleo( Trl- + fdi) + 0_0)Le X O_wf X RL€0 . ( Iri + fdi)
(80)

The column vector of the generalized variables,
in the case of the structures with flexible links, is
completed with (61) and (62) as below:

56(0:[[«96”(0 j=0—>mi] i=1—>n}T; (81)
o™ (1) ={{a (1) if =0} {ay (1) it =1} (82)

6 =[BT O[OFT®) j=0-m] i=1-n]";

65 (© = {ta:®ifj = 0}:{ay if) = 1}
(83)

0e(t) =
G =[65© j=0-m] i=1-n];
BT (0 = {ta0ifi = 0}:{ay@ifj = 13} (84)

(90 ax®) [ .
{Oji [J=l—>ik=1_>mj]{ojg }603(9) . (85)

o

The above expression shows that every column
of Jacobian matrix is function of generalized
variables. Considering [8], [12] and [21], its
expression is defined by means of the classical
transformations or matrix exponentials.

5. ELASTODYNAMICS EQUATIONS

This section is devoted to establishment the
generalized elastodynamics forces: generalized
inertia forces, as well generalized active forces
answerable to gravity and manipulating load.

On the basis of the NE-type equations in this
section an elastodynamics expressions are
determined, [2] and [12]. Unlike the expressions
answerable to structure with rigid links, [7] [10]
[20], the generalized inertia forces are changed
for robot structures with flexible links. First of
all, resultant active force in the new elastic
restrictions is characterized by the equations:

Re=['r R R =
. moo . .
=M; -V +>) (Ia_)lexqij +'@f x'@f xq +
j=1
+2-'3 xy +RY -Gy )- . 'dydm
P dm =My (7 +RE - 7). (87)
Above expression is corresponding to the rigid

ensemble. Performing a few transformations, the
resultant moment of the active forces becomes:

, (86)

where M; - °V¢, =

mi M
[ Ia)+quj IIlrd"'z:zqu |k II|kdd+
N m—lk =1 (88)
{ +22qu Illl’d+zquj ik - II|kdd}
j=1k=1
iNe — iT AT i—e
Nia)_ {J.hnk{ dl X}{ dl X} dm} a)l + (89)
+'@f x | 'a_)le

irddd
According to [12] and [32], the mass elements
(88) and (89) are pseudoinertial matrices, thus:

- X}T dm ;

IRONNESIE



un = Z%L.nk{ T {8 dm
3= T {6 o |
SRESILEE
- [ L@ o e
S-S0y au [ 18, )13 ] om

j=1k=1

quu Gk - likag = _[“nk{ 'd, X} { 'a, X}T dm

j=1k=1

mj mj

ZZ% Qi - lkdd =

j=1k=1

; (92)

mi mj

qu” Gik I|nk{ _' ><} { iaik X}T dm

j=1k=1

mj mj

ZlkZlqu G gy = Llnk{iai X}{i;i Xde

; (93)

mj mj

qu” G Ilnk{ dj }{iaik x}Tdm

g =y | T T dm
+2{j”nk{ T T dm}+
+{Lmk{ @ (18 .dm}+ Jo 85} { 8 om
+f {7 { d }T dm+ [ {'dx] { d x}T dm
e :jﬁnk{ir} 7 <[ dm.

X

(94)
|a)_2 Z qu .|k Illkdd'ia_)le+
j=1k=1
mj mj
{ +22qu |rd +quu Qi - |kdd+
j=lk=1
mj mI (95)
+quu Qi - |kdd+zq|] |rd
j=1k=1
mi mj .
+2 i -G - lllkdd}
j=1k=1

Among of these, the (94) is the inertial tensor
axial and centrifugal typical to the rigid link with
respect to moving frame {i}. The others are the
inertia matrices, in accordance with [6].
Applying the transfer matrices, according to
[12], the generalized inertia forces show as:

Qiiéjee OJe 0 . —=*ee OJie [ F;eeT OF*eeT] ,(96)

OX|
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n .
where °F.% = 2 Rjo RS

and ONee = Z{ ﬁfanfO-JEjHRjeo-iﬁf}.
j=i
In the following, the generalized inertia
forces will be also determined by means of the
LE-type equations. At first, the kinetic energy
answerable to a flexible link is established [12]:
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The column vector of generalized velocities is
defined, from (82), by time derivative as below:

o° (t)=[9”eT (t) where j=0—m;; i=1—>n}T

HORIIOLIBURIOLIEH
Considering that mechanical structure of robot is
characterized through (n) flexible links, the

kinetic energy in the matrix form, which it
expresses the elastodynamics behavior of the
robot structure, is shown in the following as:

e (0010 See (5787 =1 )

L om : (99)
P WA (°)-85 -8
i=1 j=0k=11=0
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Above, M*® (56) is the inertia matrix, positive
and symmetric, typical to the kinetic energy.

