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MULTIBODY SYSTEMS WITH ELASTIC ELEMENTS 
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Abstract: The use of the finite element method for dynamic analysis of multicorp systems with elastic 

elements implies the solving of numerous problems related to the computational techniques and the 

particularity  of such a study in comparison with the techniques applied to the classic finite elements  For 

such systems, special features arise from the non-linearity of the matrix coefficients appearing in the 

differential equation system that describe the mechanical system response and the occurrence of additional 

terms within these equations. In the paper a comparison is made between the finite element results of the 

modal response considering the third degree polynomial shape functions and the fifth degree polynomial 

shape functions. It is also analyzed how the number of finite elements considered for the analysis of a beam 

can influence the obtained results. 
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1. INTRODUCTION 
  

In engineering, more and more often, 
applications that involve high-speed operation 
or high-strength systems appear. This leads to 
the occurrence of undesirable phenomena such 
as vibration and loss of stability. For the study of 
the multibody mechanical systems with elastic 
elements in these cases theoretical studies were 
made. The complexity of the obtained equations 
does not allow us to obtain analytical solutions 
for these cases. For this reason, the numerical 
study of these equations has been carried out and 
the Finite Element Method (FEM) has proven to 
be the most appropriate method for studying 
these cases. 

First, planar mechanisms with a single elastic 
element were considered. The method was then 
extended to planar mechanisms with several 
elastic elements and then was applied to general 
systems with two or three-dimensional motion 
and increasingly complex finite elements were 
used [1], [2], [3], [6], [13]. Some studies offer 
the possibility to develop the method to 
mechanical system with different constitutive 
laws [4], [5]. In this paper we studied how the 

number of finite elements used can influence the 
results obtained in case when the system is 
modeled with one-dimensional finite elements 
[14], [17], [18], [22]. We studied the case of a 
rotating rod around an end.  

Two cases were analyzed, the first using third 
degree interpolation functions and the second 
using the fifth degree interpolation functions. 
Using a large number of finite elements can lead 
to a sometimes dramatic increase in computing 
time. As a result, it is necessary to use a large 
enough number to ensure that an accurate result 
is obtained within a reasonable computational 
time. To determine this, several numerical 
experiments have been done within the work. 
  
2. MOTION EQUATIONS 
  
 The first step in finite element analysis of 
such a system is to obtain the motion equations 
for a single finite element. The problem has been 
studied by many researchers, including [19], 
[21]. For the sake of understanding, we 
summarize the main results obtained in the 
above-mentioned works. 
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Only one finite beam type is considered. A 
point M can make a displacement f (u,v,w) 

becoming the M' point. If the shape functions are 
found in the matrix N and the vectors 1δ  and 2δ  

are the displacement vectors of the ends, one can 
write: 
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and the torsion angle of the cross-section: 
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We denote: 
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the vector defining the displacements (slopes, 
rotations) of the selected finite element. 

The matrix N  can be written as: 
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where the rows ( )uN , ( )vN  and ( )wN  correspond to 

the displacement u, v and w: 
The slopes β   and γ  as  [22] :  

                 
dx

dw−=β     and    
dx

dv=γ  .         (5) 

        The angular speed and the angular 
acceleration are: 
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The bending, traction-compression and 
torsion lead to an internal energy of form:  
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It is noted 
               taie kkkk ++=  .          (11) 

The axial force in beam due to the rotation is: 

                        e
G
e

T

eaE δkδ
2

1=            (12) 

The total internal energy for one single finte 
element is: 
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 The Lagrangian for the one single finite 
element is: 

              
c

pc WWEEL ++−= .      (14) 

 where Ec represents the kinetic energy of the 
element, Ep internal energy and c

WW +  the 
work of the concentrated and distributed forces 
acting on the element. Aplying the Lagrange 
equations [7], [11], [15], [16]: 
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the motion equations are [3], [12] (written in a 
local coordinates system): 
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These equations will be used in the following 

in the study of a beam being in a rotation around 
one end. It is now possible to determine the 
matrix coefficients of the system of the 
differential equations. These coefficients a 
nonlinear through the angular speed and angular 
acceleration. 
  
3. EIGENVALUES OF A ROTATING 

BEAM  
 
3.1 Shape function of third degree 

 

 Shape functions have been chosen third 
degree polynomials. In the following, we 
calculated eigenvalues for a beam that rotates 
around an end with an angular velocity of 1000, 
2000 and 10,000 [1/s]. The calculus was made 
considering different discretization of a beam 
having 1m length and 1 cm in diameter. The 
results are mentioned below. Only the first two 
eigenvalues were presented, things happening 
the same for the other eigenvalues. The error was 
also defined as the ratio of the difference 
between two successive eigenvalues and the 
eigenvalue. It is noted that if we use more 20 
finite elements error falls below 1 E-04 and if the 
number of elements is greater than 60 then the 
error falls below 1 E-05. Things happen 
similarly for the three values of the angular 
speed chosen. 
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Table 1 

The first two eigenpulsation  for the angular speed 

ω=1000(1/s) 

Nr. 

of 

el. 

