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Abstract- In this paper, a two-link flexible manipulator is analyzed using finite element approach whose links are undergoing 

combined bending and torsional vibrations. Mathematical model of the flexible manipulator is obtained using Lagrangian 

dynamics. The links are modelled as Euler-Bernoulli beams and discretized using ‘space-frame’ and ‘plane-frame’ elements. 

The present work deals with various non-linear effects like, coupling between rigid and flexible degrees of freedom, 

centrifugal and Coriolis effects and presence of gravity. The mathematical model is validated using results available in the 

literature. The novelty of the present work lies in inclusion of torsional effects and thus highlighting their effects on positional 

accuracy of the flexible manipulator. 

Keywords- Lagrangian-FEM, coupled bending-torsion vibrations, coupled rigid and flexible motions, Flexible 

manipulator, frequency analysis 

 

1. INTRODUCTION 
Accurate modelling and control of flexibility 
in robots is a challenging task. Many 
researchers are working towards achieving the 
positional accuracy of such robots. If these 
unwanted vibrations are reduced then 
definitely, less inertia torque will be required 
to drive them. This will ultimately lead to the 
reduction of power consumption by the motors 
used to drive them. A comprehensive literature 
review has been done by Benosman and Vey 
[1]  

and Dwivedy and Eberhard [2] in the area of 
flexible robotics. They have compiled various 
research papers dealing with the modelling and 
control of flexible robots. Many researchers 
have contributed towards area of flexible 
robotics. Most of them have used Lagrangian 
dynamics for modelling the flexible 
manipulators. They have treated the links of 
the manipulator as Euler-Bernoulli beams. 
Table 1 highlights the contribution of these 
researchers in chronological order. 

 
Table 1: Significant work done by few authors in the area of Flexible Robotics using the approach of FEM 
S.No. Researchers Work Done Year 
1 Sunada and 

Dubowsky [3]  
They used component mode synthesis to reduce the number of 
differential equations resulting from FEM. 

1981 

2. Dado and Soni 
[4] 

They carried both the forward and inverse dynamic analyses of elastic 
manipulators. 

1986 

3.  Nagnathan and 
Soni [5] 

Only these researchers have used Newton-Euler approach; the links are 
also modelled as Timoshenko beams.  

1986 

4. Usoro et al. [6] They have considered the effect of gravity for the first time. 1986 
5. Bayo [7] He found the joint torque for producing a desired tip motion of the 

flexible link. He also analysed the flexible manipulator in ‘frequency 
domain’. 

1987 

6. Simo and Vu-
Quoc [8] 

They used non-linear beam theory for modelling the flexible structures 
and highlighted its significance in transient analysis. 

1987 

7. Tzou and Wan 
[9] 

They introduced Rayleigh’s and viscoelastic dampings during the 
mathematical modelling of flexible manipulators. 

1990 

8. Chedmail et al. 
[10] 

They introduced active damping for controlling the vibrations of flexible 

links. They made use of Linear Quadratic Regulator for controlling 
1991 
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vibrations. Two-Link Flexible manipulator is considered for the first 
time. 

9. Alberts et al. 
[11] 

They have considered the effectiveness of viscoelastic damping in 
curbing the vibrations of flexible links. 

1992 

10. Gaultier and 
Cleghorn [12] 

They applied FEM on links which have both rotating and translating 
motions. Thus, they extended the work of previous authors by including 
prismatic motion. 

1992 

11. Hu and Ulsoy 
[13] 

They have provided a model for the design of a controller for a Rigid-
flexible spherical-coordinate robot. 

1994 

12. Stylianou and 
Tabarrok 

They modelled an axially moving beam using ‘variable-domain finite 
beam elements’ [14] and also investigated its dynamic stability [15]. 

1994 

13. Theodore and 
Ghosal [16] 

They discussed the robustness and stability issues of the flexible links. 2003 

14. Fotouhi [17] They analysed the flexible robots undergoing large deformations. 2007 

A comparison between the ‘assumed modes 
method’ (AMM) and the ‘finite elements 
method’ (FEM) for modelling flexible multi-

link manipulators was done by Meghdari and 
Ghassempouri [18] and Theodore and Ghosal 
[19]. They concluded that the use of FEM is 
recommended for manipulator links with 
complex geometries and having flexibilities 
and the use of AMM for manipulator links with 
uniform geometries.  

2. MATHEMATICAL MODELLING 
An accurate dynamic model of a Two-link 
Flexible manipulator having two revolute 
joints undergoing both small bending and 
small torsional deformations is prepared. Fig. 
1 shows a Two-Link Flexible manipulator 
undergoing both bending and torsional 
deformations along with rigid revolutions at 
their joints. Plane X-Y is the plane of bending 
while plane Y-Z is the plane of torsion. 

