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FORMULATIONS ABOUT ELASTODYNAMICS IN ROBOTICS 
 

Iuliu NEGREAN 
 

Abstract: The main objective of this paper consists in the establishment of the generalized elastokinematics and 
elastodynamics equations for robot structures with flexible links. For kinematics and differential matrices in the case of 
the robot structures with rigid and elastic links will be applied, among of these, the matrix exponentials, in accordance 
with the algorithms developed by the author. For dynamical study of robot structures with rigid links, the author of paper 
will develop kinetic energy with important formulations. According to the author researches, in this paper will be also 
presented new expressions for acceleration energies of higher order, corresponding to suddenly movements. For the study of 
elastodynamics, author will establish with new formulations the kinetic energy, acceleration energy of first and second 
order, corresponding in exclusivity to elastic structure. So, the expressions for generalized inertia forces typical to 
suddenly motions will be determined, when the robot structures are dominated of elastic links. 
Key words: elasto-kinematics, elasto-dynamics, advanced mechanics, robotics. 
 

1. INTRODUCTION 
 
 This paper is divided in the two main parts. 
First part will be devoted to establishment the 
kinematics and dynamics equations for any serial 
robot with rigid structure. The second part will 
devoted to determination elastokinematics and 
elastodynamics equations for any robot with 
elastic and flexible structure. In the view of this 
according to [5] – [7], transfer equations of any 
kinematic chain [(R)-rotation and (T)-prismatic 
joints, Fig.1 and Fig.2], are defined by means of 
the locating transformations. So, the mechanical 
robot structure (MRS) is initially represented in 
the configuration: .  
In the kinematics of rigid and elastic structure 
will be defined the linear and angular velocities 
and accelerations using classical transformations 
and matrix exponentials. In the dynamics of 
robot with rigid structure, the author of paper will 
develop, as well as new expressions for 
acceleration energies of higher order, according to 
suddenly movements. In the elastodynamics the 
author will establish generalized inertia forces, 
based on new formulations about the kinetic 
energy and acceleration energy of first and 
second order, corresponding in exclusivity to 
elastic structure and suddenly movements. 

 
 

 
 
 

Fig.2 Mechanical Structure of Robot (MRS) 
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Fig. 1 Geometrical Parameters of MRS 
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2. KINEMATICS OF RIGID STRUCTURE 
 

The kinematical and dynamical study from 
this paper [5], [6], [7] is oriented on mechanical 
structure with opened kinematical chain, where 
the kinetic ensembles i 1 n= →  are physically 
linked by driving joints of fifth order. (Example 
mechanical structure of robot, see Fig.1). 

Fig.3 Sequence of Kinetic Ensembles 
This is characterized by ( )n d.o.f . , according to: 

( ) ( ) ( ) T0
i; t q t ; i 1 nθ θ θ≠ =  = →   ,      (1) 

where ( )iq t  is the generalized coordinate from 
every driving axis. But, considering the current 
and sudden motions the generalized variables of 
higher order are developed as follows: 

( ) ( ) ( )
( )
( )

( ) ( ) ( )
( )
( )

m

m

i i i i

t ; t ; t ; ; t

q t ; q t ; q t ; ; q t
i 1 n, m 1

θ θ θ θ
    =  
   
    =   

= → ≥   

  

  

,        (2) 

and ( )m  represents the time deriving order. The 
main objective of this section consists in the 
establishment of the absolute angular and linear 
velocities and accelerations for every kinetic 
ensemble from MRS. Unlike the classical 
approaches [3] – [5], [7] in the following a few 
formulations based on the time derivatives of 
locating matrices will be developed [7], [20]. 

So, in the Figure 3 a sequence of two kinetic 
ensembles belonging to MRS is subjected to 
kinematical study. According to [5] – [7], the 
locating matrices, for the above sequence are: 

[ ]( ) [ ]( ) [ ]( )
[ ]( ) ( )

[ ]( ) [ ]

0 0 i 1
i i i

0
ii

0 i 1
i 1 ii 1i 1 i

T t T t T t

R t p t
0 0 0 1

R t R p p
0 0 0 1

−

−
− −−

 = ⋅ =
 

  
= =  

    
 
  ⋅ + =  
    

,      (3) 

The matrix components from (3) are defined as: 
[ ] ( )( )iii1ii

1i
i tq;kRRR ∆⋅⋅= −

− ,                 (4) 
( ) ( ) ( ) i

1i
ii

0
1ii

1i
1ii

1i ktq1pp −
−

−
−

− ⋅⋅−+= ∆ ,        (5) 
[ ]( ) [ ]( ) [ ]RtRtR 1i

i
0
1i

0
i

−
− ⋅= ,                  (6) 

( ) ( ) ( ) ( ) [ ] 1ii
1i0

1i1i1ii1ii pRtptptptp −
−

−−−− ⋅+=+= ,   (7) 
[ ] [ ]{ }i 1, i R ; 0, i T∆ = = = .               (8) 

The symbol (9) shows the type of driving joint. 
On the matrix (3) is applied first time derivative: 

( ) ( ) ( ) ( )
0

0 iij ji

R t p tT q t q t j 1 i
0 0 0 0

       = → =     
; ;


  , (9) 

[ ]

[ ] ( ) ( ) [ ]

0 0i 1 i 10 i 1 i i 1ii 1 i 1
i

i 10 0 i 1
i i i i i 1i 1 i 1i

R R p R pT
0 0 0 1

R R 1 q t R k p

0 0 0 1

−
−

− −− −

−
−

−− −

     ⋅ + ⋅       = +      
 
   ∆ ⋅ ⋅ −∆ ⋅ ⋅ ⋅ +   
    

 


 

(10) 

According to [7], matrix (14) is identical with: 

( ) ( )

( ) [ ]( )

0

j ji

0i i i i
i

T q t q t j 1 i

p p
T t

0 0 0 0

ψ ψ

    = → =    
  × − ×
 = ⋅ 
    

; ; 

 ,       (11) 

and iψ  is orientation vector from { }i  versus{ }0 . 
Considering the time derivative property (15), on 
the matrix (10) a few transformations are: 

