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CONSIDERATIONS ABOUT MATRIX EXPONENTIALS IN 

GEOMETRICAL MODELING OF THE ROBOTS  
 

Claudiu SCHONSTEIN 
 
 

Abstract: In specialized literature, there are many approaches to the mathematical modeling of 

robots. Thus, different algorithms for geometric modeling are consecrated. Most approaches require 

the use of reference systems, which can lead to errors in computing. The geometrical study of any 

mechanical robot structure can be realized by matrix exponential, having essential advantages 

besides the classical approaches. As a result, within this paper, there will be presented an example 

of mathematical modeling, concerning the matrix exponentials applied in the geometrical modeling 

of serial robots. 
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1. INTRODUCTION 

 

According to dedicated literature, there are 
multiple methods to establish the expressions 
that modeling the geometrical behavior for any 
mechanical structure. In the first part of paper, 
will be presented  mathematical considerations 
for geometric control, based on matrix 
exponentials. In the second part, on the basis of 
previous section presented expressions, by 
applying matrix methods based on matrix 
exponentials, will be determined the direct 
geometry equations, which express the position 
and orientation of the characteristic point of the 
end effector with respect to the fixed reference 
system attached to robot base.  
 
2.  ESTABLISHING OF LOCATING 

MATRICES BY USING OF MATRIX 

EXPONENTIALS ALGORITHM  

 
The matrix transfer equations for any 

kinematical chain, with (R)-rotation or (T)-

prismatic driving joints, corresponding to a 
mechanical robot structure , can be established 
by means of new concepts in advanced 
mechanics, with the matrix exponentials [1]. 

The matrix exponentials and their associated 
transformations are included in the algorithm of 
matrix exponentials devoted to direct geometry 
equations, according to [1] - [6]. The main steps of 
the algorithm are presented in the following. 

The matrix of the nominal geometry ( )0
vnM , 

corresponding to configuration ( )0θ  is known: 

( )
( )

( ) ( ){ }0 00

1 6
1 1

+ ×  

 = = → +
  

T

T T
vn i i

n
M Matrix p k i n .(1) 

 

The matrix of the nominal geometry is 
completed with the screw parameters 

( ) ( ){ }0 0;i ik v  also named the homogeneous 

coordinates. where i ik and v  are the screw 

parameters or homogeneous coordinates of the 
driving axis (i), according to [1], which by 
generalization are equivalent to: 

{ } ( ) ( ){ }; ; ; 1= = × ⋅ ⋅∆ + −∆ ⋅i i i i i i i i i ik x y z v p k k (2) 

 The differential matrix iA  has the same 

expression for the both configurations ( )0θ and 

θ . Considering [2] and [4], this matrix shows as: 
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( )

( ) ( ) ( )

(0) (0)

(0) (0) (0) (0)

0 0 0 0

1

0 0 0 0

  × ⋅∆
  = =
    
 
 × ⋅∆ × ⋅ ⋅∆ + −∆ ⋅ 
  
    

ii i
i

i i ii i i i

k v
A

k p k k
(3) 

 

In keeping with this, the matrix, corresponding 
to initial conditions, can be determined without 
establishing any moving frame. 
 The exponential of rotation matrix is: 
 

( )( ){ } ( )
( ) ( )( ) ( ){

( ) ( ) ( ) } [ ]

0

0
3

10 0

exp ;

cos sin

1 cos
−

 × ⋅ ⋅ ∆ ≡ ⋅∆ ≡ 
  ≡ ⋅ ⋅∆ + × ⋅ ⋅∆ + 
 
  + ⋅ − ⋅∆ ≡   

i i i i ii

i i i ii

iT
i ii i i

k q R k q

I q k q

k k q R

.(4) 

 
 
 

 The defining expression for the column 
vector ib , is established with the following: 

( )( ) ( ){
( ) }

0
3

(0) (0) (0)

1 cos

sin

  = ⋅ + × ⋅ − ⋅ ∆ +  
 
  + ⋅ ⋅ − ⋅ ∆ ⋅  

i i i ii

T
i i ii i i

b I q k q

k k q q v

. (5) 

 

 Another matrix exponential, having a great 
significance for locating transformation, shows as: 

( )( ) ( )

( )( ){ }

0 0

0

exp
0 0 0 0

exp

0 0 0 1

⋅
   ×   = =
   
   
 

  × ⋅ ⋅∆ = 
  
  

i i i iA q
i

i i ii

k v
e q

k q b

; (6) 

 
and:  

{ } { }
0

exp exp
exp ;

0 0 0 1=

   
⋅ =   

  

i

j j
j

R p
A q          (7) 

 
where, the significance of the term is: 

{ } ( )( ){ }
{ } ( )( ){ }

0

0

0
1

0 0

exp exp ;

exp exp .