 

Fig. 1: Dynamic analysis of Two-Link Flexible manipulator undergoing both bending and torsional deformations. 
In figure 1, X-Y-Z is the reference/ ground 
frame while X1-Y1-Z1 and X2-Y2-Z2 are the 
local frames attached to Link-1 and Link-2 
respectively. Axis X1 is aligned along the un-
deformed neutral axis (N.A.) of Link-1 while 
axis X2 is aligned along the un-deformed 
neutral axis of Link-2. The origins of these 
local frames are located at Joint-1 and Joint-2 
respectively. Joint-1 is given a rigid rotation of 
θ1 and Joint-2 is given a rigid rotation of θ2. 
The position of any point on Link-1 with 
respect to ground is given by: ���� =  ���	���
	���
� + ���	����   (1) 

Similarly, the position of any point on Link-2 
with respect to ground is given by: ��
� =  ���	���∗� + ���	���
∗ 	���
∗ � + ���∗	���	��
	��
� +  ���	��
	��

	��

�     

   (2) 
In above expressions, 

�� =  �cos �� −sin �� 0sin ��0   cos ��0 01�;   

�
 =  �cos �
 −sin �
 0sin �
0    cos �
0 01�;  
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 ���� =  � ����(��,  )0 ";  

 

���∗� =  # $���($�,  )0 %; ��
� =  � �
�
(�
,  )0 ";  

��∗ = �cos(��∗&) − sin(��∗&) 0sin(��∗&)0 cos(��∗&)0   01 �; 

 ��'
� =  �0 (')' ('�′  ;  
 ��'
∗� =  �0 (')'∗ ('�′  ;   
 �+�& =  �0 + 0�  ; 
 

��'
	 =  �1 0 00 cos )' − sin )'0 sin )' cos )'  � ; 

 

  ��'
∗	 =  �1 0 00 cos )'∗ − sin )'∗0 sin )'∗ cos )'∗  �  ;  (3) 

 
L1 and L2 = lengths of Link-1 and Link-2 
respectively, 
θ1 and θ2 = joint rotations (rigid) of Joint-1and 
Joint-2 respectively, 
x1 and x2 = distances measured along un-
deformed Link-1 and Link-2 axes, i.e. X1 and 
X2 respectively,  
w1(x1, t) and w2(x2, t) = elastic displacements 
of Link-1 and Link-2 respectively undergoing 
bending vibrations ��∗& = bending angle at end point of Link-1 = ,-.∗,/.  

{r1} = position coordinates of any point on 
Link-1 w.r.t to un-deformed Link-1 axis i.e., 
X1 in plane X1-Y1 
{r2} = position coordinates of any point on 
Link-2 w.r.t to un-deformed Link-2 axis i.e., 
X2 in plane X2-Y2 
{r1

*} = position coordinates of end point of 
Link-1 w.r.t. un-deformed beam-1 axis X1 in 
plane X1-Y1 

{riT} = position coordinates of any point on 
Link-i in plane Yi-Zi 
ϕi = ϕi(xi, t) = torsional deformation of any 
point on Link-i 

ϕi
* = ϕi(Li, t) = torsional displacement of end 

point of Link-i; i represents the link number (i 
= 1 and 2) 
The total kinetic energy of the manipulator 
system is given by: 0. 2. =  �
 3�4� 5 ���6 �&���6 �7��8.9 + �
 3
4
 5 ��
6 �&��
6 �7�
8:9    (4) 

Total potential energy of the manipulator 
system is given by: ;. 2. =  <.=.
 5 >?:-.:?/.: @
 7�� +8.9 A.B.
 5 >?C.?/. @
8.9 7�� + 3�4� 5 �+�′8.9 ����7�� +<:=:
 5 >?:-::?/:: @
 7�
 +  A:B:
8:9  5 >?C:?/: @
8:9  7�
 + 3
4
 5 �+�′8:9 ��
�7�
     (5) 
In equations- 4 and 5, J1 and J2 are the polar 
moment of inertias of Link-1 and Link-2 
respectively. The joint torques can be obtained 
using Lagrangian dynamics as follows: ,,D >?ℒ?F6 @ − ?ℒ?F = G       (6) 

In above expression, ℒ represents Lagrangian 
of the system and is obtained by taking the 
difference of total kinetic energy and total 
potential energy of the system; q represents 
generalized coordinates and F represents 
generalized torque/force.  H = ��� �
 �� ��∗ �
 �
∗ )� )�∗ )
 )
∗�&

            (6a) G =  �I� I
 0 0 0 0 0 0 0 0�&
             (6b) 

3. DISCRETIZATION USING FINITE 
ELEMENTS METHOD 

 
In this paper, FEM is used to model the 
vibratory motions of the flexible links. This 
involves division of flexible links into some 
finite number of elements and finding the 
inertia and stiffness matrices that govern the 
dynamics of the system under consideration. 
Figure 2 (provided at the end) shows the 
discretization of flexible links using two Space-
Frame Elements [20]. A ‘space-frame element’ 
has two nodes with each node having six 
degrees of freedom: three translational (Q6i-5, 
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Q6i-4 and Q6i-3) and three rotational (Q6i-2, Q6i-1 
and Q6i). The complete equation of motion of 
the flexible manipulator is given by equation 
(7a). JKLL KLMKML KMMN(OPQ) R (OPQ) SHLTHMT U(OPQ) R � +