( ) [ ] ( )
0 0 1

ii
T t T t−  ⋅ = 
  

[ ] ( ) [ ] ( )

{ } ( ) { } ( )

0 00 T 0 T
i ii ii i

0 0
i i i i

R R p t R R p t

0 0 0 0

p t p t
0 0 0 0
ω ω

     ⋅ − ⋅ ⋅     =
     
  × − × ⋅

=  
   

 


(12) 

{ } [ ]
0 0 T0

i ii
R Rω  × = ⋅ 
 , { } [ ]

00 Ti
i i i

R Rω  × = ⋅  
 ;  (13) 

where properties (13) are according to [7] – [8]. 
The expression (12) is written again as follows: 

( ) [ ] ( )

( ) [ ]( ) [ ] ( )

[ ]( ) ( ) [ ] ( )

0 0 1

ii
0 i 1 0 1

i ii 1
i 10 0 1

i 1 ii

T t T t

T t T t T t

T t T t T t

−

− −

−

− −

−

   ⋅ =  
 

 = ⋅ ⋅ +  
 
  + ⋅ ⋅  







.        (14) 

The first matrix term from (14) becomes thus: 
( ) [ ]( ) [ ] ( ) ( ) [ ] ( )

{ } ( ) { } ( )

0 0i 1 0 1 0 1

i i i 1i 1 i 1

0 0
i 1 i 1 i 1 i 1

T t T t T t T t T t

p t p t
0 0 0 0
ω ω

− − −

−− −

− − − −

    ⋅ ⋅ = ⋅     
  × − × ⋅
 =  
   

 

 (15) 
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where { } [ ]
0 0 T0

i 1 i 1i 1
R Rω − −−
 × = ⋅ 
 ,  (see (13)). 

The second matrix term from (14) is shown as: 
[ ]( ) ( ) [ ] ( )

[ ]( ) ( ) [ ] ( ){ } [ ] ( )

( ) ( )

i 10 0 1

i 1 ii

i 10 i 1 1 0 1

i 1 i i 1i

i i i i

T t T t T t

T t T t T t T t

dR q dp 1 q

0 0 0 0

− −

−

− − − −

− −

  ⋅ ⋅ =  
 
 
  = ⋅ ⋅ ⋅  
 
     ∆ ⋅ −∆ ⋅     =
    





 

(16) 

where ( ){ } [ ]
i 1 i 1 Ti 1

i i i i ii
q t k R R

− −
−  ∆ ⋅ ⋅ × = ∆ ⋅ ⋅ 

 .   (17) 

The components from (16) are developed thus: 
( ) ( ){ }0

i i i i idR q q t k ∆ ⋅ = ∆ ⋅ ⋅ ×   ,         (18) 

( ) ( ) ( )

( ){ } [ ]{ }
0

i i i i i

00 i 1
i i i i 1 i i 1i 1

dp 1 q 1 q t k

q t k p R p−
− −−

  −∆ ⋅ = −∆ ⋅ ⋅ −  
 
− ∆ ⋅ ⋅ × ⋅ + ⋅  

 


.  (19) 

Taking into account on the one hand (12), and on 
the other hand (14) with the components (15), as 
well as (16) – (19) the following matrix and 
differential identity is obtained below: 

{ } ( ) { } ( )

{ } ( ) { } ( )

( ) ( )

0 0
i i i i

0 0
i 1 i 1 i 1 i 1

i i i i

p t p t
0 0 0 0

p t p t
0 0 0 0

dR q dp 1 q

0 0 0 0

ω ω

ω ω− − − −

  × − × ⋅ =    
  × − × ⋅ = +  

  
     ∆ ⋅ −∆ ⋅     +     





 

.  (20) 

 

Identifying the angular (rotation) components 
from the above matrix identity (20), it obtains: 

{ } { } ( ){ }0 0 0
i i 1 i i iq t kω ω −× = × + ∆ ⋅ ⋅ × .       (21) 

In above identity of skew-symmetric matrices, 
vector equation of angular velocity is selected: 

( ) ( ) ( ) ( )0 0 0
i i 1 i i it t q t k tω ω −= + ∆ ⋅ ⋅ .        (22) 

It represents the equation of definition of the 
angular rotation velocity vector, corresponding to 
absolute rotation of the kinetic ensemble from 
MBS with opened kinematical chain (see Fig.3). 
The last column from (12) – (20) is changed as: 

( ) ( ) { } [ ]
( ) ( )

00 i 1
i i 1 i 1 i i 1i 1

0
i i i

p t p t R p

1 q t k

ω −
− − −−

 = + × ⋅ ⋅ + 
 

+ −∆ ⋅ ⋅  

 


. (23) 

Using the definition of the linear velocity for the 
origin of frames: { }i and{ }i 1− , (see [5] and [7]), 
the equation (23) is written below as follows: 

{ } [ ]
( ) ( )

00 0 0 i 1
i i 1 i 1 i i 1i 1

0
i i i

v v R p

1 q t k

ω −
− − −−

 = + × ⋅ ⋅ + 
 

+ −∆ ⋅ ⋅  
.  (24) 

It represents the equation of definition of the linear 
velocity vector, corresponding to absolute motion 
of the origin { }iO i∈  belonging to kinetic 
ensemble from MRS with opened chain (Fig.4).  

Fig. 4 Kinematical Parameters for MRS 
Applying the absolute time derivatives of first 
order on (22) and (24), and performing a few 
differential transformations, the equations of 
definition for angular and linear accelerations 
vectors are obtained: 0

iω  and respectively 0
iv . 

