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Abstract: The paper aims to demonstrate, from a theoretical point of view, how to stabilize and if stabilized the 

movement of a mechanical hand-arm system [4], a system subjected to vibrations and excited at its own 

excitatory frequency of 4.16 Hz. It is known that, at low frequencies (<25 Hz), changes occur in the normal state 

of system functionality, namely, disorders of the bone, nervous system, etc. [6], [7], and the author wishes to 

continue and deepen research in this field regarding the hand-arm system. 
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1. INTRODUCTION  

 

The specialty literature, it is analyzed the 

effects of the mechanical vibration 

transmissibility about hand-arm system. These 

results cannot be explained based on a simplified 

mechanical model with concentrated 

parameters, so it would be necessary to model it 

based on a system with distributed parameters, 

including a visco-elastic environment, which is 

quite difficult to achieve in reality. 

The stability of a system [3], [5] means its 

ability to return to its original state of 

equilibrium or motion after having undergone a 

disturbing action. The equilibrium is possible 

only when, are developed, sometimes certain 

forces that resist disturbance called 

restoring/equilibrium forces. 

A stable system, at slow-moving 

disturbances, is said to have static stability, and 

if it is stable to sudden disturbances, then it 

exhibits dynamic stability. 

Stability can be classified as follows: 

- positive stability - if the system returns to its 

original state after a temporary disturbance; 

- neutral (neutral) stability - if the system after a 

disturbance reaches a new state of equilibrium, 

slightly different from the initial state; 

- negative stability - if the system after a 

disturbance reaches a state very distant from the 

initial state or is further away from this state. 

Negative stability is generally called instability. 

Regarding the notion of stability, an extension 

can be made to it, namely, it is known that a 

material system under the action of a forces 

system moves in space on a certain trajectory at 

a certain speed. If the velocity is "zero" to an 

inertial reference system, then the material 

system does not move relative to the benchmark 

and the forces are in equilibrium. The study of 

the movement of the material system takes into 

account the initial conditions, which may 

actually be the conditions (space, trajectory and 

speed - singular if it is a single-degree or plural 

system, if the material system has several 

degrees of freedom freedom) at the moment of 

disturbance forces (disturbing force or 

disturbing moment). 

If very small disturbances of the initial 

conditions corresponding to movements, and 

which of point of view the trajectories and the 

speeds remained in the vicinity of the 

undisturbed points of movement, then this 

movement is considered stable, otherwise the 

undisturbed motion is unstable. 

Remarks: 1. If only trajectories of disturbed 

movements remain in the vicinity of the 

undisturbed trajectory, and the speeds of 

disturbed motion differ greatly from those of the 
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undisturbed movement, it is said that the 

movement is orbital stable. 

2. According to this observation, a stable 

motion may under certain conditions be orbital 

stable, but a stable orbital motion is not generally 

stable. 

 

2. MATHEMATICHAL MODEL OF THE 

HUMAN HAND-ARM SYSTEM 

 

 The hand-arm human system is a system of 

high complexity, inhomogeneous, continuous, 

with visco-elastic properties in the muscles, 

bones and skin [5], [8]. Dynamic features from 

the perspective of biomechanical model analysis 

require identification of the viscoelastic and 

inertial mechanical properties of the model 

under typical operating conditions. In the human 

arm movement, there are many factors that relate 

to its behavior, these factors are classified as 

follows: 

 a) Factors with static behavior; 

 b) Dynamic behavioral factors (e.g., passive 

moments of the joints, which depend only on 

the angles of the joints). 

 

 Regarding viscosity and passive moments, 

we can say that these are an internal property of 

all human joints, the effects of which are 

proportional to the angular velocity of the 

movement, especially the angular velocity of the 

joints. 

The instantaneous position of a vibrant system at 

any moment of movement can be determined by 

a multitude of dynamic, independent or 

coordinated parameters called and degrees of 

dynamic freedom. 
 

 
 

Fig. 1 Excitation source (machine - tool) of human 

hand - arm system. The position by which the 

operator catches the device fixed by the source has 

the main vibration transmission direction, i.e. the 

anatomical zh axis [4]. 

 

 
Fig. 2 Mechanical model of the hand-arm system (where:          

m1 – hand mass, m2 – forearm mass, m3 – arm mass) [4]. 