Eigen-

pulsation 
p1 

ε 
Eigen-

pulsation 
p2 

ε 

 Hz --  -- 

5 2,07E+08 0,000847 8,177E+09  1,08E-03 
10 2,07E+08 0,000265 8,169E+09 1,03E-04 
15 2,07E+08 0,00013 8,168E+09 3,37E-05 
20 2,07E+08 7,71E-05 8,167E+09 1,72E-05 
25 2,07E+08 5,11E-05 8,167E+09 1,07E-05 
30 2,07E+08 3,63E-05 8,167E+09 7,38E-06 
35 2,07E+08 2,72E-05 8,167E+09 5,43E-06 
40 2,07E+08 2,11E-05 8,167E+09 4,17E-06 
45 2,07E+08 1,68E-05 8,167E+09 3,31E-06 
50 2,07E+08 1,37E-05 8,167E+09 2,70E-06 
55 2,07E+08 1,14E-05 8,167E+09 2,24E-06 
60 2,07E+08 9,7E-06 8,167E+09 1,89E-06 
65 2,07E+08 8,29E-06 8,167E+09 1,62E-06 
70 2,07E+08 7,12E-06 8,167E+09 1,40E-06 
75 2,07E+08 6,3E-06 8,167E+09 1,22E-06 
80 2,07E+08 5,47E-06 8,167E+09 1,08E-06 
85 2,07E+08 4,78E-06 8,167E+09 9,57E-07 
90 2,07E+08 4,67E-06 8,167E+09 8,61E-07 

 
In Fig.1 și 3 present the eigenpulsations p1 

and p2 for different number of elements. In Fig.2 
and 4 are presented the diagram of the error if 
were chosen different number of elements. In 
Fig. 5,6,7 and 8 are presented the same chart if 
the beam has a rotation around one end.  

 

 
Fig. 1..Eigenpulsation p1(Hz) 

 

 
Fig.2. The diagram of ε for eigenpulsation p1 

 

 
Fig. 3.Eigenpulsation p2(Hz) 

 

 
Fig.4. The diagram of ε for eigenpulsation p2 

 
 
 

     Table 2 

The first two eigenpulsation for the angular speed 

ω=2000(1/s) 

Nr. 

of 

el. 

Eigen-

pulsation 

p1 

ε 

Eigen-

pulsation 

p2 

ε 

 Hz --  -- 

5 2.040E+08 3.36E-03 8.18E+09 1.53E-03 
10 2.033E+08 1.07E-03 8.168E+09 2.51E-04 
15 2.031E+08 5.28E-04 8.166E+09 1.08E-04 
20 2.030E+08 3.14E-04 8.165E+09 6.15E-05 
25 2.029E+08 2.08E-04 8.165E+09 4.02E-05 
30 2.029E+08 1.48E-04 8.164E+09 2.84E-05 
35 2.028E+08 1.11E-04 8.164E+09 2.12E-05 
40 2.028E+08 8.59E-05 8.164E+09 1.64E-05 
45 2.028E+08 6.85E-05 8.164E+09 1.31E-05 
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50 2.028E+08 5.60E-05 8.164E+09 1.07E-05 
55 2.028E+08 4.66E-05 8.164E+09 8.90E-06 
60 2.027E+08 3.95E-05 8.164E+09 7.52E-06 
65 2.027E+08 3.36E-05 8.163E+09 6.44E-06 
70 2.027E+08 2.93E-05 8.163E+09 5.58E-06 
75 2.027E+08 2.56E-05 8.163E+09 4.88E-06 
80 2.027E+08 2.26E-05 8.163E+09 4.31E-06 
85 2.027E+08 1.99E-05 8.163E+09 3.82E-06 
90 2.027E+08 1.79E-05 8.163E+09 3.42E-06 

 

 
Fig. 5. Eigenpulsation p1(Hz) 

 

 
Fig.6. The diagram of ε for eigenpulsation p1 

 

 
Fig.7.Eigenpulsation p2(Hz) 

 

 
Fig.8. The diagram of ε for eigenpulsation p2 

 
Table 3 

The first two eigenpulsation for the angular speed 

ω=10000(1/s) 

 

Nr. 

of 

el. 

