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OF THE DYNAMIC COMPACTION OF THE ECOLOGICALLY 

STABILIZED SOILS 
 

Cornelia-Florentina DOBRESCU 

Abstract: This paper treats the concept of Zener linear viscoelastic modulus applied in the vibration 

compaction process of the soils stabilized with ecological liquid substances brought into atomization state 

at significant pressures and flows. In this case, by treating soils with ecological stabilizers in the process of 

milling, mixing and making the road layers, a suitable mixture is obtained for road layers with superior 

performance to the natural soil. The dynamic compaction effect with vibrating roller cylinders is determined 

by the stiffness of the land and the structural damping influenced dynamically by the excitation frequency 

and by the parametric inertial values in static mode. Thus, taking into account experimental results obtained 

in the laboratory and "in situ", this research highlights the behavior of soil stabilized according to the Zener 

model. Thus, the parametric values of the model as well as their variation are determined according to the 

excitation angular frequency are determined for several experimental cases obtained in the testing area. 
         Keywords: Zener rheological viscoelastic modelling; dynamic compaction; stabilized soils  

 

1. INTRODUCTION  

 

It is presented the concept of the Hooke-

Maxwell composite model subjected to the 

external action of a harmonic force so that 

based on the dynamic analysis of the response, 

the physical measures for dynamic stiffness 

and for the damping of the structural system of 

the stabilized soil may be determined [1]-

[3],[6].  

In this context, it is tackled first of all, the 

dynamic action given by any force F(t) with 

impulsive features and then by a harmonic 

force F0 sin ω t. 
The second case is the basic analysis that 

faithfully shapes the interaction of the vibratory 

roller-stabilized soil.  

Finally, there emerge and are presented the 

analytical relations for stiffness and the 

structural damping of the soil layer stabilized 

and compacted soil layer with harmonic forces 

applied in technological regime. 

 

2. ANALYSIS OF BEHAVIOR IN THE 

DYNAMIC MODEL 

2.1. External impulsive dynamic action  

 

Consider the Zener model in Figure 1 with the 

elastic characteristics k1, k2 and the viscous 

characteristic c with mixed bonds so that the 

Hooke and the Maxwell branches may assure the  

parallel connection of the entire linear-

viscoelastic model [4],[5],[7]. 

For the external force F(t) applied over a 

time ∆τ, any instantaneous displacement is 

obtained where the effect of the "memory" of 

the "hereditary" material is significantly 

highlighted [8],[9]. 

In this case we take into account that the 

hereditary model consists of the simple Hooke 

model with elastic constant k1 and the 

rheological model of the "standard linear 

deformable solid". 

Exterior force F is balanced in any 

moment by forces k1x and �(��� − ���), that 

is: 
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 = ��� + �(��� − ���), (1)

and for Maxwell model (the branch on the 

right k2, c) we have, when in balance, the 

relation 

�(��� − ���) = ����. (2)

 

Figure 1. The Zener rheological model 

Relation (1) may be described as 

follows: 

���� + ���� = ����, 
or 

��� + ��� �� = ���, (3)

first degree differential equation x2, non-

homogeneous (1). 

The solution of equation (3) along with 

equation (1) entails the settlement of force 

F, considering that at t = 0 the system is 

undistorted: 


 = ���� +� �(� − �)���(�) ��,
�

�
 (4)

where 

2–

2( ) e .
k

t
cf t k− τ =  (5)

It is given that force F = F (t) depends on 

the dissipative term according to the 

“history” of the distortion speed in which 

case the damping is called “hereditary”.              

For F = F (t) known on the basis of the 

solutions to relations (1) and (2), we have 

2

2

2 – /
1

1 2 1 2

( ) 1( ) e ( ) d ,
kF t

x t F t
k k c k k

τ τ = + − τ τ + + 
  (6)

where 

1 2
2

1 2

k kc c
k k k

+τ = =  (7)

In relation (6) the first term 
1 2

( )F t
k k+

 

describes the instantaneous response of the 

viscous-elastic system specific to the linear 

viscoelastic materials with “memory” [10], 

[11], [14].  