=

+
= =

= × ⋅∆

 
= × ⋅ ⋅∆ ⋅ 

 

∏

 ∏

i

j ji
j

ii

k k jk
j k

R k q

p k q b

   (8) 

 

In direct geometry, the matrix exponentials 
algorithm contains in an external loop of 
iterations from ( )1= →i n . Taking into account 

the initial conditions is established 0xT , 

according to mechanical structure. The obtained 
results are included in the resulting of rotating 
matrix of frame{ }n beside { }0 frame. The 
exponentials expressions for the locating matrices, 
which define the position and orientation of the 
{ }n and { }1+n with respect to fixed frame { }0 , 

are obtained as follows: 

{ }

0
0 1

1 0 0 0 1

; 1

−
=

  
= =  

  
 = + 

∏
x

x
x ii

i

R p
T T

where x n n

;   (9) 

( ) ( ) ( )0 0
0 0 0

11

exp ;
⋅

==

 
= ⋅ = ⋅ ⋅ 

 
∏ ii

n n
A q

x i ix x
ii

T e T A q T (10) 

where: 

• 
( )( ) ( )0 0

0 0
1

exp
=

 
= × ⋅ ⋅∆ ⋅ 

 

n

x i ii x
i

R k q R  ,     (11) 

represents a resultant rotation matrix, and: 
 
 

• 

( )

( ) ( )

1
0

1 0

0 0

1

exp

exp

−

= =

=

   
= × ⋅∆ ⋅ +         

  + × ⋅∆ ⋅ ⋅δ  
  

 



n i

j j ij
i j

n

i i xi
i

p k q b

k q p

 (12) 

 

is the position vector of the characteristic point, 

and ( ) ( ){ }0, ; 1, 1δ = = = +x x n x n . 

 
 

Remark: The MEG Algorithm, due to 
computational advantages and independent of the 
reference can be applied for any robot structure. 
Another important  advantage in using of matrix 
exponential is the lack of reference frames. 
 
3. THE GEOMETRY EQUATIONS BASED 

ON MATRIX EXPONENTIALS FOR A 

SERIAL ROBOT STRUCTURE 

 
In this section, it will be presented the 

geometry equations for a serial structure, by using 
the matrix exponentials used for determining he is 
locating matrices, according to [1]- [4]. It’s 
considered a kinematical structure of RTT-type 
robot, presented within of the Figure 1. 
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According to the Figure 1, the mechanical 
structure, is a cylindrical structure which can 
perform a rotation around 0 0O z  axis and two 

translations; one along 0 0O z axis, the other along 

0 0O y axis [7]. Applying the Algorithm of Matrix 

Exponentials [8], presented in previous section, 
will be determined the direct geometry equations 
(position and orientation) of the end effector. 

The matrix of the nominal geometry ( )0
vnM , 

corresponding to configuration ( )0θ  of the serial 
robot structure from Figure 1, [7] is presented in 
Table 1, as: 

The table of nominal geometry ( )0
vnM      Table 1 

 
 

According to (2), the matrix of the nominal 
geometry is completed with are the screw 
parameters as: 
 

The table of nominal geometry ( )0∗
vnM    Table 2 

1→4 
Joint 
type 

( )0 T
ik  

( )0 T
iv  

1 R 0 0 1 0 0 0 
2 T 0 0 1 0 0 1 
3 T 0 1 0 0 1 0 
4 - 1 0 0 - - - 

 

In keeping with the algorithm and the 
mechanical structure of the robot, it’s opened an 
external loop from 1 3= →i . 
 Hence, for ( )1=i , specific to the first 

element of the robot, according to the Table 2, 
and in concordance with (3)-(7), there are 
determined the following terms: 

 

( )( ) ( )0 0
1 1

1

0 1 0 0

1 0 0 0

0 0 0 00 0 0 0
0 0 0 0

− 
  ×
  = =
  

    
  

k v
A           (13) 

( )
( )( ){ }

( )( ) ( )( ) ( )

0
1 11 0

11

2
0 0

3 1 11 1

exp

sin 1 cos

 × ⋅ ⋅∆ 
  = × ⋅ =

= + × + × −

k q

e k q

I k q k q

(14) 

( )0
1 11

1

1 1

1

cos sin 0

sin cos 0

0 0 1

 × ⋅ ⋅∆ 
 

 −
 =  
 
 

k q
q q

e q q             (15) 