 J0 00 0MMN(OPQ) R (OPQ) VHLHMW(OPQ) R (OPQ)  +
 XY0Z(OPQ) R � +  X[0Z(OPQ) R � =  SGLGMU(OPQ) R �

        (7a) 
In equation (7a), subscripts- r and f stand for 
rigid and flexible respectively. N represents the 
rigid degrees of freedom present in the system 
and n represents the flexible degrees of 
freedom obtained from finite element 
formulation. For the present case, since there 
are two flexible links, we have N = 2. Hence, 
Mrr consists of two diagonal elements- M11 and 
M22. Mrf and Mfr represent the coupling 
between rigid and flexible motions.  KML =  KLM&         (7b) 
One finite element per link is considered for 
the present analysis. Thus, there are three 
nodes and eighteen degrees of freedom (i.e., n 
= 18). The first six degrees of freedom are 
considered to be fixed. Hence, there remain 
only twelve degrees of freedom. Thus, we get KMM =  �\]	�
R�
      (7c) 
If there are two finite elements per link then 
there will be four elements in total having five 
nodes. The total degrees of freedom will be 
thirty then (i.e., n = 30). In the similar fashion, 
we can obtain the elements of stiffness matrix 
also. For the present case, 0MM =  �^]	�
R�
       (7d) 
 GL =  VI�I
W         (7e) 

τ1 and τ2 represent joint torques. 
For vibration analysis of the flexible links, it is 
necessary to find out the Global stiffness 
matrix and Global mass matrix. The equation 
of motion for undamped vibrations for ‘n’ 
degrees of freedom is as follows: _KMM`O×ObHTMcO×� +  _0MM`O×ObHMcO×� = bGMcO×�          (8a) 

where, Mff = global mass matrix, 
Kff = global stiffness matrix, 

Ff = global force vector, and 
qf = vector of global degrees of freedom. 
If damping is present within the system, then 
the equation of motion for vibratory motion 
will be written as follows: _KMM`O×ObHMT cO×� + _dMM`O×ObHM6 cO×� +_0MM`O×ObHMcO×� =  bGMcO×�   (8b) 

where, Cff = global damping matrix. 
In local frame, the stiffness matrix of a Space-
frame element is given by: ^]& = J^��]& ^�
]&^
�]& ^

]& N      (8c) 

^��]& =  
⎣⎢⎢
⎢⎢⎡
4h00000

0ij000(j

00ik0−(k0

000�h00

00−(k0lk0

0(j000lj⎦⎥⎥
⎥⎥⎤   ;   

^�
]& =
 
⎣⎢⎢
⎢⎢⎡
−4h00000

0−ij000−(j

00−ik0(k0
000−�h00

00−(k07k0

0(j0007j⎦⎥⎥
⎥⎥⎤   ; 

^
�]& =
 
⎣⎢⎢
⎢⎢⎡
−4h00000

0−ij000(j

00−ik0−(k0
000−�h00

00(k07k0

0−(j0007j ⎦⎥⎥
⎥⎥⎤   ; 

^

]& =  
⎣⎢⎢
⎢⎢⎡
4h00000

0ij000−(j

00ik0(k0
000�h00

00(k0lk0

0−(j000lj ⎦⎥⎥
⎥⎥⎤    

      

In above matrices, 4h =  <�pqp ; ij = �
<=rqps ; ik = �
<=tqps ; (j = u<=rqp: ; (k = u<=tqp: ; lj = v<=rqp ;  lk = v<=tqp ; 7j = 
<=rqp ; 7k = 
<=tqp ; �h =  ABpqp  

           (8d) 
where, E = Young’s modulus of the element; 
G = modulus of rigidity of the element; Ae = 
area of cross-section of the element; le = length 
of the element; Iy and Iz are area moment of 
inertias of the element about y- and z-axes 
respectively, Je = polar area moment of inertia 
of the element. The mass matrix of Space-
frame element in local frame is given by 
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equations- (8e) and (8f) given at the end of the 
paper. The local force vector is represented by 
equation (8g) provided at the end. In global 
frame, we have [wx(iw y z{{|}yy \i �z�, ^] =  $
^]& $  

           (8h) [wx(iw {x�l} ~}l x�, GM =  $
{& (8i) [wx(iw \iyy \i �z�, \] =  $
\]& $   
           (8j) 

where, L is the transformation matrix and is 
given by: 

$ =  �� 0 0 00 � 0 000 00 �0 0��      (8k) 

λ is the matrix of direction cosines and is given 
as follows: 

� =  �w� \� |�w
 \
 |
w� \� |��      (8l) 