 

2.2. Exterior harmonic dynamic action.  

 

We consider the elastic harmonic 

displacements as  

j
1 1e

tx A ω= , j
2 2e ,tx A ω=  

with their speeds given by the following 

relations  

��� = ��������, ��� = �������� , 
which, inserted in (1) and (2), lead to 

j j
1 1 2 2

j j
1 2 2 2

e e

j ( ) e e .

t t

t t

F k A k A

c A A k A

ω ω

ω ω

 = +


− ω =
 (8)

From the second equation of relation (8) we 

have 

2
1 2 2 ,

j

k
A A A

c
− = ω

,  

from where 

2
1 2 1 ,

j

k
A A

c
 = + ω 

,  

or 

2 1
2

j

j

c
A A

k c
ω= + ω ,  

Thus, we obtain: 

2j j
1 1 1

2

j
e e ,

j
t tk c

F k A A
k c

ω ωω= + + ω
% ,  

or 

2j
1 1

2

e j ,
j

t k c
F A k

k c
ω ω = + + ω 

% ,  
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and, in the end, we have 

2 2 2 2
1 2 1 2 2j

1 2 2 2 2 2
2 2

( )
e jt k k k k c k c

F A
k c k c

ω  + + ω ω= + + ω + ω 

%  (9)

Relation (9) may also be written as 

j
1 1e ( ) ( ),tF A K x Kω= ω = ω% % % ,  (10)

where: ( )K ω%  is the complex stiffness coefficient 

or the complex stiffness of the entire hereditary 

linear viscoelastic system; x1 = j
1e

tA ω – 

instantaneous harmonic displacement of the 

application point of force ( ).F F t=% %  

Thus, the complex stiffness of (9) may be set 

as  

1 2( ) ( ) j ( ),K K Kω = ω + ω% ,  (11)

where 

2 2 2
1 2 1 2

1 2 2
2

( )
( )

k k k k c
K

k c

+ + ωω =
+ ω

,  (12)

is the stiffness coefficient which expresses the 

predominantly elastic behaviour of the system, 

and 

2
2

2 2 2
2

k c
K

k c

ω=
+ ω

,  (13)

is the energy internal loss coefficient 

(dissipation). 

Relation (11) may be written as  

[ ]1( ) ( ) 1 j ( ) ,K Kω = ω + ∆ ω% ,  (14)

where 2

1

( )
( )

( )

K
K

ω∆ ω = ω  is the energy loss 

(dissipation) internal factor (angle).  

Thus, in the end, the analytical expression is 

obtained as  

2
2 2

2 2 2
1 1 2 1 2

( )
( )

( ) ( )

K k c
K k k k k c

ω ω∆ ω = =ω + + ω
,  

(15)

Taking into account relation (15) we have 

2 2 2 2
2 2

2 2 2 2 2 2
2 1 2 1 2

( )
( )

ck k c

k c k k k k c

ω + ω∆ ω = ⋅
+ ω + + ω

,  

or 

2
2

2 2 2
12

1( )
( )

ck
Kk c

ω∆ ω = ⋅ ω+ ω
,  

Knowing that the internal loss angle for the 

viscous-elastic system is                                                    

δ = ωc/k, we can similarly write the expression 

as  

1

( ) ,
( )
C

K
ω∆ ω =

ω ,  (16)

where C is the viscous damping coefficient 

equivalent with Voigt-Kelvin system dependent 

on angular frequency ω. Thus, we have 

2
2

2 2 2
2

( )
sistem

k
C C C c

k c
= = ω =

+ ω
,  (17)

• The graphical representation of the 
stiffness coefficient K1(ω) of the hereditary 
model according to the excitatory angular 

frequency ω is achieved taking into account the 

expressions of the first 1( )K′ ω  and second

1( ),K′′ ω  derivates as well as the values of ω it is 

annulled for. 
Thus, we have the following significant 

functions: 

2 2 2
1 1 2 1 22 2 2

2

1( ) ( ) ;K k k k k c
k c

 ω = + + ω + ω
,  (18)

2
1 2 2

1 1 2 2 1 22 2 2 2
2

d 2( ) ( ) ;
d ( )

K cK k k k k k
k c

ω  ′ ω = = + − ω + ω
 (19)

2 3 2 2 22
21 2 2 2 2

1 22 2 2 2 4
2

2 ( )d
( ) 3 .

d ( )

c k k cK
K k c

k c

+ ω
 ′′ ω = = − ω ω + ω

, (20)

From condition 0ω ≡  it emerges K1(0) =k1, 

which defines the coordinates of point A (0, k1) 

on figure 2, a. For ω→∞, when

1 1 2lim ( ) ,K k k
ω→ ∞

ω = +  curve K1 – ω 

asymptotically tends to the horizontal right                             

1 1 2( )K k kω = + =const. 