But, especially in the dynamics equations the 
above kinematical parameters are required by the 
components with respect to own frame{ }i . The 
angular and linear velocities and accelerations, 
corresponding to every kinetic ensemble (Fig.3) 
are below presented by means of the definition 
equations with respect to frame{ }i and{ }0 , thus: 

( ) ( ) [ ] ( ) [ ]0 i 0 i0 i i 1 i
i i 1 i i ii 1 iR q R kω ω−

−−
= ⋅ + ∆ ⋅ ⋅ ⋅ ; (25) 

( ) ( ) [ ] { }
( ) ( ) [ ]

0 i0 i i 1 i 1 i 1
i i 1 i 1 ii 1i 1

0 i i
i i ii

v R v p

1 q R k

ω

∆

− − −
− − −−

 = ⋅ + × + 
 

+ − ⋅ ⋅ ⋅  


; (26) 

( ) ( ) [ ]
( ) [ ] ( ) ( ){ }

0 i0 i i 1
i i 1i 1

0 i i 1 0 i 0 i
i i 1 i i i ii 1

R

R q k q k

ω ω

∆ ω

−
−−

−
−−

 = ⋅ + 
 
+ ⋅ ⋅ × ⋅ + ⋅  

 

 
; (27) 

( ) ( ) [ ]

( ) ( ) [ ] ( )

0 i0 i i 1 i 1 i 1
i i 1 i 1 ii 1i 1

i 1 i 1 i 1
i 1 i 1 ii 1

0 i i i i
i i i i i ii

v R v p

p

1 R 2 q k q k

ω

ω ω

∆ ω

− − −
− − −−

− − −
− − −

 = ⋅ + × +  + × × + 
 
+ − ⋅ ⋅ ⋅ × ⋅ + ⋅  

  

 

. (28) 

They are function in exclusivity of parameters 
included in [ ]0 ; i  kinematical interval [7]. So, 
they are applied by outward iterations . 
When ( )i 1= , within of the equations (25) – (28) 
the kinematical parameters of the fixed basis 
from MBS are substituted, according to next: 

{ }0 0 0 0
0 0 0 00 , 0 , v 0 , v 0ω ω= = = = .      (29) 

n1i →=
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When ( )i n= , the kinematical parameters of the last 
kinetic ensemble from MRS are obtained. They are 
operational velocities and accelerations: 

( )

( )
( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

n 0

6 1
T

n 0 n 0T T
n n

X t ; t

 v t ; t t ; t

θ θ

θ θ ω θ θ

×

   =   
 

    
     

 

 
; (30) 

( )

( )
( ) ( ) ( )

n 0

6 1
X t ; t ; tθ θ θ
×
  = 

   ;               (31) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ){ }T
n 0 n 0T T

n nv t ; t ; t t ; t ; tθ θ θ ω θ θ θ   
   

     . 

The above expressions (30) and (31) represent 
linear and angular velocities and accelerations 
corresponding to motion of the last kinetic 
ensemble of the mechanical structure of the robot 
relative to absolute Cartesian frame, [5] – [7]. 
 Using algorithm of the matrix exponentials of 
kinematics (MEK Algorithm) from [7], [8] and 
[20], [21] the kinematics equations can be also 
defined by means of matrix exponentials [22]. So, 
for every  the next expressions are: 

𝜔𝜔0̄ 𝑖𝑖 = ∑ �∏ 𝑒𝑒𝑒𝑒𝑒𝑒  𝑗𝑗−1
𝑘𝑘=1 ���̄�𝑘𝑘𝑘

(0) ×�𝑞𝑞𝑘𝑘 ⋅ 𝛥𝛥𝑘𝑘��𝑖𝑖
𝑗𝑗=1 ⋅ �̄�𝑘𝑗𝑗

(0) ⋅ �̇�𝑞𝑗𝑗 ⋅ 𝛥𝛥𝑗𝑗 

(32) 

( ){ } ( ){ }{ }110 0i 0
i j j iji0

j i
R exp k qω ∆ ω

−

=

  = ⋅ − × ⋅ ⋅ 
  

∏ ; 

⎩
⎪⎪
⎨

⎪⎪
⎧

𝜔𝜔0̄ ̇ 𝑖𝑖 = ���𝑒𝑒𝑒𝑒𝑒𝑒  
𝑗𝑗−1

𝑘𝑘=1

���̄�𝑘𝑘𝑘
(0) ×� 𝑞𝑞𝑘𝑘 ⋅ 𝛥𝛥𝑘𝑘��

𝑖𝑖

𝑗𝑗=1

⋅ �̄�𝑘𝑗𝑗
(0) ⋅ �̈�𝑞𝑗𝑗 ⋅ 𝛥𝛥𝑗𝑗 +

+����𝑒𝑒𝑒𝑒𝑒𝑒  
𝑘𝑘

𝑚𝑚=0

���̄�𝑘𝑚𝑚
(0) ×� 𝑞𝑞𝑚𝑚 ⋅ 𝛥𝛥𝑚𝑚� ⋅ �̄�𝑘𝑘𝑘

(0)�

𝑇𝑇

⋅ 𝛺𝛺𝑗𝑗𝑘𝑘∗ , 𝑎𝑎𝑎𝑎𝑎𝑎
𝑗𝑗−1

𝑘𝑘=0

𝑖𝑖

𝑗𝑗=1 ⎭
⎪⎪
⎬

⎪⎪
⎫

 

𝛺𝛺𝑗𝑗𝑘𝑘∗ = ��𝑒𝑒𝑒𝑒𝑒𝑒  
𝑗𝑗−1

𝑘𝑘=1

���̄�𝑘𝑘𝑘
(0) ×� 𝑞𝑞𝑘𝑘 ⋅ 𝛥𝛥𝑘𝑘�� ⋅ 𝛥𝛥𝑗𝑗 ⋅ 𝛥𝛥𝑘𝑘 ⋅ �̄�𝑘𝑗𝑗

(0) ⋅ �̇�𝑞𝑗𝑗 ⋅ �̇�𝑞𝑘𝑘 

⎩
⎪
⎨

⎪
⎧ 𝑣𝑣0̄ 𝑖𝑖 = ∑ �∏ 𝑒𝑒𝑒𝑒𝑒𝑒  𝑗𝑗−1

𝑘𝑘=0 ���̄�𝑘𝑘𝑘
(0) ×�𝑞𝑞𝑘𝑘 ⋅ 𝛥𝛥𝑘𝑘�𝑖𝑖

𝑗𝑗=1 ⋅ �̄�𝑣𝑗𝑗
(0) +

+∏ 𝑒𝑒𝑒𝑒𝑒𝑒  𝑖𝑖
𝑙𝑙=𝑗𝑗 ���̄�𝑘𝑙𝑙

(0) ×�𝑞𝑞𝑙𝑙 ⋅ 𝛥𝛥𝑙𝑙� ⋅ �̄�𝑒𝑖𝑖
(0) +

+𝛥𝛥𝑗𝑗 ⋅ ∏ 𝑒𝑒𝑒𝑒𝑒𝑒  𝑗𝑗−1
𝑘𝑘=0 ���̄�𝑘𝑘𝑘

(0) ×�𝑞𝑞𝑘𝑘 ⋅ 𝛥𝛥𝑘𝑘� ⋅ 𝐶𝐶𝑗𝑗∗� ⋅ �̇�𝑞𝑗𝑗 ⎭
⎪
⎬

⎪
⎫

; 