In above matrix, l1, m1 and n1 represent the 
direction cosines of local-X axis of the Space-
frame element w.r.t. global frame. Similarly, 
l2, m2 and n2 represent the direction cosines of 
local-Y axis and l3, m3 and n3 represent the 
direction cosines of local-Z axis. The 
conversion between local degrees of freedom 
(Ql) of the element and the global degrees of 
freedom (Q) can be done using the relation: 

 ��q��
×� = �$	�
×�
����
×�   (8m) 

4. RESULTS 
The results are obtained in two ways. In the 
first case, the coupling between rigid and 
flexible motions is considered. In the second 
case, results are obtained by neglecting this 
coupling. Firstly, results are obtained for 
bending vibrations only. After that torsional 
effects are also considered. 
4.1 Results using bending vibrations only 
4.1.1: Effect of coupling between Rigid and 

Flexible motions 
In this case, Plane-frame element is used. The 
generalized coordinates and generalized forces 
will be represented as follows: H =  ��� �
 �� �
 ��∗�& (9a)  G =  �I� I
 0 0 0�&  (9b) 

The mass matrix M(q) will be of order 5x5. 
The coefficients representing the elements in 

the first two rows of the inertia matrix 

[Mj(t)]5x5 (j = joint number = 1 and 2) are 
evaluated using the following expressions. K�� =  �
 3�4� X
� $�� + 5 ��
7��8.9 Z +�
 3
4
 X2$
($�
 + ��∗
) + 
� $
� +2 5 �

7�
8:9 + 2$

 ($� cos �
 + ��∗ sin �
) +4(��∗ cos �
 − $� sin �
) 5 �
7�
8:9 Z;   

  (10a) K�
 =  �
 3
4
 X$

 ($� cos �
 + ��∗ sin �
) +
� $
� + 2 5 �

7�
 + 2(��∗ cos �
 −8:9$� sin �
) 5 �
7�
8:9 Z;     (10b) K�� =  �
 3�4�$�
;      (10c) K�v =  �
 3�4�$

 ;     (10d) K�� =  �
 3
4
 X2$�$
 + $

 cos �
 −2 sin �
 5 �
7�
8:9 Z;    (10e) K
� =  K�
;      (10f) K

 =  �
 3
4
 >
� $
� + 2 5 �

7�
8:9 @;   

  (10g) K
� = 0;       (10h) K
v =  >��
 @ 3
4
$

 ;   (10i) K
� =  �
 3
4
 X−$

 cos �
 +2 sin �
 5 �
7�
8:9 Z;    (10j) 

The above expressions were derived using 
Lagrangian dynamics [21]. The same 
equations are used while obtaining the 
response of the flexible manipulator using 
FEM. The only difference is that while using 
FEM, the integration sign is replaced by the 
summation sign. This is because; in FEM the 
system is divided into finite elements having 
nodes. Complete focus is now upon the nodes. 
By increasing the number of finite elements, 
number of nodes increase, size of the elements 
decrease and hence the accuracy of the solution 
increases. Equation (7a) is used to obtain the 
results. One finite element per link is 
considered for the present analysis. Thus, there 
are three nodes and nine degrees of freedom (n 
= 9). KMM =  �\]	�×�      (11a) 



436 KLM = J0 K�� 0 0 K�� 0 0 K�v 00 K
� 0 0 K
� 0 0 K
v 0N 

          (11b) 
The first three degrees of freedom are 
considered to be fixed. Hence, there remain 
only six degrees of freedom. Thus, we get KMM =  �\]	u×u      (11c) 

KLM =  J0 K�� 0 0 K�v 00 K
� 0 0 K
v 0N 

(11d) 
If there are two finite elements per link then 
there will be four elements in total having five 
nodes. The total degrees of freedom will be 
fifteen then. The matrix Mrf will then be 
written as given in equation (11f). 

KLM =  J0 K�� 0 0 K�� 0 0 K�� 0 0 K�v 0 0 K�v 00 K
� 0 0 K
� 0 0 K
� 0 0 K
v 0 0 K
v 0N      (11f) 

The first three degrees of freedom are fixed. 
Hence, first three columns from both the rows 
are eliminated. Similarly for the present case 
we obtain, 0MM =  �^]	u×u      (11g) GL =  VI�I
W        (11h) GM =  ���
 _0 ��p: ��p:.: 0 ��p: ���p:.: `


  
          (11i) 

p = distributed load on links and is due to 
presence of gravity only. ��M = ���� 00 ����;     (11j) 

 ��� = � cos �� sin �� 0−sin �� cos �� 00 0 1� for Link-1, 

and    (11j) 

��� =  � cos(�� + �
) sin(�� + �
) 0−sin(�� + �
) cos(�� + �
) 00 0 1�         

for Link-2.        (11k) 
The physical parameters of the manipulator are 
tabulated in Table 2. These parameters are 
used to obtain the simulation results. 