The point of inflexion of curve K1 – ω noted 

with ( )1 1 1, II Kω  has the coordinates ω1 and 

respectively 1 1 1( ).IK K= ω  Thus: 

- condition 1( ) 0K′′ ω =  leads to solution  

2 2
1

31 ;
33

k k
c c

ω = ⋅ = ⋅ ,  (21)
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- ordinate 1 1( )IK ω  is obtained from 

condition 1 1 1( ) ( ),IK Kω = ω  that is we 

have 

2
22

1 1 1 2 1 2
2 2
2 2

1( ) ( ) ,
1 3
3

I k
K k k k k

k k

 
ω = + +  +

or 

1 1 2
1( ) .
4

IK k kω = + ,  (22)

The coordinates of the inflexion point of 

curve K1 – ω are: 

2 2
1

1

1 1 1 2

3
0,577

3( )
1( ) .
4

I

k k
c cI

K k k

ω = ⋅ ≅

 ω = +


,  

The variation curve of function 1 1( )K ω  in 

relation to the current variable ω is presented in 

figure 2.a. 

 
 

Figure 2. Variation curves of K1  and C in relation 

with angular frequency ω 

a) Variation of K1(ω); b) Variation of C(ω) 

•• Graphical representation of the dissipation 
coefficient (damping) of the hereditary system, 
equivalent with the Voigt-Kelvin dissipation 

mechanism may be achieved in relation to the 

variation of the excitatory angular frequency ω 

as follows: 

- Function C = C (ω) is  

2
2

2 2 2
2

( ) ,
k

C c
k c

ω =
+ ω

,  (23)

which tends to zero for ω→∞ and has value c 

for 0,ω ≡  that is point B has coordinates (0, c). 

- Function d( )
d
CC′ ω =
ω  is  

2 3
2 2 2 2 2

2

d( ) 2 0,
d ( )

CC k c
k c

ω′ ω = = − <ω + ω
,  

(24)

that is derivative ( )C′ ω < 0 for any positive 

value of ω, which means that function C (ω) is 

monotonously decreasing. 

For ( )C′ ω = 0, we have 0,ω ≡ that is in point 

B (0, c) there is a maximum of function C (ω). 

- Function 
2

2

d( )
d

CC′′ ω =
ω

 is as   

2 2 2
22 3

2 2 2 2 3
2

d( ) 2 .
d ( )

k cCC k c
k c

− ω′′′ ω = = −
ω + ω

, (25)

From condition ( )C′′ ω  = 0, we have the 

abscissa of the inflexion point 2 2 2( , )II Cω  that 

is  

2
2

k
c

ω = ,  (26)

and ordinate 2
IC  of point I2 is  

2
2

2 2 2
22 2

2 2

1( ) .
2

I k
C c c

k
k c

c

ω = =
+

,  
(27)

The coordinates of the inflexion point I2 are: 

2
2

2

2 2

( )
1( ) .
2

I

k
cI

C c

ω =

 ω =


,  

For ω2 = k2/c we have point D, on curve           

K1 – ω of figure 2, a, with the ordinate 

1 2 1 2
1( ) .
2

DK k kω = + ,  

The variation curve of function C (ω) in 

relation to the excitatory angular frequency 

variation ω is presented in figure 2. b. 

a

)

b

)
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3. PARAMETRIC ASSESSMENT BASED 

ON EXPERIMENTAL DATA                                                 

The trials were conducted in a trial polygon 

with several categories of stabilized land 

[12],[13].                         