The mathematical model leads to the dynamic 

equilibrium equations of the vibrant model. In 

order to simplify the dynamic hand-arm model, 

this being a model with distributed masses, it 

will be transformed into a system with 

concentrated masses where m1 is the mass of the 

hand, m2 is the mass of the forearm, and m3 of 

the arm mass, each mass is considered 

concentrated in the center of the analyzed item. 

The differential equation of motion of the model 

can be represented as a matrix of the following 

form: 

            ��� ����
�	� 
 + ��� ��

�	 � + ������ = ���            (1) 
where: [M], [C] and [K] are the matrixes of the 

inertia mass, the damping and the elasticity 

constants of the system. The matrix has the 

dimensions (5x5), and the excitation matrix {F} 

is of the size (5x1). {U} is the vector matrix of 

the generalized motion coordinates having the 

dimension (5x1), for which the transposed 

matrix is:  { } { } .,,,, 33321 θxzzzU
T =  

- The coordinate z1 represents the 

displacement along of the anatomical 

direction zh, of the mass m1 (the direction 

of the y axis is along the third 

metacarpian axis); 

- The coordinate z2 represents the 

displacement along of the anatomical 

direction zh, of the mass m2; 

- The coordinate z3 represents the 

displacement along of the anatomical 

direction zh, of the mass m3; 
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- The coordinate x3 represents the displacement 

in xh direction of mass m3, according to the same 

anatomical coordinate system; 

- θ3 represents the angular rotation of the mass 

m3 in the elbow joint, rotation about the yh 

direction according to the anatomical coordinate 

system. 

- γ - the angle of the elbow vis a vis to the axis 

zh [degrees or radians]; 

- l3 - distance from elbow to center of mass m3 [m]; 

- distance from elbow to shoulder [m]; 

- Jc3 - axial moment of inertia of the arm [kg m2]. 
 

 
 

Tab. 1 The of the machine-tool [5]. 

 
It is considered the excitation frequency of 

the human hand-arm system, it is the frequency 

corresponding to the rotation of machine-tool (n 

= 250 RPM of some lathe, and its value is shown 

in table 1). 

The wrist joint is neglected, because the hand 

is positioned on the excitation source (machine 

tool) while it performs a certain operation and 

the human operator having the arm with the 

elbow bent at 120 ° toward the xh axis, and 

shoulder rotation is considered in this study at 0°  

(Fig. 2). The conditions of manipulation of the 

work tool and the position of the human operator 

at this time are described in table 2. 

 
Tab. 2 Data are taken from studies: T. Cherian, S. 

Rakheja, R.B. Bhat [4] and correspond to the 

elasticity and damping constants of the human 

hand - arm system. 

 
 

3. SYSTEM OF DIFFERENTIAL 

EQUATIONS OF HUMAN HAND-ARM 

SYSTEM 

 

The system of differential equations 

corresponding to the dynamics of the human 

hand arm assembly is obtained through the 

following steps: 

- each concentrated mass is isolated; 

- it’s introduced the inertia, elastic and damping 

forces; 

- the active and connecting forces are 

introduced; 

- a direction of movement is adopted (in this case 

the anatomical coordinate system of the hand-

arm human system must be taken into account, 

therefore the motion will be analyzed after the 

direction of the zh); 

- the second principle of dynamics applies for 

each isolated mass of the system. 

Tables 1 and 2 show the visco - elastic 

characteristics of the hand - arm human system, 

to which the mechanical parameters were taken 

in consideration, in according to the studies of  

T. Cherian, S. Rakheja, R.B. Bhat [4] and 

anthropometric parameters were determined in 

the laboratory. Anthropometric measurements 

were performed on a group of 5 subjects (men), 

then an average of these measurements was 

used, the mean used to determine the values of 

the center of gravity and axial inertial moment 

of the arm, hand, and forearm. 

For the human hand - arm assembly shown in 

figure 2, which has 5 degrees of freedom               

(4 translations after z1, z2, z3, x3 and a rotation 

θ3), the differential equation system will be 

given by the relation (2). 

