TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering Vol. 62, Issue III, September, 2019
 \section*{DYNAMIC ANALYSIS OF TWO-LINK FLEXIBLE MANIPULATOR USING FEM UNDERGOING BENDING-TORSIONAL VIBRATIONS}

Natraj MISHRA, S.P. SINGH

Abstract

In this paper, a two-link flexible manipulator is analyzed using finite element approach whose links are undergoing combined bending and torsional vibrations. Mathematical model of the flexible manipulator is obtained using Lagrangian dynamics. The links are modelled as Euler-Bernoulli beams and discretized using 'space-frame' and 'plane-frame' elements. The present work deals with various non-linear effects like, coupling between rigid and flexible degrees of freedom, centrifugal and Coriolis effects and presence of gravity. The mathematical model is validated using results available in the literature. The novelty of the present work lies in inclusion of torsional effects and thus highlighting their effects on positional accuracy of the flexible manipulator.

Keywords- Lagrangian-FEM, coupled bending-torsion vibrations, coupled rigid and flexible motions, Flexible manipulator, frequency analysis

1. INTRODUCTION

Accurate modelling and control of flexibility in robots is a challenging task. Many researchers are working towards achieving the positional accuracy of such robots. If these unwanted vibrations are reduced then definitely, less inertia torque will be required to drive them. This will ultimately lead to the reduction of power consumption by the motors used to drive them. A comprehensive literature review has been done by Benosman and Vey
and Dwivedy and Eberhard [2] in the area of flexible robotics. They have compiled various research papers dealing with the modelling and control of flexible robots. Many researchers have contributed towards area of flexible robotics. Most of them have used Lagrangian dynamics for modelling the flexible manipulators. They have treated the links of the manipulator as Euler-Bernoulli beams. Table 1 highlights the contribution of these researchers in chronological order. [1]

Table 1: Significant work done by few authors in the area of Flexible Robotics using the approach of FEM

S.No.	Researchers	Work Done	Year
1	Sunada and Dubowsky [3]	They used component mode synthesis to reduce the number of differential equations resulting from FEM.	1981
2.	Dado and Soni [4]	They carried both the forward and inverse dynamic analyses of elastic manipulators.	1986
3.	Nagnathan and Soni [5]	Only these researchers have used Newton-Euler approach; the links are also modelled as Timoshenko beams.	1986
4.	Usoro et al. [6]	They have considered the effect of gravity for the first time.	1986
5.	Bayo [7]	He found the joint torque for producing a desired tip motion of the flexible link. He also analysed the flexible manipulator in 'frequency domain'.	1987
6.	Simo and Vu- Quoc [8]	They used non-linear beam theory for modelling the flexible structures and highlighted its significance in transient analysis.	1987
7.	Tzou and Wan [9]	They introduced Rayleigh's and viscoelastic dampings during the mathematical modelling of flexible manipulators.	1990
8.	Chedmail et al. [10]	They introduced active damping for controlling the vibrations of flexible links. They made use of Linear Quadratic Regulator for controlling	1991

A comparison between the 'assumed modes method' (AMM) and the 'finite elements method' (FEM) for modelling flexible multilink manipulators was done by Meghdari and Ghassempouri [18] and Theodore and Ghosal [19]. They concluded that the use of FEM is recommended for manipulator links with complex geometries and having flexibilities and the use of AMM for manipulator links with uniform geometries.

2. MATHEMATICAL MODELLING

An accurate dynamic model of a Two-link Flexible manipulator having two revolute joints undergoing both small bending and small torsional deformations is prepared. Fig. 1 shows a Two-Link Flexible manipulator undergoing both bending and torsional deformations along with rigid revolutions at their joints. Plane $\mathrm{X}-\mathrm{Y}$ is the plane of bending while plane $\mathrm{Y}-\mathrm{Z}$ is the plane of torsion.

Fig. 1: Dynamic analysis of Two-Link Flexible manipulator undergoing both bending and torsional deformations. In figure $1, \mathrm{X}-\mathrm{Y}-\mathrm{Z}$ is the reference/ ground frame while $\mathrm{X}_{1}-\mathrm{Y}_{1}-\mathrm{Z}_{1}$ and $\mathrm{X}_{2}-\mathrm{Y}_{2}-\mathrm{Z}_{2}$ are the local frames attached to Link-1 and Link-2 respectively. Axis X_{1} is aligned along the undeformed neutral axis (N.A.) of Link-1 while axis X_{2} is aligned along the un-deformed neutral axis of Link-2. The origins of these local frames are located at Joint-1 and Joint-2 respectively. Joint-1 is given a rigid rotation of θ_{1} and Joint-2 is given a rigid rotation of θ_{2}. The position of any point on Link-1 with respect to ground is given by:
$\left\{p_{1}\right\}=\left[T_{1}\right]\left[T_{1 T}\right]\left\{r_{1 T}\right\}+\left[T_{1}\right]\left\{r_{1}\right\}$

Similarly, the position of any point on Link-2 with respect to ground is given by:

$$
\begin{gather*}
\left\{p_{2}\right\}=\left[T_{1}\right]\left\{r_{1}^{*}\right\}+\left[T_{1}\right]\left[T_{1 T}^{*}\right]\left\{r_{1 T}^{*}\right\}+ \\
{\left[T_{A}^{*}\right]\left[T_{1}\right]\left[T_{2}\right]\left\{r_{2}\right\}+\left[T_{1}\right]\left[T_{2}\right]\left[T_{2 T}\right]\left\{r_{2 T}\right\}} \tag{2}
\end{gather*}
$$

In above expressions,
$T_{1}=\left[\begin{array}{ccc}\cos \theta_{1} & -\sin \theta_{1} & 0 \\ \sin \theta_{1} & \cos \theta_{1} & 0 \\ 0 & 0 & 1\end{array}\right] ;$
$T_{2}=\left[\begin{array}{ccc}\cos \theta_{2} & -\sin \theta_{2} & 0 \\ \sin \theta_{2} & \cos \theta_{2} & 0 \\ 0 & 0 & 1\end{array}\right] ;$

$$
\begin{align*}
& \left\{r_{1}\right\}=\left\{\begin{array}{c}
x_{1} \\
w_{1}\left(x_{1}, t\right) \\
0
\end{array}\right\} ; \\
& \left\{r_{1}^{*}\right\}=\left\{\begin{array}{c}
L_{1} \\
w_{1}\left(L_{1}, t\right) \\
0
\end{array}\right\} ;\left\{r_{2}\right\}=\left\{\begin{array}{c}
x_{2} \\
w_{2}\left(x_{2}, t\right) \\
0
\end{array}\right\} ; \\
& T_{A}^{*}=\left[\begin{array}{ccc}
\cos \left(w_{1}^{* \prime}\right) & -\sin \left(w_{1}^{* \prime}\right) & 0 \\
\sin \left(w_{1}^{* \prime}\right) & \cos \left(w_{1}^{* \prime}\right) & 0 \\
0 & 0 & 1
\end{array}\right] ; \\
& \left\{r_{i T}\right\}=\left\{\begin{array}{lll}
0 & b_{i} \phi_{i} & b_{i}
\end{array}\right\}^{\prime} ; \\
& \left\{r_{i T}{ }^{*}\right\}=\left\{\begin{array}{lll}
0 & b_{i} \phi_{i}{ }^{*} & b_{i}
\end{array}\right\}^{\prime} ; \\
& \{g\}^{\prime}=\left\{\begin{array}{lll}
0 & g & 0
\end{array}\right\} ; \\
& {\left[T_{i T}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{i} & -\sin \phi_{i} \\
0 & \sin \phi_{i} & \cos \phi_{i}
\end{array}\right] ;} \\
& {\left[T_{i T}{ }^{*}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi_{i}{ }^{*} & -\sin \phi_{i}{ }^{*} \\
0 & \sin \phi_{i}{ }^{*} & \cos \phi_{i}{ }^{*}
\end{array}\right] ;} \tag{3}
\end{align*}
$$