Viscoelastic damping [22] is incorporated 
within the model of flexible manipulator. For 
this, Kelvin-Voigt elements are considered.  
 
Table 2: Physical parameters for Two-Link Flexible 

manipulator undergoing bending vibrations 
Physical parameter Value 
Length of both the 
links, L1 and L2 

1 m  

Flexural rigidity of 
both the links 

5.68 X 106 Nm2 

Area of cross-section 
of both the links 

0.0419 m2 

Density of both the 
links 

7850 kg/m3 

Joint-1 torque 0.1 Nm (step) 
Joint-2 torque 0.01 Nm (step) 
Type of element Plane-frame element 
Mode of damping Viscoelastic damping using 

Kelvin-Voigt elements 
Solver Ode45 

 
The simulation results are shown below (Fig. 3 
to Fig. 5) in the form of graphs. These graphs 
represent the tip velocities of second link of the 
flexible manipulator. 
 

Fig. 3: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling 
between rigid and flexible motions is considered.) 
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Fig. 3 is obtained after solving equation (7a). 
The simulation stops after 0.018 second. This 
is because of the presence of coupling between 
rigid and flexible motions in equation (7a). If 
centrifugal and Coriolis terms are present then 
the simulation does not run. Step size of ‘0.1 

ms’ was used to obtain the above graph. When 
the coupling terms are reduced (say by a factor 
of 10000) the simulation runs for a longer 
duration. This can be observed from the 
following graphs. 

 

Fig. 4: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling 
between rigid and flexible motions is reduced by 10000.) 

 
In Figure 4, it can be seen that tip velocity is 
high. The effect of centrifugal and Coriolis 
torques are considered while obtaining the 

above results. The simulation stopped after 
0.336 second. Step size of ‘1 ms’ was used to 
obtain the above graph. 

 

Fig. 5: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling 
between rigid and flexible motions is reduced by 10000; effect of gravity is considered.) 

 
Figure 5 shows the tip velocity of second link 
of the flexible manipulator when the effect of 
gravity is considered along with the centrifugal 
and Coriolis torques. Step size of ‘1 ms’ was 
used. It is found that due to presence of gravity, 
the simulation stopped  

after 0.207 second: earlier than the previous 
case. From the simulation results, it can be 
inferred that equation (7a) for the Two-link 
Flexible manipulator is highly non-linear. 

4.1.2: Neglecting the effect of coupling 
between Rigid and Flexible motions 

The presence of coupling between the rigid 
and flexible motions makes it difficult to solve 

equation (7a). Hence, in this case coupling is 
removed and then the effect on simulation is 
observed. Before that, few changes are done in 
the dynamics 
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of the system. Analytically, the vibrating 
motion of an Euler-Bernoulli beam is given by 
following equation. ?:-?D: + > <=��@ ?�-?/� = {(�,  )  (12) 

In above equation, w = deflection of beam, E = 
Young’s modulus of beam, I = area moment of 
inertia of beam, ρ = mass density of beam, A = 
area of cross-section of beam and f(x,t) = 
external force acting on the beam. The 
analytical solution of equation (12) can be 
obtained using the approach of AMM [23]. 
Since approach of FEM is followed in this 
paper, equation (12) can be discretized to yield 
equation (8a). The load vector Ff is now 
reformulated to contain two types of loads. 
First one is due to the distributed load 
described by equation (11i) and the second 
type of load is due to the excitation provided 
by the actuators placed at joints. 
4.2 Calculation of excitation forces acting at 
the tips of the links 
Fig. 6 (provided at the end) helps to understand 
the excitation forces acting at the tips of the 
links. These forces are calculated as follows. {�� = �.�� = �.8. (perpendicular to OA)   

           (13a) {

 = �:�� = �:8: (perpendicular to AB)   

           (13b) {
� =  �.��  (perpendicular to OB) (13c) 

Net force acting at B (perpendicular to AB), 
fbB = f22 + f21 cos(θ2-ϕ)   (13d) 

Net force acting at B (along AB), faB = f21 
sin(θ2-ϕ)          (13e) 

Hence, load vector for the element containing 
the tip of the given link as one of its nodes can 
be described as follows: GM =  ���
 _0 ��p: ��p:.: 0 ��p: + {�� ���p:.: `


 for 
Link-1, and         (13f) GM =  ���
 _0 ��p: ��p:.: 0 + {�� ��p: + {� ���p:.: `


 for 
Link-2.         (13g) 

The load vectors for remaining elements 
remain same as provided by equation (11i). 
Since, torsional vibrations are not considered 
here, hence the axes Z-Z1 and Z-Z2 (Fig. 1) will 
always be parallel to each other. The load 
vector can be described in another way as 
follows: GM =  ���
 X0 �t�p: �t�p:.: 0 �t�p: ��t�p:.: − I�Z


  

for Link-1, and       (13h) GM =  ���
 X0 �t�p: �t�p:.: 0 �t�p: ��t�p:.: − I� − I
Z

 

for Link-2.    (13i) 
It is to be noted that the load vectors described 
in equation (13f) to equation (13i) are only for 
the last elements of Link-1 and Link-2 
respectively. Figure 7 shows the tip velocity of 
second link of the flexible manipulator when 
coupling between rigid and flexible motions 
are not considered. 