In keeping with the papers [1] and [12], the
generalized inertia forces can be likewise
determined by means of the generalization of the
Appell’s equations. In the view of this, the
acceleration energy of first order for flexible link
from mechanical robot structure (MRS)
established with elastodynamics expressions:
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The column vector of generalized accelerations
is defined by time derivative (84) rewritten as:

ae s\ _| peT . L U
0 (t)_[eﬂ- (t) where j=0—>m;; |_1—>n}

G (1)={{6 () =0} {dy () it 21}
Considering (84) and (100), for the whole MRS,
supposing that all (n) kinetic links are flexible
the acceleration energy of first order in the new
matrix expression is shown in the two variants:
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In the above expressions of the acceleration
energy of first order it remarks existence a few
elastodynamics matrices: inertia and pseudo
inertia matrices, as well as the generalization of
matrices of the Coriolis and centrifugal terms.
According to LE-type equations on the one
hand and on the other hand generalization of
Appell’s equations [1] and [12], the generalized
inertia forces (96), supposing that all (n) kinetic
links of the robot have flexible features, are also
defined with matrix and explicit expressions:
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The above two expressions can be also written in
accordance with the following development:
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Remarks: In the above matrix and explicit
expressions, the generalized inertia forces, when
| =0, are corresponding to generalized variable
q, from the driving joints with rigid features, and

the others are answerable to the generalized
variables q, considering the flexible links of

robot have features of generalized deformations.
But the author has developed in many other
papers [7],[9], [13] — [20], new formulations on
the acceleration energies of higher order, as well
as the dynamics equations of higher order
corresponding to suddenly movements for any
multibody system, as example serial robots. In
this section a new expression about acceleration
energy of second order for elastic structure of the
robot will be presented. As a result, in the
beginning a few kinematics transformations for
elastic structure are defined by means of time
derivative of third order, as below follows:
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For determine the equation of definition of the
acceleration energy of second order, first of all
time derivative of third order for position vector

e g in homogeneous coordinates are established as:
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acceleration energy of second order shows as:
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The above equations are in consonance with the
researches of the author from [14] — [20]. In the
same papers the author proposed, the generalized
differential equations of higher order, in the case
of the mechanical systems (MRS), dynamically
characterized by sudden and transitory motions.
When the mechanical systems are dominated by
elastic links, then the equations are changing as:
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: (115)
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The necessary condltlons in (115) are following:
p=1-k; & ={{0;p=1};{Lip>1}}
and k>1; k={1;2;3;4;5;.....}
m=>(k+1); ={2;3;4;5;....}
Generalized differential equations (115) contain
acceleration energies of order(p=1-2), whose
expressions of definition, in explicit and matrix
form, are detailed presented in this section.
In the robot with elastic structures, the
generalized forces answerable to gravity loads

are also developed due to the elastic driving
joints and deformations to every flexible link:

. (116)
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Above expressmns of generalized gravitational
forces are functions of matrix transformations in
elasticity conditions of the mechanical structure,
of robot, as well as Jacobian matrix, (81) — (85)
presented in the fourth section of this paper.

6. CONCLUSIONS

This paper was divided in the two essential
parts. First part was devoted to establishment the
kinematics and dynamics equations for any serial
robot with rigid structure. The second part was
devoted to determination elastokinematics and
elastodynamics equations for serial robot with
elastic and flexible structure.

For define the kinematics and differential
matrices functions in the case of the robot
structures with rigid links, the author have been
applied, in accordance with its researches, the
classical transformations, as well as matrix
exponentials, based on MEK Algorithm. By
means of the matrix exponentials have been also
determined all kinematic parameters. They
characterize the equations of direct and control
kinematics for any mechanical robot structure,
regardless of its constructive complexity. For
dynamical study of robot structures with rigid
links, the author of paper developed, kinetic
energy with important formulations. According
to the author researches, the suddenly motion,
transient motion phases, as well as mechanical
systems subjected to the action of a system of
external forces, with time variation law, are
dominated by linear and angular accelerations of
higher order. In this paper new expressions for
acceleration energies of higher order have been
presented, according to suddenly movements.

In the second part of this paper an elastic
structure of the serial robot was analyzed from
view point of elastokinematics, as well as from
view point of elastodynamics behavior. As a
result, using the properties of the matrix
exponentials, the locating matrices and their time
derivatives corresponding to small deformations
been established. For the study of elastodynamics
author established generalized inertia forces, as
well generalized active forces answerable to
gravity load. So, the author has defined with
fundamental new formulations the Kkinetic
energy, acceleration energy of first and second
order, corresponding in exclusivity to elastic
structure. By means of proper researches, the
paper author established the expressions for
generalized inertia forces typical to suddenly and
transitory motions, when mechanical structure of
the robot is dominated of elastic links. This study
also included generalized gravitational forces.
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Formulari asupra elastodinamicii in robotica

Rezumat: Obiectivul principal al acestei lucrari il constituie stabilirea ecuatiilor generalizate ale elastocinematicii §i
elastodinamicii structurilor robotului cu elemente flexibile. Pentru matricele cinematicii si diferentiale. In cazul structurilor
de roboti cu elemente rigide si elastice, se vor aplica printre altele exponentiale de matrice in consonantd cu algoritmii
dezvoltati de catre autor. Pentru studiul dinamic al structurilor de robot cu elemente rigide, in cadrul lucrarii vor fi
prezentate autorul va dezvolta energia cineticd cu formuldri importante. In conformitate cu cercetdrile autorului, vor fi de
asemenea prezentate expresii noi pentru energiile de acceleratii de ordin superior corespunzdatoare miscarilor rapide.
Pentru studiul elastodinamicii, autorul va stabili, cu formuldri noi, energia cineticd si energia de acceleratii de ordinul intai
si doi, corespunzatoare, in exclusivitate, structurilor elastice. Astfel, expresiile pentru fortele generalizate de inertie se vor
determina conform cu miscarile rapide si pentru robotul dominat de elemente elastice.
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