L_{1} and $L_{2}=$ lengths of Link-1 and Link-2 respectively,
θ_{1} and $\theta_{2}=$ joint rotations (rigid) of Joint-1 and Joint-2 respectively,
x_{1} and $\mathrm{x}_{2}=$ distances measured along undeformed Link-1 and Link-2 axes, i.e. X_{1} and X_{2} respectively,
$\mathrm{w}_{1}\left(\mathrm{x}_{1}, \mathrm{t}\right)$ and $\mathrm{w}_{2}\left(\mathrm{x}_{2}, \mathrm{t}\right)=$ elastic displacements of Link-1 and Link-2 respectively undergoing bending vibrations
$w_{1}^{* \prime}=$ bending angle at end point of Link-1 = $\frac{d w_{1}^{*}}{d x_{1}}$
$\left\{\mathrm{r}_{1}\right\}=$ position coordinates of any point on Link-1 w.r.t to un-deformed Link-1 axis i.e., X_{1} in plane $\mathrm{X}_{1}-\mathrm{Y}_{1}$
$\left\{\mathrm{r}_{2}\right\}=$ position coordinates of any point on Link-2 w.r.t to un-deformed Link-2 axis i.e., X_{2} in plane $\mathrm{X}_{2}-\mathrm{Y}_{2}$
$\left\{r_{1}{ }^{*}\right\}=$ position coordinates of end point of Link-1 w.r.t. un-deformed beam-1 axis X_{1} in plane $\mathrm{X}_{1}-\mathrm{Y}_{1}$
$\left\{\mathrm{r}_{\mathrm{it}}\right\}=$ position coordinates of any point on Link-i in plane $\mathrm{Y}_{\mathrm{i}}-\mathrm{Z}_{\mathrm{i}}$
$\phi_{i}=\phi_{i}\left(\mathrm{x}_{\mathrm{i}}, \mathrm{t}\right)=$ torsional deformation of any point on Link-i
$\phi_{\mathrm{i}}{ }^{*}=\phi_{\mathrm{i}}\left(\mathrm{L}_{\mathrm{i}}, \mathrm{t}\right)=$ torsional displacement of end point of Link-i; i represents the link number (i $=1$ and 2)
The total kinetic energy of the manipulator system is given by:

$$
\begin{align*}
& \text { K. } E .=\frac{1}{2} \rho_{1} A_{1} \int_{0}^{L_{1}}\left\{\dot{p_{1}}\right\}^{\prime}\left\{\dot{p_{1}}\right\} d x_{1}+ \\
& \frac{1}{2} \rho_{2} A_{2} \int_{0}^{L_{2}}\left\{\dot{p_{2}}\right\}^{\prime}\left\{\dot{p_{2}}\right\} d x_{2} \tag{4}
\end{align*}
$$

Total potential energy of the manipulator system is given by:

$$
\begin{array}{r}
\text { P.E. }=\frac{E_{1} I_{1}}{2} \int_{0}^{L_{1}}\left(\frac{\partial^{2} w_{1}^{2}}{\partial x_{1}^{2}}\right)^{2} d x_{1}+ \\
\frac{G_{1} J_{1}}{2} \int_{0}^{L_{1}}\left(\frac{\partial \phi_{1}}{\partial x_{1}}\right)^{2} d x_{1}+ \\
\rho_{1} A_{1} \int_{0}^{L_{1}}\{g\}^{\prime}\left\{p_{1}\right\} d x_{1}+ \\
\frac{E_{2} I_{2}}{2} \int_{0}^{L_{2}}\left(\frac{\partial^{2} w_{2}^{2}}{\partial x_{2}^{2}}\right)^{2} d x_{2}+\frac{G_{2} J_{2}}{2} \int_{0}^{L_{2}}\left(\frac{\partial \phi_{2}}{\partial x_{2}}\right)^{2} d x_{2}+ \\
\rho_{2} A_{2} \int_{0}^{L_{2}}\{g\}^{\prime}\left\{p_{2}\right\} d x_{2} \tag{5}
\end{array}
$$

In equations- 4 and $5, \mathrm{~J}_{1}$ and J_{2} are the polar moment of inertias of Link-1 and Link-2 respectively. The joint torques can be obtained using Lagrangian dynamics as follows:

$$
\begin{equation*}
\frac{d}{d t}\left(\frac{\partial \mathcal{L}}{\partial \dot{q}}\right)-\frac{\partial \mathcal{L}}{\partial q}=F \tag{6}
\end{equation*}
$$

In above expression, \mathcal{L} represents Lagrangian of the system and is obtained by taking the difference of total kinetic energy and total potential energy of the system; q represents generalized coordinates and F represents generalized torque/force.

$$
\begin{gather*}
\left\{\begin{array}{llllllllll}
\theta_{1} & \theta_{2} & w_{1} & w_{1}^{*} & w_{2} & w_{2}^{*} & \phi_{1} & \phi_{1}^{*} & \phi_{2} & \left.\begin{array}{c}
q= \\
\phi_{2}^{*}
\end{array}\right\}^{\prime} \\
(6 \mathrm{a})
\end{array}\right. \\
F=\left\{\begin{array}{llllllllll}
\tau_{1} & \tau_{2} & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right\}^{\prime} \tag{6a}
\end{gather*}
$$

3. DISCRETIZATION USING FINITE ELEMENTS METHOD

In this paper, FEM is used to model the vibratory motions of the flexible links. This involves division of flexible links into some finite number of elements and finding the inertia and stiffness matrices that govern the dynamics of the system under consideration. Figure 2 (provided at the end) shows the discretization of flexible links using two SpaceFrame Elements [20]. A 'space-frame element' has two nodes with each node having six degrees of freedom: three translational $\left(\mathrm{Q}_{6 i-5}\right.$,

434
$\mathrm{Q}_{6 \mathrm{i}-4}$ and $\left.\mathrm{Q}_{6 \mathrm{i}-3}\right)$ and three rotational $\left(\mathrm{Q}_{6 \mathrm{i}-2}, \mathrm{Q}_{6 \mathrm{i}-1}\right.$ and $\mathrm{Q}_{6 \mathrm{i}}$). The complete equation of motion of the flexible manipulator is given by equation (7a).

$$
\begin{gather*}
{\left[\begin{array}{ll}
M_{r r} & M_{r f} \\
M_{f r} & M_{f f}
\end{array}\right]_{(n+N) X(n+N)}\left\{\begin{array}{l}
\ddot{q}_{r} \\
\ddot{q}_{f}
\end{array}\right\}_{(n+N) X 1}+} \\
{\left[\begin{array}{cc}
0 & 0 \\
0 & K_{f f}
\end{array}\right]_{(n+N) X(n+N)}\left\{\begin{array}{l}
q_{r} \\
q_{f}
\end{array}\right\}_{(n+N) X(n+N)}+} \\
{\left[\begin{array}{c}
H \\
0
\end{array}\right]_{(n+N) X 1}+\left[\begin{array}{l}
G \\
0
\end{array}\right]_{(n+N) X 1}=\left\{\begin{array}{l}
F_{r} \\
F_{f}
\end{array}\right\}_{(n+N) X 1}} \tag{7a}
\end{gather*}
$$

In equation (7a), subscripts- r and f stand for rigid and flexible respectively. N represents the rigid degrees of freedom present in the system and n represents the flexible degrees of freedom obtained from finite element formulation. For the present case, since there are two flexible links, we have $N=2$. Hence, M_{rr} consists of two diagonal elements- M_{11} and M_{22}. M_{rf} and $\mathrm{Mfr}_{\mathrm{fr}}$ represent the coupling between rigid and flexible motions.