Fig. 7: Tip velocity of the second link of Two-Link Flexible manipulator undergoing bending vibrations (Coupling 
between rigid and flexible motions is not considered; effect of gravity is not considered.). 

In Figure 7, effect of gravity is not considered 
while the effect of centrifugal and Coriolis 
torques are taken into account. It can be 
observed that the simulation runs for a longer 
duration of time. After observing the 
simulation results from Fig. 3 to Fig. 7, it can 

be concluded that the Two-Link Flexible 
manipulator is a highly non-linear system due 
to the presence of coupling between rigid and 
flexible motions, presence of gravity and 
presence of centrifugal and Coriolis terms in 
the equation of motion (equation 7a).  
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4.3 Results using combined bending-torsion 
vibrations 
After obtaining results for bending vibrations, 
torsional effects are also included. Thus, the 
following results are for combined bending-
torsional vibrations. For this, Space-frame 
elements are used. Damping is not considered 
while obtaining these results. 
Equations- 13a to 13i describe the tip forces 
and tip load vectors. In case of coupled 
bending-torsion vibrations some additional 
forces will also act at the tips. Following 
equation describes the force acting at the tip of 
first flexible link, responsible for torsional 
vibrations. ��zy z|+  x�H�} i   z� x{ $z|^ − 1, �-� = {��� �
 (2(� + 2(
)   (14) 

 
Table 3: Physical parameters for Two-Link Flexible 

manipulator undergoing combined bending-
torsional vibrations 

Physical parameter Value 
Length of both the links, 
L1 and L2 

0.5 m 

Flexural rigidity of Link-
1 (E1I1y and E1I1z) 

14.93 Nm2 

Flexural rigidity of Link-
2 (E2I2y and E2I2z) 

1.017 Nm2 

Area of cross-section of 
Link-1 

4 cm x 4 mm 

Area of cross-section of 
Link-2 

5.17 cm x 1.5 mm 

Density of both the links 7850 kg/m3 
Modulus of rigidity of 
both the links 

8.08 x 1011 N/m2 

Joint-1 torque Square wave of 
amplitude 0.05 Nm and 
time period 0.1s 

Joint-2 torque Square wave of 
amplitude 0.01 Nm and 
time period 0.1s 

Type of finite element 
used 

Space-frame element 

Solver Ode45 

This twisting torque acts perpendicular to 
plane: Y1-Z1, i.e. along X1 axis (refer to Fig. 6 
and Fig. 1). This torque vector when seen from 
global frame (axes: X-Y-Z in Fig. 1) will have 
two rectangular components along X-axis and 
Y-axis. Besides that, gyroscopic couples will 
also act on the tips. The expressions for 
gyroscopic couple are given as follows. [��xylx�zl lx��w} i   z� x{ $z|^ −1, [d� = ���)6���6� + �6�    (15a) 
The couple GC1 will act along Y1-axis; )6� 
represents the rate of twist of Link-1 about 
local X1-axis, �6� represents the rate of change 
of slope of tip of Link-1 due to bending about 
Z1-axis and Jm1 is the mass moment of inertia 
of Link-1. [��xylx�zl lx��w} i   z� x{ $z|^ −2, [d
 = ��
�)6
 − )6� cos �
 ��6� + �6� +�6
 + �6
         (15b) 
The couple GC2 will act along Y2-axis; )6 
 
represents the rate of twist of Link-2 about 
local X2-axis, �6
 represents the rate of change 
of slope of tip of Link-2 due to bending about 
Z2-axis and Jm2 is the mass moment of inertia 
of Link-2. The local force vectors for the 
elements containing tips of the links as one of 
their nodes are given by equations- 15c and 
15d provided at the end. 

       

Fig. 8: Angular velocity of tip of second flexible link about Z-axis 
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Fig. 9: Linear velocity of tip of second flexible link along Z-axis 
 

Fig. 10: Angular velocity of tip of second flexible link about Y-axis 

Fig. 11: Linear velocity of tip of second flexible link along Y-axis 

Fig. 12: Angular velocity of tip of second flexible link about X-axis 
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Fig. 13: Linear velocity of tip of second flexible link along X-axis 
 
The undamped tip responses of second flexible 

link are shown in Fig. 8 to Fig. 13. From above 
graphs, it can be observed that the angular 
velocity about Z-axis (Fig. 8) is the maximum 
while the linear velocity about Y-axis (Fig. 11) 
is the maximum. 
4.4 Effect of vibrations on positional 
accuracy 
Now, the effect of vibration of flexible links on 
the positional accuracy of the end point of the 
second link (point B in Fig. 6) will be shown. 
The physical parameters provided in Table 2 
are taken for the simulation. The length of the 
position vector of point B is given by ‘OB’. It 
can be found out as follows: ¡¢ =  £��
 + ¤�
 + ¥�
  (16) 