( )( ) ( )

( )( ) ( ) ( ) [ ]

0
1 3 1 11

2
0 0

1 11 1

1 cos

sin 0 0 0

= ⋅ + × ⋅ − +



+ × ⋅ − ⋅ =



T

b I q k q

k q q v

;(16) 

( )( ) ( )

( )( )

1 1

0 0
1 1

1

1 1
0

1 1 1 11

exp
0 0 0 0

cos sin 0 0

; sin cos 0 0

0 0 1 00 0 0 1
0 0 0 1

⋅
  ×  ≡ ⋅ =
      

− 
  
  = =
  

    
  

A q
k v

e q

q q

R k q b q q

(17) 

 

1l

0O

( )0
4O

2q

1q

a

s
n

0z

0x 0y

2l

( )0
1O

3q 3l 4l

5l

( )0
2O

( )0
3O

( )0
3k

( )0
1k

( )0
2k

Fig. 1 The R2T serial structure 
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• For ( )2=i , specific to the second kinetic 

element, according to (3)-(7) there are obtained 
the following expressions: 

( ) ( )0
2

2

0 0 0 0

0 0 0 00

0 0 0 10 0 0 0
0 0 0 0

 
  ×   = =
  

   
  

v
A ;             (18) 

( )0
2 22

3

1 0 0

0 1 0

0 0 1

 × ⋅ ⋅∆ 
 

 
 = = 
  

k q

e I ;                (19)

( )0
2 3 2 2

2

0

0

 
 = ⋅ ⋅ =  
  

b I q v

q

;                (20) 

( )0
2 22

2 2 2
2

1 0 0 0

0 1 0 0

0 0 1
0 0 0 1

0 0 0 1

 × ⋅ ⋅∆ 
 ⋅

 
   
   = =
   
    

  

k q
A q e be

q
    (21) 

 
 

 

• The third step corresponding to the last 
kinetic element ( )3=i  it’s characterized by:   

( )( ) ( )0 0
3 3

3

0 0 0 0

0 0 0 1

0 0 0 00 0 0 0
0 0 0 0

 
  ×
  = =
  

    
  

k v
A           (22) 

 

( )
( )( ){ }

( )( )
( ) ( ) ( )

0
3 33 0

33

0
3 3 33

0 0
3 33 3

exp

cos sin

1 0 0

1 0 1 0

0 0 1

 × ⋅ ⋅∆ 
  ≡ × ⋅ ≡

≡ ⋅ + × ⋅ +

 
 + ⋅ ⋅ − = = 
  

k q

T

e k q

I q k q

k k cosq I

(23) 

( )( ) ( )

( ) ( ) ( ) ( )

0
3 3 3 33

0 0 0
3 3 33 3 3

1 cos

0

sin

0

= ⋅ + × − +


 
 + ⋅ ⋅ − ⋅ =  
  

T

b I q k q

k k q q v q

;(24) 

{ }
( )

( )( )

3 3

0
33

3 3

0
33 33

exp

1 0 0 0

0 1 0;
0 0 1 0

0 0 0 1
0 0 0 1

⋅

 × ⋅ 
 

≡ ⋅ =
 

   
 =  = =   
       

A q

k q

e A q

qe R k q b .(25) 

• For initial configuration, (0)θ  the locating 
matrix between the links { } { }0 4→  is: 

( )
( ) ( )

3
0 0

40 40
40

1 2 5

0 1 0

1 0 0

0 0 10 0 0 1
0 0 0 1

 
  
  ≡ =
 + −    
  

l

lR p
T

l l l
(26) 

In keeping with (11), by calculus is obtained 
the resultant locating matrix and the position 
vector between the links { } { }0 4→  as: 

[ ] ( ) ( )0 01 2 3
exp exp exp 404

,= ⋅ ⋅ ⋅R E E E R ;     (27) 

where: 
( )( ){ }

( )( ){ }
( )( ){ }

01
exp 11

02
exp 2 32

03
exp 3 33

exp ;

exp ;

exp .

= × ⋅

= × ⋅ =

= × ⋅ =

E k q

E k q I

E k q I

;     (28) 

Substituting (15) and (28) in (27), results: 

[ ]
1 1

1
0
4 1

sin cos 0

cos sin 0

0 0

.