(33) 

( ){ } ( ){ }{ }k 1i
0 0

j m m m kj
k j m j 1

C k exp k q bδ
−

∗

= = −

    = × ⋅ × ⋅ ⋅  
   
∑ ∏ ; 

( ){ } ( ){
( ) ( ) ( ) } ( )

0
k 3 k k kk

0 0 T 0
k k kk k k

b I q k 1 c q

k k q s q v

∆

∆

  = ⋅ + × − ⋅ +  
 

  + ⋅ ⋅ − ⋅ ⋅  

 

�
𝑣𝑣0̄ ̇ 𝑖𝑖 = ∑ �𝑀𝑀𝑀𝑀�𝑉𝑉𝑗𝑗1� ⋅ 𝑀𝑀𝑀𝑀�𝑉𝑉𝑗𝑗2� ⋅ 𝑀𝑀𝑀𝑀�𝑉𝑉𝑗𝑗3� ⋅ 𝑀𝑀𝑗𝑗𝑗𝑗� ⋅ �̈�𝑞𝑗𝑗𝑖𝑖

𝑗𝑗=1 +

+∑ � 𝑑𝑑
𝑑𝑑𝑑𝑑
�𝑀𝑀𝑀𝑀�𝑉𝑉𝑗𝑗1� ⋅ 𝑀𝑀𝑀𝑀�𝑉𝑉𝑗𝑗2� ⋅ 𝑀𝑀𝑀𝑀�𝑉𝑉𝑗𝑗3� ⋅ 𝑀𝑀𝑗𝑗𝑗𝑗�� ⋅ �̇�𝑞𝑗𝑗𝑖𝑖

𝑗𝑗=1

� 

(34) 
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∏
, 

( ) ( ){ }{ }n
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k i

and ME V exp k q ∆
=

= × ⋅∏ .    (39) 

Remarks: The matrix exponentials (ME) enjoy important 
advantages due to their compact form, easy geometric 
visualization and especially they avoid the frames typical 
to every kinetic link. As a result the matrix exponentials 
will stay at the basis of defining the dynamic control 
functions for whatever mechanical robot structure, 
regardless of its building complexity. 
 
3. DYNAMICS OF RIGID STRUCTURE 
 

For understanding mechanical significances of 
the energies of higher order, at beginning the 
kinetic energy is defined, according to [1] – [32]. 
First of all is taken in study the rigid body in 
general motion (Fig.5). The starting equation of 
the kinetic energy is below written as follows: 

2 T
C M M M

T
M M

1 1E v dm v v dm
2 2

1 Trace v v dm
2

 = ⋅ ⋅ = ⋅ ⋅ ⋅ = 
 
  = ⋅ ⋅ ⋅  

∫ ∫

∫
.  (40) 

( ) ( )T
C 0 M 0 M

1E v v dm
2

ω ρ ω ρ= ⋅ + × ⋅ + × ⋅∫ .  (41) 

Equation of kinetic energy for general motion is: 

( )2 T T
C 0 0 C S

1 1E M v M v I
2 2

ω ρ ω ω′= ⋅ ⋅ + ⋅ ⋅ × + ⋅ ⋅ ⋅ . (42) 

When C S SO C 0 and I Iρ ∗′≡ = ≡, , , (42) becomes: 
2 T

C C S
1 1E M v I
2 2

ω ω∗= ⋅ ⋅ + ⋅ ⋅ ⋅ .   (43) 

n1i →=
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This is known as König’s theorem of the kinetic 
energy under the explicit form, as well devoted 
to general motion. In the case of the systems (see 
Fig.6), above theorem is modified [19] as: 

( )

( ) ( )[ ]* ;

M

i i

M i T i
i C C

M

2 i T i i i
M i i i C t t

1 11 M v v
1 3 2

1 I E
2

∆

θ θ

∆
∆

∆ ω ω

−  − ⋅ ⋅ ⋅ ⋅ ⋅ +  + ⋅  
 
 + ⋅ ⋅ ⋅ ⋅ =  



.(44) 

To this, the operator is added with significance: 
( ) ( ) ( ){ }MΔ = -1;general motion ; 0; translation ; 1; rotation  

Fig.5 Free Rigid Body in Cartesian Frame 

Fig. 6 Kinetic Ensemble from Robot (MRS) 
Considering the notions from others papers of the 
author [4] – [9], the total kinetic energy of MRS is 
written by means of the components as follows: 
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
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The translational and rotation components are 
changed due to substitution of linear and angular 
velocities, in accordance with [19]. They are: 
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; 
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(47) 

The expressions (44) and (47) include the inertia 
tensor axial and centrifugal, relative to { }i∗ : 

( ) ( )
i i i

x xy xz
i i i T i i i

i i i yx y yz
i i i

zx zy z
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 = × ⋅ × ⋅ = − − 
 − − 

∫ .(48) 

 The“advanced notions” are found in the 
analytical dynamics [1]. They are focused on the 
motion energies, whose central functions are 
named the accelerations of higher order. They are 
developed in any sudden and transitory motion of 
the mechanical systems. The author developed 
new mathematical formulations on the 
expressions for acceleration energies of first, 
second, third and fourth order [7] and [9] – [20]. 
In this section they will be presented, only in 
explicit form, typical to the rigid structure. 