$$
\begin{equation*}
M_{f r}=M_{r f}^{\prime} \tag{7b}
\end{equation*}
$$

One finite element per link is considered for the present analysis. Thus, there are three nodes and eighteen degrees of freedom (i.e., n $=18$). The first six degrees of freedom are considered to be fixed. Hence, there remain only twelve degrees of freedom. Thus, we get

$$
\begin{equation*}
M_{f f}=\left[m^{e}\right]_{12 \times 12} \tag{7c}
\end{equation*}
$$

If there are two finite elements per link then there will be four elements in total having five nodes. The total degrees of freedom will be thirty then (i.e., $n=30$). In the similar fashion, we can obtain the elements of stiffness matrix also. For the present case,

$$
\begin{equation*}
K_{f f}=\left[k^{e}\right]_{12 X 12} \tag{7d}
\end{equation*}
$$

$$
F_{r}=\left\{\begin{array}{l}
\tau_{1} \tag{7e}\\
\tau_{2}
\end{array}\right\}
$$

τ_{1} and τ_{2} represent joint torques.
For vibration analysis of the flexible links, it is necessary to find out the Global stiffness matrix and Global mass matrix. The equation of motion for undamped vibrations for ' n ' degrees of freedom is as follows:

$$
\begin{align*}
& {\left[M_{f f}\right]_{n \times n}\left\{\ddot{q}_{f}\right\}_{n \times 1}+\left[K_{f f}\right]_{n \times n}\left\{q_{f}\right\}_{n \times 1}=} \\
& \left\{F_{f}\right\}_{n \times 1} \tag{8a}
\end{align*}
$$

where, $\mathrm{M}_{\mathrm{ff}}=$ global mass matrix, $\mathrm{K}_{\mathrm{ff}}=$ global stiffness matrix,
$\mathrm{F}_{\mathrm{f}}=$ global force vector, and $\mathrm{q}_{\mathrm{f}}=$ vector of global degrees of freedom.
If damping is present within the system, then the equation of motion for vibratory motion will be written as follows:

$$
\begin{align*}
& {\left[M_{f f}\right]_{n \times n}\left\{\ddot{q}_{f}\right\}_{n \times 1}+\left[C_{f f}\right]_{n \times n}\left\{\dot{q}_{f}\right\}_{n \times 1}+} \\
& {\left[K_{f f}\right]_{n \times n}\left\{q_{f}\right\}_{n \times 1}=\left\{F_{f}\right\}_{n \times 1}} \tag{8b}
\end{align*}
$$

where, $\mathrm{C}_{\mathrm{ff}}=$ global damping matrix.
In local frame, the stiffness matrix of a Spaceframe element is given by:

$$
\begin{align*}
& k_{e}^{\prime}=\left[\begin{array}{ll}
k_{11 e}^{\prime} & k_{12 e}^{\prime} \\
k_{21 e}^{\prime} & k_{22 e}^{\prime}
\end{array}\right] \tag{8c}\\
& k_{11 e}^{\prime}=\left[\begin{array}{cccccc}
A S & 0 & 0 & 0 & 0 & 0 \\
0 & a_{z} & 0 & 0 & 0 & b_{z} \\
0 & 0 & a_{y} & 0 & -b_{y} & 0 \\
0 & 0 & 0 & T S & 0 & 0 \\
0 & 0 & -b_{y} & 0 & c_{y} & 0 \\
0 & b_{z} & 0 & 0 & 0 & c_{z}
\end{array}\right] ; \\
& k_{12 e}^{\prime}= \\
& {\left[\begin{array}{cccccc}
-A S & 0 & 0 & 0 & 0 & 0 \\
0 & -a_{z} & 0 & 0 & 0 & b_{z} \\
0 & 0 & -a_{y} & 0 & -b_{y} & 0 \\
0 & 0 & 0 & -T S & 0 & 0 \\
0 & 0 & b_{y} & 0 & d_{y} & 0 \\
0 & -b_{z} & 0 & 0 & 0 & d_{z}
\end{array}\right] ;} \\
& k_{21 e}^{\prime}= \\
& {\left[\begin{array}{cccccc}
-A S & 0 & 0 & 0 & 0 & 0 \\
0 & -a_{z} & 0 & 0 & 0 & -b_{z} \\
0 & 0 & -a_{y} & 0 & b_{y} & 0 \\
0 & 0 & 0 & -T S & 0 & 0 \\
0 & 0 & -b_{y} & 0 & d_{y} & 0 \\
0 & b_{z} & 0 & 0 & 0 & d_{z}
\end{array}\right] ;} \\
& k_{22 e}^{\prime}=\left[\begin{array}{cccccc}
A S & 0 & 0 & 0 & 0 & 0 \\
0 & a_{z} & 0 & 0 & 0 & -b_{z} \\
0 & 0 & a_{y} & 0 & b_{y} & 0 \\
0 & 0 & 0 & T S & 0 & 0 \\
0 & 0 & b_{y} & 0 & c_{y} & 0 \\
0 & -b_{z} & 0 & 0 & 0 & c_{z}
\end{array}\right]
\end{align*}
$$

In above matrices, $A S=\frac{E A_{e}}{l_{e}} ; \quad a_{z}=\frac{12 E I_{z}}{l_{e}^{3}}$;

$$
\begin{align*}
& a_{y}=\frac{12 E I_{y}}{l_{e}^{3}} ; b_{z}=\frac{6 E I_{z}}{l_{e}^{2}} ; b_{y}=\frac{6 E I_{y}}{l_{e}^{2}} ; c_{z}=\frac{4 E I_{z}}{l_{e}} ; \\
& \quad c_{y}=\frac{4 E I_{y}}{l_{e}} ; d_{z}=\frac{2 E I_{z}}{l_{e}} ; d_{y}=\frac{2 E I_{y}}{l_{e}} ; T S=\frac{G J_{e}}{l_{e}} \tag{8d}
\end{align*}
$$

where, $E=$ Young's modulus of the element; $G=$ modulus of rigidity of the element; $A_{e}=$ area of cross-section of the element; $l_{e}=$ length of the element; I_{y} and I_{z} are area moment of inertias of the element about y - and z-axes respectively, $J_{e}=$ polar area moment of inertia of the element. The mass matrix of Spaceframe element in local frame is given by
equations- (8e) and (8f) given at the end of the paper. The local force vector is represented by equation (8 g) provided at the end. In global frame, we have

Global stiffness matrix, $k^{e}=L^{T} k_{e}^{\prime} L$

$$
\begin{equation*}
\text { Global mass matrix }, m^{e}=L^{T} m_{e}^{\prime} L \tag{8h}
\end{equation*}
$$

where, L is the transformation matrix and is given by:

$$
L=\left[\begin{array}{llll}
\lambda & 0 & 0 & 0 \tag{8k}\\
0 & \lambda & 0 & 0 \\
0 & 0 & \lambda & 0 \\
0 & 0 & 0 & \lambda
\end{array}\right]
$$

$\boldsymbol{\lambda}$ is the matrix of direction cosines and is given as follows:

$$
\lambda=\left[\begin{array}{lll}
l_{1} & m_{1} & n_{1} \tag{81}\\
l_{2} & m_{2} & n_{2} \\
l_{3} & m_{3} & n_{3}
\end{array}\right]
$$

In above matrix, l_{1}, m_{1} and n_{1} represent the direction cosines of local- X axis of the Spaceframe element w.r.t. global frame. Similarly, l_{2}, m_{2} and n_{2} represent the direction cosines of local-Y axis and l_{3}, m_{3} and n_{3} represent the direction cosines of local-Z axis. The conversion between local degrees of freedom $\left(\mathrm{Q}_{l}\right)$ of the element and the global degrees of freedom (Q) can be done using the relation:

$$
\begin{equation*}
\left\{Q_{l}\right\}_{12 \times 1}=[L]_{12 \times 12}\{Q\}_{12 \times 1} \tag{8m}
\end{equation*}
$$

4. RESULTS

The results are obtained in two ways. In the first case, the coupling between rigid and flexible motions is considered. In the second case, results are obtained by neglecting this coupling. Firstly, results are obtained for bending vibrations only. After that torsional effects are also considered.