For sandy clay, the physic-mechanical 

characteristics have been established in the 

laboratory. Within the experimental pilot, 

based on the methods of resonance 

instrumental analysis and a vibratory 

compactor with mass m=104 kg, maximum 

disturbance force Fmax = 985 KN at 314 rad / s 

angular frequency with the static moment of the 

10 kgm eccentric masses. For successive layers 

of ecologically stabilized clay, the elastic and 

damping parameters were determined as static 

mediation of experimentally obtained 

numerical values series, as follows: 

- stiffness k1=108 N/m 

- stiffness k2=4⋅108 N/m 

- stiffness c=8⋅108 Ns/m 

Based on the experimentally determined 

values, the values of the inflection points I1 and 

I2 were calculated in the specific coordinates, 

after which it was possible to identify the 

calculated values with a deviation of maximum 

3% by scaling the frequency from zero to 100 

Hz. Thus, the parametric values of the stiffness 

and damping for points I1 and I2 are as follows: 

- for point I1 at ω1=280 rad/s corresponds the 

dynamic stiffness k1=2⋅108N/m 

- for point I2 at ω2 = 500 rad/s corresponds 

the damping c2 =4⋅105Ns/m                      

The vibratory compactor with amplitude 

A=1mm angular frequency ω=280 rad/s, 

frequency f=44 Hz , by successive passes on the 

same layer with an equivalent length of 100 m 

and the speed of 1m/s achieves a compaction 

energy equivalent to the dissipated energy. 

Thus, the energy dissipated per cycle is 

Wd=πcωA2, that is Wd=π⋅5,3⋅105⋅280⋅10-6=466 

J/cycle.                           

The total dissipated energy Wt in the 

stabilized soil layer is Wt=NWd, where N=f∆t = 

44 Hz ⋅100 s = 4400 cycles, so that we have Wt 

=4400⋅466=2050 kJ.                      

Thus, the efficiency of compaction can be 

assumed by adopting as accurately as possible 

the Zener hereditary rheological model.           

4. CONCLUSIONS 

 

The modelling of soil through rheological 

schemes as accurate as possible, in relation to 

the conditions of treatment and use of 

ecological stabilizers made it possible to solve 

the following specific problems on the basis of 

the phenomenological and instrumental 

analysis: 

a) adopting the Zener hereditary model as a 

result of laboratory tests on specimens taken 

from the field; 

b) assessment of the static and dynamic 

behaviour of the sample for the identification of 

the response curves; 

c) establishing the global response 

characteristic in dynamic stiffness depending 

on variation by continuous sweeping of the 

excitation angular frequency; 

d) defining and identifying the overall 

damping characteristic curve according to the 

continuous variation of the excitation angular 

frequency by sweeping; 

e) identifying the remarkable points I1 and I2 

for the two characteristic curves;               

f) assessment of the compaction energy based 

on the analytically and experimentally obtained 

data.                                      

Considering the above, this paper is a realistic 

basis for assessing the dynamic compaction 

capacity based on adopting and verifying the 

characteristics of the adopted Zener model. 
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Modelarea viscoelastică Zener reologică 

a compactarea dinamică a solurilor stabile din punct de vedere ecologic 

 
Rezumat: Această lucrare tratează conceptul de modulul liniar vascoelastice Zener aplicat în procesul de 
compactare a vibrațiilor solurilor stabilizate cu substanțe lichide ecologice introduse în stare de atomizare 
la presiuni și fluxuri semnificative. În acest caz, prin tratarea solurilor cu stabilizatori ecologici în procesul 
de frezare, amestecare și luare a straturilor rutiere, se obține un amestec adecvat pentru straturile rutiere 
cu performanțe superioare la solul natural. Efectul de compactare dinamic cu cilindrii cu role vibratoare 
este determinat de rigiditatea terenului și de amortizare structurală influențată dinamic de frecvența 
excitației și de valorile inerțiale parametrice în modul static. Astfel, luând în considerare rezultatele 
experimentale obținute în laborator și "in situ", această cercetare evidențiază comportamentul solului 
stabilizat în funcție de modelul Zener. Astfel, valorile parametrice ale modelului, precum și variația 
acestora sunt determinate în funcție de frecvența unghiulară de excitație sunt determinate pentru mai multe 
cazuri experimentale obținute în zona de testare. 

 

 

 

Cornelia-Florentina DOBRESCU, NIRD URBAN-INCERC, Bucharest, Romania;  

corneliadobrescu@yahoo.com, tel.+40-021- 627 -2740 