Considering papers [9] – [20], in following the 
acceleration energies of order ( )p 1≥  will be 
defined. The starting equation shows as follows: 
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{ } { }
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The expression (49) includes the inertia tensor 
planar and centrifugal, relative to the frame{ }i∗ : 
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∫ . (51) 

The acceleration energies will be also defined 
for rigid body and multibody systems. 
In the view of this input parameters of advanced 
kinematics and mass properties become [3] – [7]. 
According to papers [9] – [20], the author was 
established the acceleration energy in the 
generalized form, corresponding to rigid body 
founded in the general motion. This was named 
acceleration energy of first order, as follows: 
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When C S SO C 0 and I Iρ ∗′≡ = ≡, , , (98) becomes: 
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According to [7] – [20], in the case of multibody 
systems (MRS), the definition equation of the 
acceleration energy of first order is (55) / (56). 
Considering the notions from papers [7] – [19], 
the two components (translational and rotation) of 
acceleration energy of first order show thus: 
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According to the author researches, [9] – [20], the 
sudden motion of MRS, transient motion phases, 
as well as mechanical systems subjected to the 
action of a system of external forces, with time 
variation law, are dominated by linear and angular 
accelerations of higher order. As a result 
acceleration energies of higher order are defined. 
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4. EXPONENTIALS AT FLEXIBLE 
ROBOT 

 
This section is devoted to define the generalized 
elastodynamics equations, when the robot links 
are dominated of flexibility properties. At first, a 
few kinematic transformations are described. In 

the aria of the small deflections, and considering 
the aspects from Fig.7, the time functions for the 
angular and linear deformations of the link  are 
written, according to [2], [12], [21] – [28] and 
[32] as: 

   (61) 

   (62) 

where are time amplitude of proper modes, 
and they are completing variables . The 
position vector of the elementary mass  is: 

; .   (63) 
The symbol  highlights elasticity of kinetic 
link. After a few transformations, the locating 
matrix between adjoining elastic links shows as: 

{ }i ii
i ie 3 i

i i 1 ii 1
dI rT T

0 0 0 1 0 0 0 0

δ
− −

    ×  = ⋅ +  
     

;     (64) 

The locating matrix  is answerable to rigid 
link, while for the small deformations of link is 
corresponding to matrix operator , written as: 

{ }

{ }i

i ii
i i3 i

e
ij i imi

ij ij3 i
ij

j 1

dI r
0 0 0 1 0 0 0 0T

dI r q
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δ

∆
δ

=

    ×
  + = 
     =     ×  +       

∑
;      (65) 
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=

 = ⋅ =
 

   × = + ⋅ ⋅ =    
     
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∑

∑

;    (66) 
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∏

∑∏
(67) 

The above kinematic transformations (66)/(67) 
can be also obtained by means of the matrix 
exponentials. According to [12], [21] and [32], 
the exponentials are applied for elastic links as: 

( ) { } ( ) { }
im

ee 0 0e
i i 1 i i ij iji i 1 i i 1

j 1
T T exp U q T exp T q∆− − −

=

= ⋅ ⋅ + ⋅ ⋅∏ ;(68) 
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{ }

ij ij
ij ij ij

ij ij ij

d
exp T q exp q

0 0 0 0

exp q b
exp

0 0 0 1

δ
∆

δ

   ×  ⋅ = ⋅  
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;      (69) 
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; (70) 
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{ }
{ }
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 ⋅ ⋅   = ⋅ ⋅ − ⋅ +   =  

( ) ( ){ } ( )0
3 xij ij uij ijiI c q u s qδ δ+ ⋅ ⋅ + × ⋅ ;  (71) 
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(72) 

On the locating matrix (72), which it expresses 
the locating of the frame {}i  with respect to fixed 
basis, the time derivatives of first and second 
order are applied. The expressions are: 

( )i

( ) ( )
















⋅=












⋅=
















= ∑∑
==

zij

yij

ijx
im

1j
ijij

iim

1j
ij

iz

yi

ix

i
i tqtq

δ

δ

δ

δ

δ

δ

δ

δ

( ) ( )
















⋅=












⋅=
















= ∑∑
==

ij

ij

ij
im

1j
ijij

iim

1j
ij

iz

yi

ix

i
i

w
v
u

tqdtq
w
v
u

d

( )tq ij

( )tq i

md

i
i

i
ie

i
i drr += ( )i

i
i

ie
0i

e
i

e
i

0 drRpr +⋅+=

( )e

1iiT −

e
ijT∆

 
Fig. 7 Elastic Link from Robot Structure 
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e e
i 0 ie

i 0

mi i 1 ke e e e
k 0 k i k k k k 1 kl i l kl

k 1 k 1 l 1

R p
T

0 0 0 0

T U T q T T T q∆
−

−
= = =

  
 = =  
    
 ⋅ ⋅ ⋅ + ⋅ ⋅ 
 
∑ ∑∑




 

; (73) 
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i 0 ie e e e

i 0 i 0 A i 0 B i 0 C
R p

T T T T
0 0 0 0

 
= = + + 
  


    ;      (74) 
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e
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1i
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i
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e
kik

e
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e
A0i qTTTqTUTT  ⋅⋅⋅+⋅⋅⋅= ∑∑∑

−

= =
−

=
∆ (75) 