4.1 Results using bending vibrations only
 4.1.1: Effect of coupling between Rigid and Flexible motions

In this case, Plane-frame element is used. The generalized coordinates and generalized forces will be represented as follows:

$$
F=\left\{\begin{array}{ccccccc}
q=\left\{\theta_{1}\right. & \theta_{2} & w_{1} & w_{2} & w_{1}^{*} \tag{9a}
\end{array}\right\}^{\prime}(9 \mathrm{a})
$$

The mass matrix $\mathrm{M}(\mathrm{q})$ will be of order 5 x 5 .
The coefficients representing the elements in the first two rows of the inertia matrix
$\left[\mathrm{M}_{\mathrm{j}}(\mathrm{t})\right]_{5 \times 5}(\mathrm{j}=$ joint number $=1$ and 2$)$ are evaluated using the following expressions.

$$
\begin{array}{r}
M_{11}=\frac{1}{2} \rho_{1} A_{1}\left[\frac{2}{3} L_{1}^{3}+\int_{0}^{L_{1}} w_{1}^{2} d x_{1}\right]+ \\
\frac{1}{2} \rho_{2} A_{2}\left[2 L_{2}\left(L_{1}^{2}+w_{1}^{* 2}\right)+\frac{2}{3} L_{2}^{3}+\right. \\
2 \int_{0}^{L_{2}} w_{2}^{2} d x_{2}+2 L_{2}^{2}\left(L_{1} \cos \theta_{2}+w_{1}^{*} \sin \theta_{2}\right)+ \\
\left.4\left(w_{1}^{*} \cos \theta_{2}-L_{1} \sin \theta_{2}\right) \int_{0}^{L_{2}} w_{2} d x_{2}\right] ; \\
M_{12}=\frac{1}{2} \rho_{2} A_{2}\left[L_{2}^{2}\left(L_{1} \cos \theta_{2}+w_{1}^{*} \sin \theta_{2}\right)+\right. \\
\frac{2}{3} L_{2}^{3}+2 \int_{0}^{L_{2}} w_{2}^{2} d x_{2}+2\left(w_{1}^{*} \cos \theta_{2}-\right. \\
\left.\left.L_{1} \sin \theta_{2}\right) \int_{0}^{L_{2}} w_{2} d x_{2}\right] ; \\
M_{13}=\frac{1}{2} \rho_{1} A_{1} L_{1}^{2} ; \\
M_{14}=\frac{1}{2} \rho_{1} A_{1} L_{2}^{2} ; \\
M_{15}=\frac{1}{2} \rho_{2} A_{2}\left[2 L_{1} L_{2}+L_{2}^{2} \cos \theta_{2}-\right. \\
\left.2 \sin \theta_{2} \int_{0}^{L_{2}} w_{2} d x_{2}\right] ; \\
M_{21}=\frac{10 \mathrm{c})}{2}=M_{12} ; \\
\frac{1}{2} \rho_{2} A_{2}\left(\frac{2}{3} L_{2}^{3}+2 \int_{0}^{L_{2}} w_{2}^{2} d x_{2}\right) ; \\
M_{23}=0 ; \\
M_{24}=(10 \mathrm{e}) \\
\left.M_{25}=\frac{-1}{2}\right) \rho_{2} A_{2} L_{2}^{2} ;
\end{array}
$$

The above expressions were derived using Lagrangian dynamics [21]. The same equations are used while obtaining the response of the flexible manipulator using FEM. The only difference is that while using FEM, the integration sign is replaced by the summation sign. This is because; in FEM the system is divided into finite elements having nodes. Complete focus is now upon the nodes. By increasing the number of finite elements, number of nodes increase, size of the elements decrease and hence the accuracy of the solution increases. Equation (7a) is used to obtain the results. One finite element per link is considered for the present analysis. Thus, there are three nodes and nine degrees of freedom (n $=9$).

$$
\begin{equation*}
M_{f f}=\left[m^{e}\right]_{9 \times 9} \tag{11a}
\end{equation*}
$$

$$
\left[\begin{array}{ccccccccc}
0 & M_{13} & 0 & 0 & M_{15} & 0 & 0 & M_{14} & 0 \tag{11d}\\
0
\end{array}\right] \quad M_{r f}=\left[\begin{array}{llllll}
0 & M_{15} & 0 & 0 & M_{14} & 0 \\
0 & M_{25} & 0 & 0 & M_{24} & 0
\end{array}\right]
$$

(11b)
The first three degrees of freedom are considered to be fixed. Hence, there remain only six degrees of freedom. Thus, we get

$$
\begin{aligned}
& M_{f f}=\left[m^{e}\right]_{6 \times 6} \\
& \quad M_{r f}=\left[\begin{array}{lllllll}
0 & M_{13} & 0 & 0 & M_{13} & 0 & 0 \\
0 & M_{23} & 0 & 0 & M_{23} & 0 & 0
\end{array}\right.
\end{aligned}
$$

The first three degrees of freedom are fixed. Hence, first three columns from both the rows are eliminated. Similarly for the present case we obtain,

$$
\begin{align*}
& K_{f f}=\left[k^{e}\right]_{6 \times 6} \tag{11g}\\
& F_{r}=\left\{\begin{array}{l}
\tau_{1} \\
\tau_{2}
\end{array}\right\} \tag{11h}\\
F_{f}= & \boldsymbol{L}_{p f}^{T}\left[\begin{array}{llllll}
0 & \frac{p l_{e}}{2} & \frac{p l_{e}^{2}}{12} & 0 & \frac{p l_{e}}{2} & \frac{-p l_{e}^{2}}{12}
\end{array}\right]^{T} \tag{11i}
\end{align*}
$$

$\mathrm{p}=$ distributed load on links and is due to presence of gravity only.

$$
\begin{gather*}
\boldsymbol{L}_{p f}=\left[\begin{array}{cc}
\lambda_{p f} & 0 \\
0 & \lambda_{p f}
\end{array}\right] ; \tag{11j}\\
\boldsymbol{\lambda}_{\boldsymbol{p f}}=\left[\begin{array}{ccc}
\cos \theta_{1} & \sin \theta_{1} & 0 \\
-\sin \theta_{1} & \cos \theta_{1} & 0 \\
0 & 0 & 1
\end{array}\right] \text { for Link-1, } \\
\boldsymbol{\lambda}_{\boldsymbol{p f}}=\left[\begin{array}{ccc}
\cos \left(\theta_{1}+\theta_{2}\right) & \operatorname{and} & \sin \left(\theta_{1}+\theta_{2}\right) \\
-\sin \left(\theta_{1}+\theta_{2}\right) & \cos \left(\theta_{1}+\theta_{2}\right) & 0 \\
0 & 0 & 1
\end{array}\right] \\
\text { for Link-2. } \tag{11k}
\end{gather*}
$$

The physical parameters of the manipulator are tabulated in Table 2. These parameters are used to obtain the simulation results.

If there are two finite elements per link then there will be four elements in total having five nodes. The total degrees of freedom will be fifteen then. The matrix M_{rf} will then be written as given in equation (11f).
$\left.\begin{array}{llllllll}M_{15} & 0 & 0 & M_{14} & 0 & 0 & M_{14} & 0 \\ M_{25} & 0 & 0 & M_{24} & 0 & 0 & M_{24} & 0\end{array}\right]$
Viscoelastic damping [22] is incorporated within the model of flexible manipulator. For this, Kelvin-Voigt elements are considered.

