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Abstract: The finite element method (FEM) has been applied mainly to the study of the behavior of different 

elastic bodies, whether static or dynamic. The case of rigid motion of bodies analyzed with MEF, involving 

new terms due to the effects of inertia and relative motions, has not yet been incorporated into the classic MEF 

software. Papers to analyze this behavior arose in the 70's for the plane beam and later for a three-dimensional 

general motion. The present paper aims to develop models previously studied by other researchers and study 

the influences that the geometric parameters of the bar can have on the dynamic response. The case study is 

that of a moving bar in a rotation around a fixed axis. The shape functions used are of degree five.  
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1. INTRODUCTION   
  

 The study of elastic elements with a rigid 
general motion using MEF was begun in the 
1970s. The development of the domain was 
made gradually, first for a single beam using 
third degree interpolation functions, then for a 
plane mechanism. The method was developed 
using degree five interpolation polynomials. 
From the plane motion to the three-dimensional 
motion of a beam was used, using the third 
degree polynomials, then the five-degree 
polynomials. The finite element used in all these 
cases was the one-dimensional finite 
element[2],[3],[5],[22]. The theoretical model 
for which internal energy was calculated was the 
Bernoulli model, then went to the Rayleigh 
model and finally to the Timoshenko model 
[29]-[34]. The method used to write motion 
equations was Lagrange's equations and 
Hamilton's equations method. From one-
dimensional finite elements, the researchers 
passed to the two- and three-dimensional finite 
elements[23]-[26]. However, the results that 
contributed to the theoretical development of the 
field did not lead to the development of the finite 
element software in this direction, by 
incorporating the obtained results, due to the 

difficulties of modeling the respective 
mechanical systems[1],[4],[6]-[13],[20],[21]. 
The problems that can solved by this method 
also involve a previous analysis to determine the 
velocity and acceleration field, so the use of 
multibody systems (MBS) models. 
In this paper we propose the development of a 
finite beam model using the five degree shape 
functions to study the behavior of a beam in a 
centrifugal field. 
  
2. MODEL AND SHAPE FUNCTIONS 
  

For the present study, a one-dimensional 
finite element is used, related to an Oxy mobile 
(local) reference system. The rotation is related 
to a fixed (global) O'XYZ reference system, 
around the O'Z axis. 
The boundary conditions for the axial 
displacement u, if the linear shape functions are 
chosen, lead to the equations:  
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Fig. 1. Model of an one-dimensional finite 

element 
 

Using the notation 
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For the transverse motion, a polynomial of 
degree 5 is chosen. It is considered, in this case, 
the displacement of the ends, the rotation of the 
cross sections and the curvatures at the ends. 
Writing the end conditions, it will be obtained: 
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where the notations were used: 
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3. LAGRANGIAN OF AN ONE 

DIMENSIONAL FINITE ELEMENT 

METHOD AND MOTION EQUATIONS  
  
Lagrange's function for the beam is:  
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where cE  is the kinetic energy of the bar, iE  the 

internal energy, dc
WW +  the work of 

concentrated and distributed forces. 
The position vector of an arbitrary point of the 
deformed fiber is:  
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The velocity of this point is: 
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where �� = � (the angular velocity of the rigid 
motion of the beam). 
The kinetic energy for a beam element dm is: 

"# = $
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(14) 
If  the calculus are made for kinetic energy, it 
obtains: 
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If Lagrange equations are written [14]-[19], 
[27],[28]: 
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the motion equations are obtained as: 
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 4. INFLUENCE OF GEOMETRIC 

PARAMETERS ON EIGEN-

FREQUENCIES  

  
Using the previously obtained equations (18), a 
study was performed to see how the eigenvalues 
of the elastic beam is affected by the geometrical 
parameters. This is practically useful as it is 
found that for some sets of parameters, the 
system becomes unstable. The lengths of the 
element and its diameter have varied (the 
circular section from the beam is considered to 
reduce the number of parameters defining the 

bar geometry), the concentrated mass that can be 
applied to the end of the bar and the angular 
speed of the beam. The results are presented in 
the following figures (Fig.2-10) 

 
Fig.3.  Beam with L=0.7m in a centrifugal field 
 

 
Fig.4. First ten eigenfrequencies, L variable, d 

variable 

 
Fig.5. First ten eigenfrequencies, L variable, d 

variable 
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Fig.6. Beam with d=0.03 m, L variable 

 

 
 

Fig.7. Beam with d=0.02 m, L variable 
 
 
 

 
Fig.8. The first eigenfrequency, L variable, d 
variable, endmass variable. Logaritmic scale. 

 

 
Fig.10. The first eigenfrequency, L variable, d 

variable, end mass variable. Linear scale. 
 

 
Fig.10. The first eigenfrequency, L variable, d 
variable, endmass variable. Logaritmic scale. 

  
5. CONCLUSION  
  
In this paper, the motion equations for a beam in 
a rotary motion were established, being 
considered fifth-degree shape functions. After 
determining these equations, it was determined 
how different parameters defining the properties 
of the bar can influence the beam 
eigenfrequencies. There is a problem in the 
sense that, in a certain range of values, the beam 
may enter into an unstable response. It 
determines the eigenfrequencies variation of the 
beam if the diameter varies, its length changes or 
the concentrated mass at the end of the bar is 
varied. All these parameters can influence their 
eigenfrequencies and, for some values, 
instability phenomena can be reached. 
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Studiul unei bare elastice într-un câmp centrifugal, utilizând metoda elementelor finite  

  
Rezumat. Metoda elementelor finite a fost aplicată, cu precădere, la studiul comportării diferitelor corpuri elastic, în caz 

static sau dynamic. Cazul mișcărilor de rigid ale corpurilor analizate cu MEF, care implică termeni noi, datorați efectelor 

inerției și a mișcărilor relative nu a fost încă incorporate în softul clasic de MEF. Lucrări care să analizeze această 

comportare au apărut în anii 70, pentru bara cu mișcare plană și, mai apoi, pentru corpuri cu mișcarea general, 

tridimensională. Lucrarea de față își propune dezvoltarea unor modele studiate anterior de alți cercetători și studiul 

influențelor pe care parametrii geometrici ai barei le poate avea asupra răspunsului dinamic al barei. Cazul studiat este 

acela al unei bare în mișcare de rotație cu axă fixă. Funcțiile de interpolare utilizate sunt cele de gradul cinci. 
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