�̈�𝑇𝑖𝑖0𝐵𝐵𝑒𝑒 =

�
∑ ∑ 𝑇𝑇𝑚𝑚0

𝑒𝑒 ⋅ 𝑈𝑈𝑚𝑚 ⋅𝑘𝑘
𝑚𝑚=1

𝑖𝑖
𝑘𝑘=1 𝑇𝑇𝑘𝑘𝑚𝑚𝑒𝑒 ⋅ 𝑈𝑈𝑘𝑘 ⋅ 𝑇𝑇𝑖𝑖𝑘𝑘𝑒𝑒 ⋅ �̇�𝑞𝑚𝑚 ⋅ �̇�𝑞𝑘𝑘 +
+∑ ∑ 𝑇𝑇𝑘𝑘0𝑒𝑒 ⋅ 𝑈𝑈𝑘𝑘 ⋅𝑖𝑖

𝑙𝑙=𝑘𝑘
𝑖𝑖
𝑘𝑘=1 𝑇𝑇𝑙𝑙𝑘𝑘𝑒𝑒 ⋅ 𝑈𝑈𝑙𝑙 ⋅ 𝑇𝑇𝑖𝑖𝑙𝑙𝑒𝑒 ⋅ �̇�𝑞𝑙𝑙 ⋅ �̇�𝑞𝑘𝑘 +

+∑ ∑ �̇�𝑇𝑘𝑘𝑘𝑘−1
𝑚𝑚𝑖𝑖
𝑙𝑙=1

𝑖𝑖−1
𝑘𝑘=1 ⋅ 𝛥𝛥𝑇𝑇𝑘𝑘𝑙𝑙𝑒𝑒 ⋅ 𝑇𝑇𝑖𝑖𝑙𝑙𝑒𝑒 ⋅ �̇�𝑞𝑘𝑘 ⋅ �̇�𝑞𝑘𝑘𝑙𝑙

�;  (76) 
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1kk

e
C0i qqTUTTTT  ⋅⋅⋅⋅⋅⋅= ∑∑∑

−

= = =
− ∆ (77) 

In these expressions are substituted the matrices 
defined by means of the exponentials above 
shown. Considering (73) and (74), the angular 
rotation velocity and acceleration are defined as: 
𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣� 𝜔𝜔0̄ 𝑖𝑖

𝑒𝑒 ×� = 𝑣𝑣𝑒𝑒𝑣𝑣𝑣𝑣��̇�𝑅𝑖𝑖0𝑒𝑒 ⋅ 𝑅𝑅𝑖𝑖0𝑒𝑒𝑇𝑇� =
� 𝜔𝜔0 𝑖𝑖𝑖𝑖

𝑒𝑒 𝜔𝜔0 𝑖𝑖𝑖𝑖
𝑒𝑒 𝜔𝜔0 𝑖𝑖𝑖𝑖

𝑒𝑒 �
𝑇𝑇
; 

{ } { }{ }Te
0i

e
0i

Te
0i

e
0i

e
i

0 RRRRvect  ⋅+⋅=ω .       (78) 
The linear velocity and acceleration of the 
elementary mass md  are defined by means of the 
time derivative applied on the position vector 
(63). As a result, next expressions are: 

( )0 e e e i i e i
i i i0 i i i0 ir p R r d R d= + ⋅ + + ⋅ ; 

�
𝑟𝑟0̄̇ 𝑖𝑖𝑒𝑒 = �̇̄�𝑒𝑖𝑖𝑒𝑒 + �̇�𝑅𝑖𝑖0𝑒𝑒 ⋅ � 𝑟𝑟𝚤𝚤 𝑖𝑖 + 𝑎𝑎𝚤𝚤 𝑖𝑖� + 𝑅𝑅𝑖𝑖0𝑒𝑒 ⋅ 𝑎𝑎𝚤𝚤 ̇ 𝑖𝑖 =

= �̇̄�𝑒𝑖𝑖𝑒𝑒 + 𝜔𝜔0̄ 𝑖𝑖
𝑒𝑒 × 𝑅𝑅𝑖𝑖0𝑒𝑒 ⋅ � 𝑟𝑟𝚤𝚤 𝑖𝑖 + 𝑎𝑎𝚤𝚤 𝑖𝑖� + 𝑅𝑅𝑖𝑖0𝑒𝑒 ⋅ 𝑎𝑎𝚤𝚤 ̇ 𝑖𝑖

�;  (79) 

�
𝑟𝑟0̄̈ 𝑖𝑖𝑒𝑒 = �̈̄�𝑒𝑖𝑖𝑒𝑒 + 2 ⋅ 𝜔𝜔0̄ 𝑖𝑖

𝑒𝑒 × 𝑅𝑅𝑖𝑖0𝑒𝑒 ⋅ 𝑎𝑎𝚤𝚤 ̇ 𝑖𝑖 + 𝑅𝑅𝑖𝑖0𝑒𝑒 ⋅ 𝑎𝑎𝚤𝚤 ̈ 𝑖𝑖 +

𝜔𝜔0̄ ̇ 𝑖𝑖𝑒𝑒 × 𝑅𝑅𝑖𝑖0𝑒𝑒 � 𝑟𝑟𝚤𝚤 𝑖𝑖 + 𝑎𝑎𝚤𝚤 𝑖𝑖� + 𝜔𝜔0̄ 𝑖𝑖
𝑒𝑒 × 𝜔𝜔0̄ 𝑖𝑖

𝑒𝑒 × 𝑅𝑅𝑖𝑖0𝑒𝑒 ⋅ � 𝑟𝑟𝚤𝚤 𝑖𝑖 + 𝑎𝑎𝚤𝚤 𝑖𝑖�
� 

(80) 
The column vector of the generalized variables, 
in the case of the structures with flexible links, is 
completed with (61) and (62) as below: 

( ) ( )
TeTe

iijt t j 0 m i 1 nθ θ  = = → = →  
;  (81) 

( ) ( ){ } ( ){ }{ }eT
i ijij t q t if j 0 ; q t if j 1θ = = ≥ ;   (82) 

 
�̇̄�𝜃𝑒𝑒(𝑣𝑣) = ��̇̄�𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑇𝑇(𝑣𝑣)��̇�𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑇𝑇(𝑣𝑣) 𝑗𝑗 = 0 → 𝑚𝑚𝑖𝑖� 𝑖𝑖 = 1 → 𝑎𝑎�

𝑇𝑇; 
 

�̇�𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑇𝑇(𝑣𝑣) = �{�̇�𝑞𝑖𝑖(𝑣𝑣)𝑖𝑖𝑖𝑖𝑗𝑗 = 0} ;��̇�𝑞𝑖𝑖𝑗𝑗(𝑣𝑣)𝑖𝑖𝑖𝑖𝑗𝑗 ≥ 1��;    
(83) 

�̈̄�𝜃𝑒𝑒(𝑣𝑣) =
��̈̄�𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑇𝑇(𝑣𝑣) = ��̈�𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑇𝑇(𝑣𝑣) 𝑗𝑗 = 0 → 𝑚𝑚𝑖𝑖� 𝑖𝑖 = 1 → 𝑎𝑎�

𝑇𝑇
; 

�̈�𝜃𝑖𝑖𝑗𝑗𝑒𝑒𝑇𝑇(𝑣𝑣) = �{�̈�𝑞𝑖𝑖(𝑣𝑣)𝑖𝑖𝑖𝑖𝑗𝑗 = 0} ;��̈�𝑞𝑖𝑖𝑗𝑗(𝑣𝑣)𝑖𝑖𝑖𝑖𝑗𝑗 ≥ 1��;      (84) 
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The above expression shows that every column 
of Jacobian matrix is function of generalized 
variables. Considering [8], [12] and [21], its 
expression is defined by means of the classical 
transformations or matrix exponentials. 
 