Table 2: Physical parameters for Two-Link Flexible manipulator undergoing bending vibrations

Physical parameter	Value
Length of both the links, L_{1} and L_{2}	1 m
Flexural rigidity of both the links	$5.68 \times 10^{6} \mathrm{Nm}^{2}$
Area of cross-section of both the links	$0.0419 \mathrm{~m}^{2}$
Density of both the links	$7850 \mathrm{~kg} / \mathrm{m}^{3}$
Joint-1 torque	0.1 Nm (step)
Joint-2 torque	0.01 Nm (step)
Type of element	Plane-frame element
Mode of damping	Viscoelastic damping using Kelvin-Voigt elements
Solver	Ode45

The simulation results are shown below (Fig. 3 to Fig. 5) in the form of graphs. These graphs represent the tip velocities of second link of the flexible manipulator.

Fig. 3: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling between rigid and flexible motions is considered.)

Fig. 3 is obtained after solving equation (7a). The simulation stops after 0.018 second. This is because of the presence of coupling between rigid and flexible motions in equation (7a). If centrifugal and Coriolis terms are present then the simulation does not run. Step size of ' 0.1
ms' was used to obtain the above graph. When the coupling terms are reduced (say by a factor of 10000) the simulation runs for a longer duration. This can be observed from the following graphs.

Fig. 4: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling between rigid and flexible motions is reduced by 10000.)

In Figure 4, it can be seen that tip velocity is high. The effect of centrifugal and Coriolis torques are considered while obtaining the
above results. The simulation stopped after 0.336 second. Step size of ' 1 ms ' was used to obtain the above graph.

Fig. 5: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling between rigid and flexible motions is reduced by 10000; effect of gravity is considered.)

Figure 5 shows the tip velocity of second link of the flexible manipulator when the effect of gravity is considered along with the centrifugal and Coriolis torques. Step size of ' 1 ms ' was used. It is found that due to presence of gravity, the simulation stopped

4.1.2: Neglecting the effect of coupling between Rigid and Flexible motions

 The presence of coupling between the rigid and flexible motions makes it difficult to solveafter 0.207 second: earlier than the previous case. From the simulation results, it can be inferred that equation (7a) for the Two-link Flexible manipulator is highly non-linear.
equation (7a). Hence, in this case coupling is removed and then the effect on simulation is observed. Before that, few changes are done in the dynamics
of the system. Analytically, the vibrating motion of an Euler-Bernoulli beam is given by following equation.

$$
\begin{equation*}
\frac{\partial^{2} w}{\partial t^{2}}+\left(\frac{E I}{\rho A}\right) \frac{\partial^{4} w}{\partial x^{4}}=f(x, t) \tag{12}
\end{equation*}
$$

In above equation, $\mathrm{w}=$ deflection of beam, $\mathrm{E}=$ Young's modulus of beam, $I=$ area moment of inertia of beam, $\rho=$ mass density of beam, $\mathrm{A}=$ area of cross-section of beam and $f(x, t)=$ external force acting on the beam. The analytical solution of equation (12) can be obtained using the approach of AMM [23]. Since approach of FEM is followed in this paper, equation (12) can be discretized to yield equation (8a). The load vector F_{f} is now reformulated to contain two types of loads. First one is due to the distributed load described by equation (11i) and the second type of load is due to the excitation provided by the actuators placed at joints.

4.2 Calculation of excitation forces acting at the tips of the links

Fig. 6 (provided at the end) helps to understand the excitation forces acting at the tips of the links. These forces are calculated as follows.

$$
\begin{gather*}
\left.f_{11}=\frac{\tau_{1}}{O A}=\frac{\tau_{1}}{L_{1}} \text { (perpendicular to } \mathrm{OA}\right) \\
f_{22}=\frac{\tau_{2}}{A B}=\frac{\tau_{2}}{L_{2}}(\text { perpendicular to } \mathrm{AB}) \tag{13a}\\
\left.f_{21}=\frac{\tau_{1}}{O B} \text { (perpendicular to } \mathrm{OB}\right) \tag{13b}
\end{gather*}
$$

Net force acting at B (perpendicular to $A B$),

$$
\begin{equation*}
\mathrm{f}_{\mathrm{bB}}=\mathrm{f}_{22}+\mathrm{f}_{21} \cos \left(\theta_{2}-\phi\right) \tag{13~d}
\end{equation*}
$$

Net force acting at B (along $A B$), $f_{a B}=f_{21}$ $\sin \left(\theta_{2}-\phi\right)$
(13e)
Hence, load vector for the element containing the tip of the given link as one of its nodes can be described as follows:

$$
\begin{align*}
& F_{f}=\boldsymbol{L}_{p f}^{T}\left[\begin{array}{lllll}
0 & \frac{p l_{e}}{2} & \frac{p l l_{e}^{2}}{12} & 0 & \frac{p l_{e}}{2}+f_{11}
\end{array} \frac{-p p e_{2}^{2}}{12}\right]^{T} \text { for } \\
& \text { Link-1, and } \\
& F_{f}=\boldsymbol{L}_{p f}^{T}\left[\begin{array}{lllll}
0 & \frac{p l_{e}}{2} & \frac{p l l_{e}^{2}}{12} & 0+f_{a B} & \frac{p l_{e}}{2}+f_{B}
\end{array} \frac{\left.\frac{-p p e_{e}^{T}}{12}\right]^{T} \text { for }}{\text { Link-2. }} \begin{array}{llll}
(13 \mathrm{~g})
\end{array}\right.
\end{align*}
$$

The load vectors for remaining elements remain same as provided by equation (11i). Since, torsional vibrations are not considered here, hence the axes $\mathrm{Z}-\mathrm{Z}_{1}$ and $\mathrm{Z}-\mathrm{Z}_{2}$ (Fig. 1) will always be parallel to each other. The load vector can be described in another way as follows:
$F_{f}=\boldsymbol{L}_{p f}^{T}\left[\begin{array}{llllll}0 & \frac{p_{y} l_{e}}{2} & \frac{p_{y} l_{e}^{2}}{12} & 0 & \frac{p_{y} l_{e}}{2} & \frac{-p_{y} l_{e}^{2}}{12}-\tau_{1}\end{array}\right]^{T}$
for Link-1, and

$$
F_{f}=\boldsymbol{L}_{p f}^{T}\left[\begin{array}{llllll}
0 & \frac{p_{y} l_{e}}{2} & \frac{p_{y} l_{e}}{12} & 0 & \frac{p_{y} l_{e}}{2} & \frac{-p_{y} l_{e}^{2}}{12}-\tau_{1}-\tau_{2} \tag{13h}
\end{array}\right]^{T}
$$

for Link-2.
(13i)
It is to be noted that the load vectors described in equation (13f) to equation (13i) are only for the last elements of Link-1 and Link-2 respectively. Figure 7 shows the tip velocity of second link of the flexible manipulator when coupling between rigid and flexible motions are not considered.

Fig. 7: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling between rigid and flexible motions is not considered; effect of gravity is not considered.).

In Figure 7, effect of gravity is not considered while the effect of centrifugal and Coriolis torques are taken into account. It can be observed that the simulation runs for a longer duration of time. After observing the simulation results from Fig. 3 to Fig. 7, it can
be concluded that the Two-Link Flexible manipulator is a highly non-linear system due to the presence of coupling between rigid and flexible motions, presence of gravity and presence of centrifugal and Coriolis terms in the equation of motion (equation 7a).