1

              = =                     

−

  z

x x x

y y y

z z

q q

q

n s a

R n s a

n s a

q (29) 

According to (12),the position vector of the 
characteristic point is established as: 

( )

( )
( ) ( )

( )

( )
( )

0
11

00 3311

1 2 3

0

3 1 1 4 3

3 1 1 4 3

1 2 5 2

cos sin

sin cos

 × ⋅ 
 

 × ⋅ 
 

 × ⋅ 
 

= + ⋅ + +

+ ⋅ ⋅ =
  ⋅ − ⋅ +
  = ⋅ + ⋅ + =   
  + − +   

k q

k q
k q

x

y

z

p b e b b

e e p

l q q l q p

l q q l q p

l l l q p

; (30) 

 

In keeping with [1] and [7], the independent 
angles for orientation, included in the orienting 
vector ( )ψ  are defined according to: 
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( ) ( ) [ ]0
4

1 1

1 1

sin cos 0

cos sin 0

0 0 1

α −β − γ ≡ γ − β − α =

   
   =   

−

     

x y z z y xR R R

A D G

B E H q q

C F

q

I

q
(31) 

where: 
cos cos ;

sin sin cos cos sin ;

cos sin cos sin sin ;

cos sin ;

sin sin sin cos cos ;

cos sin sin sin cos ;

sin ;

sin cos ;

cos cos .

= β ⋅ γ
= α ⋅ β ⋅ γ + α ⋅ γ
= − α ⋅ β ⋅ γ + α ⋅ γ
= − β ⋅ γ
= − α ⋅ β ⋅ γ + α ⋅ γ
= α ⋅ β ⋅ γ + α ⋅ γ
= β
= − α ⋅ β

= α ⋅ β

y z

x y z x z

x y z x z

y z

x y z x z

x y z x z

y

x y

x y

A

B

C

D

E

F

G

H

I

(32) 

According to expression (31), in order to 
establish the orientation angles, , ,α β γx y z  for 

exact determination of the values, there is used 
the trigonometric function tan 2A , defined by: 

( )
[ ]{ }

[ ]{ }
[ ]{ }

[ ]{ }

tan 2 sin ;cos

; sin 0;cos 0 ;

/ 2 ; sin 0;cos 0

; sin 0;cos 0 ;

/ 2 ; sin 0;cos 0

x A= α α =
 α α ≥ α >
 

π + α α > α < =  
π + α α < α < 

 −π + α α < α ≥ 

  (33) 

Hence, in keeping with (33), results: 
( ) ( )tan2 sin ;cos tan2 0; 1x x xA Aα = α α = − = π  (34) 

12
πγ = +z q ,     0β =y             (35) 

 

and respectively the column vector of 
operational coordinates is equivalent with: 

( )
( )

3 1 1 4 3

3 1 1 4 3

0
1 2 5 2

1

cos sin

sin cos

0

2

 ⋅ − ⋅ +
 ⋅ + ⋅ + 
  
  = − − = π 

+

 ψ   
 π +
  

− +

l q q l q

l q q

l l l q

l q

p

X

q

(36) 

The expressions (29) and (30) are representing 
the resulting orientation matrix, respectively the 
position vector, included in the resulting locating 
matrix. All these matrices are included in the 
expression of column vector of the operational 

coordinates  (36), also known [1] as the equations 
of direct geometry (DGM).  

 
4. CONCLUSIONS 

 
As can be remarked from previous sections, 

the equations of forward geometry kinematics 
(direct model), the position and orientation 
(locating) parameters, for any mechanical 
structure can be established by means of matrix 
exponentials.  

The using of the matrix exponentials has a 
few advantages like the number of mathematical 
operations, which is lower than in the case of 
classical algorithms. The using of screw 
parameters from the matrix of input data, are 
making the representation of mobile reference 
frame a nonsense, hence, the geometrical errors 
owed to reference systems being diminished. 
Another advantage of the exponentials is that are 
conducting to a compact representation of the 
necessary information for defining the direct 
geometry of a mechanical system with an open 
or close chain. 
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Considerații asupra funcţiilor exponenţiale de matrice în modelarea geometrică a roboților 

 
Rezumat: În literatura de specialitate, există multe abordări pentru modelarea matematică a roboților. 
Astfel, exista diferiți algoritmi pentru modelarea geometrică consacrați. Cele mai multe abordări 
necesită utilizarea sistemelor de referință, ceea ce poate duce la erori în calcul. Studiul geometric al 
oricărei structuri mecanice de robot poate fi realizat prin exponențiale de matrice având avantaje 
esențiale pe lângă abordările clasice. Drept urmare, în cadrul acestei lucrări, va fi prezentat un 
exemplu de modelare matematică, bazat pe exponențiale de matrice aplicate în modelarea geometrică 
a roboților seriali. 
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