5. ELASTODYNAMICS EQUATIONS 
 
This section is devoted to establishment the 
generalized elastodynamics forces: generalized 
inertia forces, as well generalized active forces 
answerable to gravity and manipulating load. 
 On the basis of the NE-type equations in this 
section an elastodynamics expressions are 
determined, [2] and [12]. Unlike the expressions 
answerable to structure with rigid links, [7] [10] 
[20], the generalized inertia forces are changed 
for robot structures with flexible links. First of 
all, resultant active force in the new elastic 
restrictions is characterized by the equations: 

(
)

T
i e i e i e i e
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i e e i
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 = =   
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; (86) 

( )0 e e e e i e
i C i i i i0 Ci ilink

where M v p dm M p R r⋅ = ⋅ = ⋅ + ⋅∫    . (87) 

Above expression is corresponding to the rigid 
ensemble. Performing a few transformations, the 
resultant moment of the active forces becomes: 

m m mi i ii e i e i e i e
i i ij i rd ij ik ik dd

j 1 j 1 k 1
m m mi i ii e i e i e i e

i ij i rd ij ik ik dd i
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= = =

 
= + ⋅ + ⋅ ⋅ + 
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∫



ω ω

ω ω
.    (89) 

According to [12] and [32], the mass elements 
(88) and (89) are pseudoinertial matrices, thus: 
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⋅ = × ×∑ ∫ ; 
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m mi ii e i e i e
i ij ik ik dd i

j 1 k 1
m m mi i ii e i e i e i e

i i ij i rd ij ik ik dd
j 1 j 1 k 1

m m mi i ii e i e
ij ik ik dd ij i rd

j 1 k 1 j 1
m mi i i e i e

ij ik ik dd i
j 1 k 1

N 2 q q I

I 2 q I q q I

q q I q I

q q I

= =

= = =

= = =

= =


= ⋅ ⋅ ⋅ ⋅ +


  × + ⋅ + ⋅ ⋅ + 

+ ⋅ ⋅ + ⋅

+ ⋅ ⋅ ⋅


∑∑

∑ ∑∑

∑∑ ∑

∑∑



 



ω ω

ω

ω









 
 
 
 
 
 

(95) 

Among of these, the (94) is the inertial tensor 
axial and centrifugal typical to the rigid link with 
respect to moving frame { }i . The others are the 
inertia matrices, in accordance with [6]. 
 Applying the transfer matrices, according to 
[12], the generalized inertia forces show as: 

T
i ee 0 e 0 ee 0 e 0 eeT 0 eeT

i X i i X i X iiQ J J F F∗ ∗ ∗ = ⋅ = ⋅  ö ö ; (96) 

n
0 ee e j e

X i j 0 j
j i

where F R F∗

=
= ⋅∑ ; 

{ }
n

0 ee e e j e e j e
X i j n j 0 j j 0 j

j i
and N p R F R N∗

=
= × ⋅ + ⋅∑ . 

 In the following, the generalized inertia 
forces will be also determined by means of the 
LE-type equations. At first, the kinetic energy 
answerable to a flexible link is established [12]: 

ee e i e i e i
i i 0 i i 0 i i 0 i

eT eT eTeeT i T i T i T
i i i ii 0 i 0 i 0

r T r T d T d

r r T d T d T
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;    (97) 
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. (98) 

The column vector of generalized velocities is 
defined, from (82), by time derivative as below: 

( ) ( )
( ) ( ){ } ( ){ }{ }

TeTe
iij

eT
i ijij

t t where j 0 m ; i 1 n

t q t if j 0 ; q t if j 1

  = = → = →   
= = ≥  

 

  

θ θ

θ
. 

Considering that mechanical structure of robot is 
characterized through ( )n  flexible links, the 
kinetic energy in the matrix form, which it 
expresses the elastodynamics behavior of the 
robot structure, is shown in the following as: 

( ) ( )
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n
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; (99) 
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.  
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Above, ( )eeeM θ  is the inertia matrix, positive 
and symmetric, typical to the kinetic energy. 
 In keeping with the papers [1] and [12], the 
generalized inertia forces can be likewise 
determined by means of the generalization of the 
Appell’s equations. In the view of this, the 
acceleration energy of first order for flexible link 
from mechanical robot structure (MRS) is 
established with elastodynamics expressions: 
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The column vector of generalized accelerations 
is defined by time derivative (84) rewritten as: 
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( ) ( ){ } ( ){ }{ }
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. 

Considering (84) and (100), for the whole MRS, 
supposing that all ( )n  kinetic links are flexible 
the acceleration energy of first order in the new 
matrix expression is shown in the two variants: 
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. 