4.3 Results using combined bending-torsion vibrations

After obtaining results for bending vibrations, torsional effects are also included. Thus, the following results are for combined bendingtorsional vibrations. For this, Space-frame elements are used. Damping is not considered while obtaining these results.
Equations- 13a to 13i describe the tip forces and tip load vectors. In case of coupled bending-torsion vibrations some additional forces will also act at the tips. Following equation describes the force acting at the tip of first flexible link, responsible for torsional vibrations.
Twisting torque at tip of Link $-1, T_{w 1}=$ $f_{11} X \frac{1}{2}\left(2 b_{1}+2 b_{2}\right)$

Table 3: Physical parameters for Two-Link Flexible manipulator undergoing combined bendingtorsional vibrations

Physical parameter	Value
Length of both the links, L_{1} and L_{2}	0.5 m
Flexural rigidity of Link- $1\left(\mathrm{E}_{1} \mathrm{I}_{1 \mathrm{y}}\right.$ and $\left.\mathrm{E}_{1} \mathrm{I}_{1 \mathrm{z}}\right)$	$14.93 \mathrm{Nm}^{2}$
Flexural rigidity of Link- $2\left(\mathrm{E}_{2} \mathrm{I}_{2 \mathrm{y}}\right.$ and $\left.\mathrm{E}_{2} \mathrm{I}_{2 \mathrm{z}}\right)$	$1.017 \mathrm{Nm}^{2}$
Area of cross-section of Link-1	4 cm x 4 mm
Area of cross-section of Link-2	5.17 cm x 1.5 mm
Density of both the links	$7850 \mathrm{~kg} / \mathrm{m}^{3}$
Modulus of rigidity of both the links	$8.08 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Joint-1 torque	Square \quadwave amplitude 0.05 Nm and time period 0.1 s

Joint-2 torque	Square wave of amplitude 0.01 Nm and time period 0.1s
Type of finite element used	Space-frame element
Solver	Ode45

This twisting torque acts perpendicular to plane: $\mathrm{Y}_{1}-\mathrm{Z}_{1}$, i.e. along X_{1} axis (refer to Fig. 6 and Fig. 1). This torque vector when seen from global frame (axes: X-Y-Z in Fig. 1) will have two rectangular components along X -axis and Y-axis. Besides that, gyroscopic couples will also act on the tips. The expressions for gyroscopic couple are given as follows.

Gyroscopic couple at tip of Link -

$$
\begin{equation*}
1, G C_{1}=J_{m 1} \dot{\phi}_{1}\left(\dot{\theta}_{1}+\dot{\gamma}_{1}\right) \tag{15a}
\end{equation*}
$$

The couple GC_{1} will act along Y_{1}-axis; $\dot{\phi}_{1}$ represents the rate of twist of Link-1 about local X_{1}-axis, $\dot{\gamma}_{1}$ represents the rate of change of slope of tip of Link-1 due to bending about Z_{1}-axis and $\mathrm{J}_{\mathrm{m} 1}$ is the mass moment of inertia of Link-1.

$$
\begin{array}{r}
\text { Gyroscopic couple at tip of Link- } \\
2, G C_{2}=J_{m 2}\left(\dot{\phi}_{2}-\dot{\phi}_{1} \cos \theta_{2}\right)\left(\dot{\theta}_{1}+\dot{\gamma}_{1}+\right. \\
\left.\dot{\theta}_{2}+\dot{\gamma}_{2}\right) \tag{15b}
\end{array}
$$

The couple GC_{2} will act along Y_{2}-axis; $\dot{\phi}_{2}$ represents the rate of twist of Link-2 about local X_{2}-axis, $\dot{\gamma}_{2}$ represents the rate of change of slope of tip of Link-2 due to bending about Z_{2}-axis and $\mathrm{J}_{\mathrm{m} 2}$ is the mass moment of inertia of Link-2. The local force vectors for the elements containing tips of the links as one of their nodes are given by equations- 15 c and 15d provided at the end.

Fig. 8: Angular velocity of tip of second flexible link about Z-axis

Fig. 9: Linear velocity of tip of second flexible link along Z-axis

Fig. 10: Angular velocity of tip of second flexible link about Y-axis Linear velocity of tip of second Link of Flexible manipulator along Y-axis

Fig. 11: Linear velocity of tip of second flexible link along Y-axis

Fig. 12: Angular velocity of tip of second flexible link about X -axis

Fig. 13: Linear velocity of tip of second flexible link along X-axis

The undamped tip responses of second flexible link are shown in Fig. 8 to Fig. 13. From above graphs, it can be observed that the angular velocity about Z-axis (Fig. 8) is the maximum while the linear velocity about Y-axis (Fig. 11) is the maximum.

4.4 Effect of vibrations on positional accuracy

Now, the effect of vibration of flexible links on the positional accuracy of the end point of the second link (point B in Fig. 6) will be shown. The physical parameters provided in Table 2 are taken for the simulation. The length of the position vector of point B is given by 'OB'. It can be found out as follows:
$O B=\sqrt{X_{B}^{2}+Y_{B}^{2}+Z_{B}^{2}}$
$\mathrm{X}_{\mathrm{B}}, \mathrm{Y}_{\mathrm{B}}$ and Z_{B} are the coordinates of point B (Fig. 6) w.r.t. ground frame XYZ (Fig. 1 and Fig. 2). These coordinates are calculated using equation (2). Fig. 14 shows the variation of length of position vector OB for a Two-Link Rigid manipulator and a Two-Link Flexible manipulator undergoing both bending and torsional vibrations. It is to be noted that the rigid manipulator operates in X-Y plane only. Hence, its Z-coordinate remains zero throughout. But for the flexible manipulator, due to presence of torsional vibrations, the links show some deflections in Y-Z plane also. Hence, the flexible manipulator undergoing both bending and torsional vibrations, no longer remains planar.

Fig. 14: Comparison of length of position vectors of the tip of second Link for a Two-Link Rigid and Flexible manipulators (The flexible manipulator undergoes coupled bending and torsional undamped vibrations; BT means Bending-Torsion).

In Figure 14 and Figure 15, BT stands for 'Bending-Torsion'. Figure 15 shows the threedimensional plot of position of tip B (Fig. 6) of the flexible manipulator. When only bending
vibrations are present, the flexible manipulator remains in X-Y plane, i.e., it can be said to be planar.

Fig.15: 3D-plot showing the position of tip of second Flexible Link for undamped vibrations.

In figure 15, the red coloured graph is for the flexible manipulator undergoing coupled bending-torsional (BT) vibrations while the blue coloured graph is for the flexible manipulator undergoing only bending vibrations. It is clear from the figure that presence of torsional vibrations severely
deteriorates the positional accuracy of the tip B.

4.4.1 Frequency analysis of undamped vibrations of Flexible Links

Table 3 gives the natural frequencies of the Two-link Flexible manipulator for two finite elements (FEs) and ten finite elements (FEs).

Table 4: Natural frequencies of Flexible Manipulator

S. No.	Natural Frequency (using FEM)	
	$\mathbf{2 F F E}$	$\mathbf{1 0}$ FEs
1	1.6	2.05
2	2.1	2.07
3	5.7	6.99
4	7.1	7.00
5	27.5	19.9
6	35.3	20.5
7	56	39.6
8	71	42.6
9	1019	60.46
10	1497	67.3
11	1646.5	98.6
12	4229.4	112.9
13	-	132.07
14	-	153.79
15	-	175.52
16	-	184.78
17	-	245.2
18	-	248.3
19	-	302.87
20	-	336.13
21	-	391.53
22	-	425.97
23	-	449.47
24	-	462.91
25	-	508.78
26	-	587.4
27	-	592.88
28	-	651.24
29	-	705.69
30	-	779.52

Above frequencies were matched using FFT analyses. Fig. 16 to Fig. 18 show the

FFT of the vibration of tip B of the flexible manipulator undergoing coupled bendingtorsional vibrations.

Fig. 16: FFT analysis of X -axis vibrations of tip B
From Fig. 16, it is found that the dominant in Table 4, column 3) and 70 Hz (near to 67.3 frequencies are about: 40 Hz (near to $42.6 \mathrm{~Hz} \quad \mathrm{~Hz}$ in Table 4, column 3).