XB, YB and ZB are the coordinates of point B 
(Fig. 6) w.r.t. ground frame XYZ (Fig. 1 and 
Fig. 2). These coordinates are calculated using 
equation (2). Fig. 14 shows the variation of 
length of position vector OB for a Two-Link 
Rigid manipulator and a Two-Link Flexible 
manipulator undergoing both bending and 
torsional vibrations. It is to be noted that the 
rigid manipulator operates in X-Y plane only. 
Hence, its Z-coordinate remains zero 
throughout. But for the flexible manipulator, 
due to presence of torsional vibrations, the 
links show some deflections in Y-Z plane also. 
Hence, the flexible manipulator undergoing 
both bending and torsional vibrations, no 
longer remains planar. 

Fig. 14: Comparison of length of position vectors of the tip of second Link for a Two-Link Rigid and Flexible 
manipulators (The flexible manipulator undergoes coupled bending and torsional undamped vibrations; BT means 

Bending-Torsion). 
 
In Figure 14 and Figure 15, BT stands for 
‘Bending-Torsion’. Figure 15 shows the three-
dimensional plot of position of tip B (Fig. 6) of 
the flexible manipulator. When only bending 

vibrations are present, the flexible manipulator 
remains in X-Y plane, i.e., it can be said to be 
planar.  
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Fig.15: 3D-plot showing the position of tip of second Flexible Link for undamped vibrations. 
 
In figure 15, the red coloured graph is for the 
flexible manipulator undergoing coupled 
bending-torsional (BT) vibrations while the 
blue coloured graph is for the flexible 

manipulator undergoing only bending 
vibrations. It is clear from the figure that 
presence of torsional vibrations severely 

deteriorates the positional accuracy of the tip 
B. 

4.4.1 Frequency analysis of undamped 
vibrations of Flexible Links 

Table 3 gives the natural frequencies of the 
Two-link Flexible manipulator for two finite 
elements (FEs) and ten finite elements (FEs). 

Table 4: Natural frequencies of Flexible Manipulator 
S. No. Natural Frequency (using FEM) 

2 FEs 10 FEs 

1 1.6 2.05 
2 2.1 2.07 
3 5.7 6.99 
4 7.1 7.00 
5 27.5 19.9 
6 35.3 20.5 
7 56 39.6 
8 71 42.6 
9 1019 60.46 
10 1497 67.3 
11 1646.5 98.6 
12 4229.4 112.9 
13 - 132.07 
14 - 153.79 
15 - 175.52 
16 - 184.78 
17 - 245.2 
18 - 248.3 
19 - 302.87 
20 - 336.13 
21 - 391.53 
22 - 425.97 
23 - 449.47 
24 - 462.91 
25 - 508.78 
26 - 587.4 
27 - 592.88 
28 - 651.24 
29 - 705.69 
30 - 779.52 
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Above frequencies were matched using FFT 
analyses. Fig. 16 to Fig. 18 show the  
 

FFT of the vibration of tip B of the flexible 
manipulator undergoing coupled bending-
torsional vibrations. 

Fig. 16: FFT analysis of X-axis vibrations of tip B 
 
From Fig. 16, it is found that the dominant 
frequencies are about: 40 Hz (near to 42.6 Hz 

in Table 4, column 3) and 70 Hz (near to 67.3 
Hz in Table 4, column 3). 

Fig. 17: FFT analysis of Y-axis vibrations of tip B 
 
From Fig. 17, it is found that the dominant 
frequencies are about: 7 Hz (7 Hz in Table 4, 
column 3), 70 Hz (near to 67.3 Hz in Table 4, 
column 3) and 300 Hz (near to 302.87 Hz in 
Table 4, column 3). All these frequencies are 
present in Table 3. Besides that, other 

identifiable frequencies are about: 40 Hz (near 
to 39.6 Hz in Table 4, column 3) and 250 Hz 
(near to 248.3 Hz in Table 4, column 3). There 
are very small peaks between 100 Hz to 200 
Hz. All these frequencies can be identified to 
be present in Table 3.  

Fig. 18: FFT analysis of Z-axis vibrations of tip B 
 
From Fig. 18, the dominant frequencies are 
about: 35 Hz (near to 39.6 Hz in column 3 and 
35.3 Hz in column 2 in Table 4), 56 Hz (near 
to 56 Hz in column 2 and 60.46 Hz in column 
3 in Table 4) and 350 Hz (near to 336.13 Hz in 
column 3, Table 4). The accuracy of FFT 
analysis depends upon the sampling frequency 
and sample size. For the present case, the 

sampling frequency is 1000 samples per 
second and sample size is 100. 
 