In order to integrate the system of differential 

equations (with Runge-Kutta order 5) [5], it is 

ordered after unknowns and its derivatives and after 

ordering it takes in the same form [4]: 

 ����� + ����� + ��(��� � ���) + ���� + ��(�� � ��) =
                                          =  ��  !" # 	;                          (2) ����� + ��(��� � ���) + ��(��� � ��$) + 

                                          +��(�� � ��) + ��(�� � �$) = 0; �$��$ + ��(��$ � ���) + �$��$ +                                 +��(�$ � ��) + �$�$ + �$&$  !" ' (�$ + 

                                +�$&$′  !" ' (�$ + &$′  !" ' ($ = 0;       
 �$)�$ + �*)�$ + �*)$ � �$&$ �+ ' (�$ � �*&$′ �+ ' (�$ �                                                                ��*&$′ �+ ' ($ = 0; 

 (,-$ + �$&$�)(�$ + �$&$′�  !"� ' (�$ + (�.� + �.�)(�$ +              +�$&$′�  !"� ' ($ + (�.� + �.�)($ +              +�$&$  !" ' ��$ + &$′ �$  !" ' ��$ + &$′ �$  !" ' �$ �             ��$&$ �+ ' )�$ � �*&$′ �+ ' )�$ � �*&$′ �+ ' )$= 0. 
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3. STABILITY OF A MECHANICAL   

SYSTEM 

 

3.1 Stability of human hand-arm system 

 

In the following study in concordance with 

[5], it will be checked the stability of the hand-

arm human system, a system whose equations 

are given by relation (2). The system will be 

transformed into a system of homogeneous 

equations in order to obtain its own pulses 

(system of the homogeneous equations 

represents the system of the differential 

equations  that characterized of the dynamic 

system upon which do not active the forces or 

disturbing moments act, so the mechanical 

system performs free vibrations). The next step 

is to replace unknowns in this system notated: zi, 

3,1=i ,  x3 şi θ3, respectively with [5]: tr

ii eaz =
,   3,1=i ,       tr

bex =3
   and tr

ce=3θ , and their 

dirivated with:  

��0 = 10234., 3,1=i    )�$ = 5234., (�$ = �234., 

��0 = 102�34., 3,1=i , )�$ = 52�34. şi (�$ =
�2�34. . 

 

This will result in a system of the coordinates 

of the second order, in the generalized 

coordinates, whose determinant equal with zero, 

it leads at the determination of the trivial 

solution, respectively to the characteristic 

equation resulting from its development. 

 

5554535251

4544434241

3534333231

2524232221

1514131211

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

=0          (3)                              

at the matrix terms are: 

 A11 = ;)()( 1010
2

1 kkrccrm ++++  

 A12 = ;11 krc −−  

 A13 = 0; 

 A14 = 0;  

 A15 = 0;  

 

A21 = ;11 krc −−  

A22 = ;)()( 2121

2

2 kkrccrm ++++  

A23 = ;22 krc −−  

A24 = 0; 

A25 = 0;  

 A31 = 0; 

 A32 = ;22 krc −−  

 A33 = ;)()( 3232
2

3 kkrccrm ++++  

 A34 = 0; 

 A3= ;sinsinsin '

33

'

33

2

33 γγγ lkrlcrlm ++  

A41 = 0; 

A42 = 0; 

A43 = 0; 

A44 = ;44

2

3 krcrm ++  

A45 = ;coscoscos '

34

'

34

2

33 γγγ lkrlcrlm −−−  

 A51 = 0;  

 A52 = 0; 

 A53= ;sinsinsin '

33

'

33

2

33 γγγ lkrlcrlm ++  

 A54= ;coscoscos '

34

'

34

2

33 γγγ lkrlcrlm −−−  

 A55=(,-$ + �$&$�)2� + 6�$&$′�  !"� ' +
                     +�*&$′� �+ � ' + �.� + �.�72 +
           +(�$&$′�  !"� ' + �*&$′� �+ � ' + �.� + �.�). 
 

The solutions of this determinant were 

calculated with the MATHCAD 13 

programming environment and their values are 

given by the column matrix of the solution of the 

characteristic equation [2]: 

It can be noticed that the system of 

differential equations (3) has ten solutions, 

respectively five complex conjugate solutions. 