Fig. 17: FFT analysis of Y-axis vibrations of tip B

From Fig. 17, it is found that the dominant frequencies are about: $7 \mathrm{~Hz}(7 \mathrm{~Hz}$ in Table 4, column 3), 70 Hz (near to 67.3 Hz in Table 4, column 3) and 300 Hz (near to 302.87 Hz in Table 4, column 3). All these frequencies are present in Table 3. Besides that, other
identifiable frequencies are about: 40 Hz (near to 39.6 Hz in Table 4, column 3) and 250 Hz (near to 248.3 Hz in Table 4, column 3). There are very small peaks between 100 Hz to 200 Hz . All these frequencies can be identified to be present in Table 3.

Fig. 18: FFT analysis of Z-axis vibrations of tip B

From Fig. 18, the dominant frequencies are about: 35 Hz (near to 39.6 Hz in column 3 and 35.3 Hz in column 2 in Table 4), 56 Hz (near to 56 Hz in column 2 and 60.46 Hz in column 3 in Table 4) and 350 Hz (near to 336.13 Hz in column 3, Table 4). The accuracy of FFT analysis depends upon the sampling frequency and sample size. For the present case, the
sampling frequency is 1000 samples per second and sample size is 100 .

5. VALIDATION OF MATHEMATICAL MODEL

The validation of mathematical model is done with the results of [24]. The physical parameters are given in Table 5.

Table 5: Physical parameters (as used by Chiaming et. al.) for validation

Physical parameters	Values
Length of each link	$\mathrm{L}_{1}=\mathrm{L}_{2}=1 \mathrm{~m}$
Mass of each link	$\mathrm{m}_{1}=\mathrm{m}_{2}=5 \mathrm{~kg}$
Young's modulus	$\mathrm{E}_{1}=\mathrm{E}_{2}=2 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}$
Second moment of area	$\mathrm{I}_{1}=\mathrm{I}_{2}=5 \times 10^{-9} \mathrm{~N} / \mathrm{m}^{2}$
Initial conditions	$\theta_{1}=0^{0} ; \theta_{2}=5^{0}$
Joint 1 torque	0 Nm

Joint 2 torque	Half sine wave of amplitude 2 Nm and duration 1 second.

The simulation results are shown in Fig. 19-21. To obtain these results, two finite elements are used during simulation, i.e., one finite element per link. The first two lowest frequencies of the flexible manipulator are found out to be: 2 Hz and 12 Hz .

Fig. 19: Comparison of joint responses of Two-Link Flexible manipulator between present work and Chiaming's work
Figure 19 shows the joint responses of the joint responses found in present work are close flexible manipulator. These are compared with to the joint responses obtained by Chiaming. the results of Chiaming. It is found that the

Fig. 20: Tip displacement of Link-1 of the Flexible manipulator

Fig. 21: Tip displacement of Link-2 of the Flexible manipulator

Figure 20 shows the tip displacement of Link1 along global Y-axis and Fig. 21 shows the tip displacement of Link-2 along global Y-axis. It is found that the forced response (between 0 to

1 second) of the tips match well with the results of Chiaming but the transient responses do not match. In the present work, the transients exhibit the frequency of 2 Hz while in the work
of Chiaming, the transients exhibit the frequency of less than 2 Hz . It is notable that for the parameters of the flexible manipulator given in Table 5, the lowest natural frequency is found out to be 2 Hz which is same as being exhibited by the graphs in Figure 20 and Figure 21.

6. CONCLUSIONS

In this paper, Lagrangian-finite element method is used to obtain the dynamic model of a Two-Link Flexible manipulator. Two types of finite elements are considered for discretization of the flexible links. These are: 'space frame element' and 'plane frame element'. Coupling between rigid and flexible degrees of freedom is considered and its effect on simulation is shown. It is found that this coupling makes the system highly non-linear and the solutions to the equations of motion do not converge. In order to obtain results, the equations of motion are modified suitably and discussed within the paper. The effect of nonlinearity due to the presence of centrifugal, Coriolis and gravity terms are also shown in the paper. The novelty of the paper lies in inclusion of torsional vibrations of the links along with the flexural vibrations. It is shown that due to the presence of torsional effect, the flexible manipulator no longer remains planar. The torsional vibrations severely deteriorate the positional accuracy of the manipulator.

REFERENCES

[1] Benosman and Vey, Control of flexible manipulators: A survey, Robotica, Vol 22, pp. 533-534, 2004.
[2] S. K. Dwivedy, Peter Eberhard, Dynamic analysis of flexible manipulators, a review, Mechanism and Machine Theory, pp. 749777, 2006.
[3] Sunada and Dubowsky, The application of finite elements methods to the dynamic analysis of flexible spatial and co-planar linkage systems, Journal of Mechanical Design, Vol 103, pp. 643-651, 1981.
[4] Dado and Soni, A generalized approach for forward and inverse dynamics of elastic manipulators, IEEE, pp. 359-364, 1986.
[5] Nagnathan and Soni, Non-linear flexibility studies for spatial manipulators, IEEE, pp. 373-378, 1986.
[6] Usoro, Nadira, Mahil, A Finite Element/ Lagrange approach to modelling lightweight flexible manipulators, Journal of Dynamic Systems, Measurement and Control, Vol. 108, pp. 198-205, 1986.
[7] E. Bayo, A finite-element approach to control the end-point motion of a single-link flexible robot, Journal of Robotic Systems, Vol. 4, pp. 63-75, 1987.
[8] Simo and Vu-Quoc, The role of nonlinear theories in transient dynamic analysis of flexible structures, Journal of Sound and Vibration, Vol. 4, pp. 63-75, 1987.
[9] Tzou and Wan, Distributed structural dynamics control of flexible manipulators-I, Structural dynamics and distributed viscoelastic actuator, Computers \& Structures, pp. 669-677, 1990.
[10] Chedmail, Aoustin and Chevallereau, Modelling and control of flexible robots, International Journal for Numerical Methods in Engineering, Vol. 32, pp. 1595-1619, 1991.
[11] Alberts, Xia, Chen, Dynamic analysis to evaluate viscoelastic passive damping augmentation for the space shuttle remote manipulator system, Journal of Dynamic Systems, Measurement and Control, Vol. 114, pp. 468-475, 1992.
[12] Gaultier and Cleghorn, A spatially translating and rotating beam finite element for modelling flexible manipulators, Mechanism and Machine Theory, Vol. 27, pp. 415-433, 1992.
[13] Hu and Ulsoy, Dynamic modeling of constrained flexible robot arms for controller design, Journal of Dynamic Systems, Meadurement and Control, Vol. 116, pp. 5665, 1994.
[14] Stylianou and Tabarrok, Finite element analysis of an axially moving beam, Part I: Time integration, Journal of Sound and Vibration, Vol. 178, pp. 433-453, 1994.
[15] Stylianou and Tabarrok, Finite element analysis of an axially moving beam, Part II: Stability analysis, Journal of Sound and Vibration, Vol. 178, pp. 455-481, 1994.
[16] Theodore and Ghosal, Robust control of multilink flexible manipulators, Mechanism and Machine Theory, Vol. 38, pp. 367-377, 2003.
[17] R. Fotouhi, Dynamic analysis of very flexible beams, Journal of Sound and Vibration, Vol. 305, pp. 521-533, 2007.
[18] Meghdari and Ghassempouri, Dynamics of Flexible Manipulators, Journal of Engineering, Islamic Republic of Iran, Vol. 7, pp. 19-32, 1994.
[19] Theodore and Ghosal, Comparison of the assumed modes method and finite element models for flexible multilink manipulators, The International Journal of Robotics Research, Vol. 14, 1995.
[20] Chandrupatla and Belegundu, Introduction to Finite Elements in Engineering, New Delhi: PHI Learning Private Limited, Third Edition.
[21] Natraj Mishra, S.P. Singh, B.C. Nakra, Dynamic Modelling of Two Link Flexible Manipulator using Lagrangian Assumed Modes Method, Global Journal of Multidisciplinary Studies, Vol.-4, Issue-12, pp. 93-105, 2015.
[22] D. R. Bland, The Theory of Linear Viscoelasticity, London: Pergamon Press, 1960.
[23] S. Rao, Mechanical Vibrations, Pearson, Fourth Edition.
[24] Chiaming Yen, Glenn Y. Masada, Wei-Min Chan, Dynamic Analysis of a Two-link Flexible Manipulator System using Extended Bond Graphs, Journal of the Franklin Institute, Vol. 330, No. 6, pp. pp. 1113-1134, 1993.
[25] W. Chen, Dynamic modeling of multi-link flexible robotic manipulators, Computers \& Structures, pp. 183-195, 2001.