In the above expressions of the acceleration 
energy of first order it remarks existence a few 
elastodynamics matrices: inertia and pseudo 
inertia matrices, as well as the generalization of 
matrices of the Coriolis and centrifugal terms. 
 According to LE-type equations on the one 
hand and on the other hand generalization of 
Appell’s equations [1] and [12], the generalized 
inertia forces (96), supposing that all ( )n  kinetic 
links of the robot have flexible features, are also 
defined with matrix and explicit expressions: 
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The above two expressions can be also written in 
accordance with the following development: 
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(106) 

Remarks: In the above matrix and explicit 
expressions, the generalized inertia forces, when 

0l = , are corresponding to generalized variable 
kq  from the driving joints with rigid features, and 

the others are answerable to the generalized 
variables klq  considering the flexible links of 
robot have features of generalized deformations. 
 But the author has developed in many other 
papers [7],[9], [13] – [20], new formulations on 
the acceleration energies of higher order, as well 
as the dynamics equations of higher order 
corresponding to suddenly movements for any 
multibody system, as example serial robots. In 
this section a new expression about acceleration 
energy of second order for elastic structure of the 
robot will be presented. As a result, in the 
beginning a few kinematics transformations for 
elastic structure are defined by means of time 
derivative of third order, as below follows: 
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𝑇𝑇𝑖𝑖0𝐵𝐵𝑒𝑒 = 𝑇𝑇𝑖𝑖0𝐵𝐵1𝑒𝑒 + 𝑇𝑇𝑖𝑖0𝐵𝐵2𝑒𝑒 + 𝑇𝑇𝑖𝑖0𝐵𝐵3𝑒𝑒 ,          (109) 
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; 

 

𝑇𝑇𝑖𝑖0𝐵𝐵2𝑒𝑒 = 𝑇𝑇𝑖𝑖0𝐵𝐵21𝑒𝑒 + 𝑇𝑇𝑖𝑖0𝐵𝐵22𝑒𝑒 ,             (110) 
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For determine the equation of definition of the 
acceleration energy of second order, first of all 
time derivative of third order for position vector 
in homogeneous coordinates are established as: 

ee e i e i
i i 0 i i 0 i
e i e i e i
i 0 i i 0 i i 0 i

r T r T d

3 T d 3 T d T d

 = ⋅ + ⋅ + 
 
+ ⋅ ⋅ + ⋅ ⋅ + ⋅  

  

   
;    (111) 
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i i ii 0 i 0 i 0

r r T d T

3 d T 3 d T d T

 = ⋅ + ⋅ + 
 
+ ⋅ ⋅ + ⋅ ⋅ + ⋅  

  

   
. 

According to (49), where p 1 and k 1= = , as well as 
the papers of author [14] – [20], the equation for 
acceleration energy of second order shows as: 
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.(112) 

This expression will develop in another paper. 
The generalized inertia force of higher order is: 
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. 

The above equations are in consonance with the 
researches of the author from [14] – [20]. In the 
same papers the author proposed, the generalized 
differential equations of higher order, in the case 
of the mechanical systems (MRS), dynamically 
characterized by sudden and transitory motions. 
When the mechanical systems are dominated by 
elastic links, then the equations are changing as: 
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The necessary conditions in (115) are following: 
{ } { }{ }
{ }

( ) { }

pp 1 k ; 0 ; p 1 ; 1 ; p 1
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δ = → = = >
  ≥ = 
 ≥ + =  

. (116) 

Generalized differential equations (115) contain 
acceleration energies of order ( )p 1 2= → , whose 
expressions of definition, in explicit and matrix 
form, are detailed presented in this section. 
 In the robot with elastic structures, the 
generalized forces answerable to gravity loads 
are also developed due to the elastic driving 
joints and deformations to every flexible link: 
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Above expressions of generalized gravitational 
forces are functions of matrix transformations in 
elasticity conditions of the mechanical structure, 
of robot, as well as Jacobian matrix, (81) – (85) 
presented in the fourth section of this paper. 

6. CONCLUSIONS 
 

This paper was divided in the two essential 
parts. First part was devoted to establishment the 
kinematics and dynamics equations for any serial 
robot with rigid structure. The second part was 
devoted to determination elastokinematics and 
elastodynamics equations for serial robot with 
elastic and flexible structure. 

For define the kinematics and differential 
matrices functions in the case of the robot 
structures with rigid links, the author have been 
applied, in accordance with its researches, the 
classical transformations, as well as matrix 
exponentials, based on MEK Algorithm. By 
means of the matrix exponentials have been also 
determined all kinematic parameters. They 
characterize the equations of direct and control 
kinematics for any mechanical robot structure, 
regardless of its constructive complexity. For 
dynamical study of robot structures with rigid 
links, the author of paper developed, kinetic 
energy with important formulations. According 
to the author researches, the suddenly motion, 
transient motion phases, as well as mechanical 
systems subjected to the action of a system of 
external forces, with time variation law, are 
dominated by linear and angular accelerations of 
higher order. In this paper new expressions for 
acceleration energies of higher order have been 
presented, according to suddenly movements. 

In the second part of this paper an elastic 
structure of the serial robot was analyzed from 
view point of elastokinematics, as well as from 
view point of elastodynamics behavior. As a 
result, using the properties of the matrix 
exponentials, the locating matrices and their time 
derivatives corresponding to small deformations 
been established. For the study of elastodynamics 
author established generalized inertia forces, as 
well generalized active forces answerable to 
gravity load. So, the author has defined with 
fundamental new formulations the kinetic 
energy, acceleration energy of first and second 
order, corresponding in exclusivity to elastic 
structure. By means of proper researches, the 
paper author established the expressions for 
generalized inertia forces typical to suddenly and 
transitory motions, when mechanical structure of 
the robot is dominated of elastic links. This study 
also included generalized gravitational forces. 
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Formulări asupra elastodinamicii în robotică 
 
Rezumat: Obiectivul principal al acestei lucrări îl constituie stabilirea ecuațiilor generalizate ale elastocinematicii și 
elastodinamicii structurilor robotului cu elemente flexibile. Pentru matricele cinematicii și diferențiale. În cazul structurilor 
de roboți cu elemente rigide și elastice, se vor aplica printre altele exponențiale de matrice în consonanță cu algoritmii 
dezvoltați de către autor. Pentru studiul dinamic al structurilor de robot cu elemente rigide, în cadrul lucrării vor fi 
prezentate autorul va dezvolta energia cinetică cu formulări importante. În conformitate cu cercetările autorului, vor fi de 
asemenea prezentate expresii noi pentru energiile de accelerații de ordin superior corespunzătoare mișcărilor rapide. 
Pentru studiul elastodinamicii, autorul va stabili, cu formulări noi, energia cinetică și energia de accelerații de ordinul întâi 
și doi, corespunzătoare, în exclusivitate, structurilor elastice. Astfel, expresiile pentru forțele generalizate de inerție se vor 
determina conform cu mișcările rapide și pentru robotul dominat de elemente elastice. 
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