5. VALIDATION OF MATHEMATICAL 

MODEL 
The validation of mathematical model is done 
with the results of [24]. The physical 
parameters are given in Table 5. 
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Table 5: Physical parameters (as used by Chiaming 

et. al.) for validation 
Physical parameters Values 
Length of each link L1 = L2 = 1 m 
Mass of each link m1 = m2 = 5 kg 
Young’s modulus E1 = E2 = 2 X 1011 N/m2 
Second moment of area I1 = I2 = 5 X 10-9 N/m2 
Initial conditions θ1 = 0⁰; θ2 = 5⁰ 
Joint 1 torque 0 Nm 

Joint 2 torque Half sine wave of 
amplitude 2 Nm and 
duration 1 second. 

The simulation results are shown in Fig. 19-21. 
To obtain these results, two finite elements are 
used during simulation, i.e., one finite element 
per link. The first two lowest frequencies of the 
flexible manipulator are found out to be: 2 Hz 
and 12 Hz. 

Fig. 19: Comparison of joint responses of Two-Link Flexible manipulator between present work and Chiaming’s work 
 
Figure 19 shows the joint responses of the 
flexible manipulator. These are compared with 
the results of Chiaming. It is found that the 

joint responses found in present work are close 
to the joint responses obtained by Chiaming.  

Fig. 20: Tip displacement of Link-1 of the Flexible manipulator 
 

Fig. 21: Tip displacement of Link-2 of the Flexible manipulator 
 
Figure 20 shows the tip displacement of Link-
1 along global Y-axis and Fig. 21 shows the tip 
displacement of Link-2 along global Y-axis. It 
is found that the forced response (between 0 to 

1 second) of the tips match well with the results 
of Chiaming but the transient responses do not 
match. In the present work, the transients 
exhibit the frequency of 2 Hz while in the work 
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of Chiaming, the transients exhibit the 
frequency of less than 2 Hz. It is notable that 
for the parameters of the flexible manipulator 
given in Table 5, the lowest natural frequency 
is found out to be 2 Hz which is same as being 
exhibited by the graphs in Figure 20 and Figure 
21. 
 
6. CONCLUSIONS 
 
In this paper, Lagrangian-finite element 
method is used to obtain the dynamic model of 
a Two-Link Flexible manipulator. Two types 
of finite elements are considered for 
discretization of the flexible links. These are: 
‘space frame element’ and ‘plane frame 
element’. Coupling between rigid and flexible 
degrees of freedom is considered and its effect 
on simulation is shown. It is found that this 
coupling makes the system highly non-linear 
and the solutions to the equations of motion do 
not converge. In order to obtain results, the 
equations of motion are modified suitably and 
discussed within the paper. The effect of non-
linearity due to the presence of centrifugal, 
Coriolis and gravity terms are also shown in 
the paper. The novelty of the paper lies in 
inclusion of torsional vibrations of the links 
along with the flexural vibrations. It is shown 
that due to the presence of torsional effect, the 
flexible manipulator no longer remains planar. 
The torsional vibrations severely deteriorate 
the positional accuracy of the manipulator. 
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Fig. 2: Dynamics modelling of Two-Link Flexible manipulator using two Space-frame finite elements. 
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In above matrices, §� = §
 = ��pqpv
9 ; §� = ��pqpu ; §v = B«u     (8f) 

where, ρ = mass density of the element, and Jm = mass moment of inertia of the element. 
 {& =  X0 �rqp
 �tqp
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                                            (8g)

where, py and pz are the distributed loads on the element along y- and z-directions respectively. Gx� $z|^ − 1, {& =  X0 �rqp
 �tqp
 0 ��rqp:�
 �tqp:�
 0 �rqp
 �tqp
 0 + �-� �rqp:�
 + [d� ��tqp:�
 − I�Z
         (15c) 
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Fig. 6: Calculation of excitation forces at the ends of links 
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ANALIZA DINAMICĂ A MANIPULATORULUI FLEXIBIL CU DOUĂ LEGĂTURI 
FOLOSIND FEM ÎN CURS DE ÎNDOIRE-TORSIUNE VIBRAȚII 

 
 
Rezumat: În această lucrare, un manipulator flexibil cu două legături este analizat folosind o abordare 
cu elemente finite ale cărei legături sunt în curs de îndoire combinată și vibrații de torsiune. Modelul 
matematic al manipulatorului flexibil se obține folosind dinamica lagrangian. Link-urile sunt 
modelate ca grinzi Euler-Bernoulli și discretizate folosind "spațiu-cadru" și "plan-cadru" elemente. 
Lucrarea prezentă tratează diverse efecte neliniare ar fi, cuplarea între grade rigide și flexibile de 
libertate, efecte centrifuge și Coriolis și prezența gravitației. Modelul matematic este validat folosind 
rezultatele disponibile în literatura de specialitate. Noutatea prezentei lucrări constă în includerea 
efectelor torsionale și evidențiind astfel efectele acestora asupra preciziei poziționale a 
manipulatorului flexibil. 
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