Fig. 2: Dynamics modelling of Two-Link Flexible manipulator using two Space-frame finite elements.

$$
\begin{align*}
m_{e}^{\prime}= & {\left[\begin{array}{cc}
m_{11 e}^{\prime} & m_{12 e}^{\prime} \\
m_{21 e}^{\prime} & m_{22 e}^{\prime}
\end{array}\right] } \tag{8e}\\
m_{11 e}^{\prime} & =\left[\begin{array}{cccccc}
2 \mu_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 156 \mu_{1} & 0 & 0 & 0 & 22 l_{e} \mu_{1} \\
0 & 0 & 156 \mu_{2} & 0 & 22 l_{e} \mu_{2} & 0 \\
0 & 0 & 0 & 2 \mu_{4} & 0 & 0 \\
0 & 0 & 22 l_{e} \mu_{2} & 0 & 4 l_{e}^{2} \mu_{2} & 0 \\
0 & 22 l_{e} \mu_{1} & 0 & 0 & 0 & 4 l_{e}^{2} \mu_{1}
\end{array}\right] ;
\end{align*}
$$

where, $\rho=$ mass density of the element, and $J_{m}=$ mass moment of inertia of the element.

$$
f^{\prime}=\left[\begin{array}{llllllllllll}
0 & \frac{p_{z} l_{e}}{2} & \frac{p_{y} l_{e}}{2} & 0 & \frac{-p_{z} l_{e}^{2}}{12} & \frac{p_{y} l_{e}^{2}}{12} & 0 & \frac{p_{z} l_{e}}{2} & \frac{p_{y} l_{e}}{2} & 0 & \frac{p_{z} l_{e}^{2}}{12} & \frac{-p_{y} l_{e}^{2}}{12} \tag{8~g}
\end{array}\right]^{T}
$$

where, p_{y} and p_{z} are the distributed loads on the element along y - and z-directions respectively.

$$
\text { For Link }-1, f^{\prime}=\left[\begin{array}{lllllllllll}
0 & \frac{p_{z} l_{e}}{2} & \frac{p_{y} l_{e}}{2} & 0 & \frac{-p_{z} l_{e}^{2}}{12} & \frac{p_{y} l_{e}^{2}}{12} & 0 & \frac{p_{z} l_{e}}{2} & \frac{p_{y} l_{e}}{2} & 0+T_{w 1} & \frac{p_{z} l_{e}^{2}}{12}+G C_{1} \tag{15c}
\end{array} \frac{-p_{y} l_{e}^{2}}{12}-\tau_{1}\right]^{T}
$$

$$
\text { For Link }-2, f^{\prime}=\left[\begin{array}{llllllllllll}
0 & \frac{p_{z} l_{e}}{2} & \frac{p_{y} l_{e}}{2} & 0 & \frac{-p_{z} l_{e}^{2}}{12} & \frac{p_{y} l_{e}^{2}}{12} & 0 & \frac{p_{z} l_{e}}{2} & \frac{p_{y} l_{e}}{2} & 0 & \frac{p_{z} l_{e}^{2}}{12}+G C_{2} & \frac{-p_{y} l_{e}^{2}}{12}-\tau_{1}-\tau_{2}
\end{array}\right]^{T}
$$

(Joint 1)

Fig. 6: Calculation of excitation forces at the ends of links

$$
\begin{align*}
& m_{12 e}^{\prime}=\left[\begin{array}{cccccc}
\mu_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 54 \mu_{1} & 0 & 0 & 0 & -13 l_{e} \mu_{1} \\
0 & 0 & 54 \mu_{2} & 0 & -13 l_{e} \mu_{2} & 0 \\
0 & 0 & 0 & \mu_{4} & 0 & 0 \\
0 & 0 & 13 l_{e} \mu_{2} & 0 & -3 l_{e}^{2} \mu_{2} & 0 \\
0 & 13 l_{e} \mu_{1} & 0 & 0 & 0 & -3 l_{e}^{2} \mu_{1}
\end{array}\right] \\
& \begin{array}{ccccccc}
\\
& m_{21 e}^{\prime}
\end{array} \quad\left[\begin{array}{cccccc}
\mu_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 54 \mu_{1} & 0 & 0 & 0 & 13 l_{e} \mu_{1} \\
0 & 0 & 54 \mu_{2} & 0 & 13 l_{e} \mu_{2} & 0 \\
0 & 0 & 0 & \mu_{4} & 0 & 0 \\
0 & 0 & -13 l_{e} \mu_{2} & 0 & -3 l_{e}^{2} \mu_{2} & 0 \\
0 & -13 l_{e} \mu_{1} & 0 & 0 & 0 & -3 l_{e}^{2} \mu_{1}
\end{array}\right] \\
& m_{22 e}^{\prime}=\left[\begin{array}{cccccc}
2 \mu_{3} & 0 & 0 & 0 & 0 & 0 \\
0 & 156 \mu_{1} & 0 & 0 & 0 & -22 l_{e} \mu_{1} \\
0 & 0 & 156 \mu_{2} & 0 & -22 l_{e} \mu_{2} & 0 \\
0 & 0 & 0 & 2 \mu_{4} & 0 & 0 \\
0 & 0 & -22 l_{e} \mu_{2} & 0 & 4 l_{e}^{2} \mu_{2} & 0 \\
0 & -22 l_{e} \mu_{1} & 0 & 0 & 0 & 4 l_{e}^{2} \mu_{1}
\end{array}\right] \\
& \text { In above matrices, } \mu_{1}=\mu_{2}=\frac{\rho A_{e} l_{e}}{420} ; \mu_{3}=\frac{\rho A_{e} l_{e}}{6} ; \mu_{4}=\frac{J_{m}}{6} \tag{8f}
\end{align*}
$$

ANALIZA DINAMICĂ A MANIPULATORULUI FLEXIBIL CU DOUĂ LEGĂTURI FOLOSIND FEM ÎN CURS DE ÎNDOIRE-TORSIUNE VIBRAȚII

Rezumat: În această lucrare, un manipulator flexibil cu două legături este analizat folosind o abordare cu elemente finite ale cărei legături sunt în curs de îndoire combinată și vibrații de torsiune. Modelul matematic al manipulatorului flexibil se obține folosind dinamica lagrangian. Link-urile sunt modelate ca grinzi Euler-Bernoulli și discretizate folosind "spațiu-cadru" și "plan-cadru" elemente. Lucrarea prezentă tratează diverse efecte neliniare ar fi, cuplarea între grade rigide și flexibile de libertate, efecte centrifuge și Coriolis și prezența gravitației. Modelul matematic este validat folosind rezultatele disponibile în literatura de specialitate. Noutatea prezentei lucrări constă în includerea efectelor torsionale și evidențiind astfel efectele acestora asupra preciziei poziționale a manipulatorului flexibil.

Natraj MISHRA, Assistant Professor, School of Engineering, UPES Dehradun, India, Email: natrajmishra@gmail.com
S.P. SINGH, Professor, Department of Mechanical Engineering, IIT Delhi, India, Email: spsingh100@gmail.com