Because the real part of all these solutions is 

negative, it results that the studied system is 

stable. The values corresponding to the 

imaginary parts in the mode represent the own 

frequencies of the system exposed to the 

vibration action, written values in ascending 

order: 54,428, 162,603, 510,148, 555,142, 

651,142 rad/s. 

r = 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 -1.054 x 103 + 

555.142 i 

1 -1.054 x 103 - 

555.142 i 

2 -267.46 + 510.148 i 

3 -267.46 - 510.148 i 

4 -166.338 + 651.142 i 

5 -166.338 - 651.142 i 

6 -111.313 + 54.428 i 

7 -111.313 - 54.428 i 

8 -16.497 - 162.603 i 

9 -16.497 + 162.603 i 
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The charts of stability have as abscissa the 

displacements of the generalized coordinates, 

and as ordered their velocities are shown in 

figures 3a, b. 

The groups Series i (Displacements), Series j 

(Velocities) are each appropriate for a designing 

a generalized coordinate motion graph (z1, z2, z3, 

x3, θ3). The i index is the index attributed to the 

displacements (i = 1, ..., 5) and j the index 

assigned to the velocities (j = 1, ..., 5) (e.g.    

Series 1 and Series 2 correspond at the 

stabilization of motion)). 

It is recalled that the source of excitation of 

the human hand arm is a machine - tool (lathe) 

and the stability of the system is analyzed for the 

250 RPM of the machine - tool. 

From analysis of the graphical representation 

3a, b, the vibrational movement of the hand-arm 

human system for excitation source f = 4.16 Hz 

to 10 Hz is stable, the graph being the closed 

elliptical curve. 

 

 

 
Fig. 3 Stability of machine-tool. 

The figures 3 present the stability of hand-arm 

human system for machine at the rotation of          

n = 250 RPM (ω = 26.17 rad/s)  

where: - the figure 3a. presents the stability of 

the generalized coordinate z1,  

-  the figure 3b. presents the stability of the 

generalized coordinate z2,  

- the figure 3c. presents the stability of the 

generalized coordinate z3,  

- the figure 3d. presents the stability of the 

generalized coordinate x3,  

- the figure 3e. presents the stability of the 

generalized coordinate θ3.                                

 

 
 

Fig. 4 General representation of stability. 

 

 In the figure 4 is presents the stability of the 

hand-arm human system for machine - tool 

rotation n = 250 RPM (ω = 26.17 rad/s) are 

corresponding to the generalized coordinates       

z1 - hand, z2 - forearm, z3 - arm, x3 - arm, θ3 - 

elbow. 

 

4. CONCLUSIONS 

 

Considering the theoretical presentation in 

chapter 2, it can be seen from figures 3a-e, or 

figure 4 comparatively, that a positive stability 

is obtained for all mana-arm (hand, forearm and 

arm) displacements. The instability of moving is 

stayed a short time (e.g., 0.002s or shorter), 

when the movement is unstable, immediately 

after entering the movement, stabilizing in an 

elliptical trajectory. 

In other words, there is no need to worry 

about that frequency that she is disturb the 
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normal state of mana-arm functionality at 4.16 

Hz. We do not know what happening at the 

higher frequencies of 10Hz. In the future we can 

make a comparative study. 

The next study will be axed of the design of 

some dissipator of vibration mounted on the 

forearm in scope of minimize in scope of 

vibration reducing. 
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Interpretări teoretice privind stabilitatea sistemului uman mână-braţ la frecvenţe mici, 

sistem echivalat cu un sistem mecanic 

 

   Rezumat: Lucrarea îşi propune să demonstreze, din punct de vedere teoretic, cum se 

stabilizează şi dacă se stabilizează miscarea unui sistem mecanic mână-braţ [4], sistem supus la 

vibraţii şi excitat la o frecvenţa excitatoare proprie de     4,16 Hz. Se cunoaşte faptul că, la frecvenţe 

mici (<25 Hz) apar modificări în starea normală de funcţionalitate a sistemului şi anume, apar 

afecţiuni ale sistemului osos, nervos etc. [6], [7], iar autorul doreşte să continue şi să aprofundeze 

cercetările în acest domeniu privind sistemul mână-braţ.      
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