Eigen-

pulsation 

p1 

ε 
Eigen-

pulsation 

p2 

ε 

 Hz --  -- 

5 1.062E+08 1.57E-01 8.284E+09 1.56E-02 
10 8.956E+07 6.00E-02 8.155E+09 5.01E-03 
15 8.419E+07 3.15E-02 8.114E+09 2.49E-03 
20 8.153E+07 1.94E-02 8.094E+09 1.49E-03 
25 7.996E+07 1.31E-02 8.082E+09 9.92E-04 
30 7.891E+07 9.46E-03 8.074E+09 7.08E-04 
35 7.816E+07 7.14E-03 8.068E+09 5.31E-04 
40 7.760E+07 5.58E-03 8.064E+09 4.13E-04 
45 7.717E+07 4.49E-03 8.06E+09 3.30E-04 
50 7.682E+07 3.68E-03 8.058E+09 2.70E-04 
55 7.654E+07 3.08E-03 8.055E+09 2.25E-04 
60 7.631E+07 2.61E-03 8.054E+09 1.90E-04 
65 7.611E+07 2.24E-03 8.052E+09 1.63E-04 
70 7.594E+07 1.95E-03 8.051E+09 1.41E-04 
75 7.579E+07 1.70E-03 8.05E+09 1.24E-04 
80 7.566E+07 1.51E-03 8.049E+09 1.09E-04 
85 7.554E+07 1.34E-03 8.048E+09 9.69E-05 
90 7.544E+07 1.20E-03 8.047E+09 8.67E-05 

 
 For an angular speed 10.000 [1/s] the results 
are presented in Table 3. The diagram are similar 
with the previous presented. 
A comparison of the eigenpulsations for the 
three angular speeds is shown in Figure 9 and a 
comparison of the error in the three cases is 
presented in Figure 10. 
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Fig. 9. Comparison between eigenpulsation p2(Hz) 
for each case 

 
 

 
Fig. 10.Comparison between ε of eigenpulsation 

p2(Hz) for each case 

 
3.2 Shape function of fifth degree 

 
Shape functions have been chosen fifth 

degree polynomials. The same calculus as in 3.1 
in mase. We present the results in Table 4, 5 and 
6.  

 

 

Table 4 

The first two eigenpulsation for the angular speed 

ω=1000(1/s) 

Nr. 

of 

el. 

Eigen-

pulsation 

p1 

ε 

Eigen-

pulsation 

p2 

ε 

 Hz --  -- 

5 2.08E+08 2.17E-03 8.172E+09 2.86E-04 
10 2.07E+08 7.52E-04 8.169E+09 1.34E-04 
15 2.07E+08 2.50E-04 8.168E+09 4.67E-05 
20 2.07E+08 1.25E-04 8.168E+09 2.36E-05 
25 2.07E+08 7.48E-05 8.168E+09 1.43E-05 

30 2.07E+08 4.98E-05 8.168E+09 9.55E-06 
35 2.07E+08 3.56E-05 8.168E+09 6.84E-06 
40 2.07E+08 2.66E-05 8.167E+09 5.14E-06 
45 2.07E+08 2.08E-05 8.167E+09 4.00E-06 
50 2.07E+08 1.65E-05 8.167E+09 3.21E-06 
55 2.07E+08 1.35E-05 8.167E+09 2.63E-06 
60 2.07E+08 1.10E-05 8.167E+09 2.20E-06 
65 2.07E+08 9.77E-06 8.167E+09 1.85E-06 
70 2.07E+08 8.28E-06 8.167E+09 1.59E-06 
75 2.07E+08 6.91E-06 8.167E+09 1.36E-06 
80 2.07E+08 5.90E-06 8.167E+09 1.20E-06 
85 2.07E+08 6.18E-06 8.167E+09 1.08E-06 
90 2.07E+08 4.88E-06 8.167E+09 9.25E-07 

 
 
 
 
 
 
 

Table 5 

Table 5. The first two eigenpulsation for the angular 

speed ω=2000(1/s) 

Nr. 

of 

el. 

Eigen-

pulsation 

p1 

ε 

Eigen-

pulsation 

p2 

ε 

 Hz --  -- 

5 2.071E+08 8.70E-03 8.182E+09 1.10E-03 
10 2.053E+08 3.03E-03 8.173E+09 5.35E-04 
15 2.046E+08 1.01E-03 8.169E+09 1.87E-04 
20 2.044E+08 5.06E-04 8.167E+09 9.46E-05 
25 2.043E+08 3.03E-04 8.166E+09 5.71E-05 
30 2.043E+08 2.02E-04 8.166E+09 3.82E-05 
35 2.042E+08 1.44E-04 8.166E+09 2.74E-05 
40 2.042E+08 1.08E-04 8.165E+09 2.06E-05 
45 2.042E+08 8.41E-05 8.165E+09 1.60E-05 
50 2.042E+08 6.73E-05 8.165E+09 1.28E-05 
55 2.041E+08 5.52E-05 8.165E+09 1.05E-05 
60 2.041E+08 4.55E-05 8.165E+09 8.76E-06 
65 2.041E+08 3.84E-05 8.165E+09 7.41E-06 
70 2.041E+08 3.34E-05 8.165E+09 6.36E-06 
75 2.041E+08 2.93E-05 8.165E+09 5.53E-06 
80 2.041E+08 2.45E-05 8.165E+09 4.84E-06 
85 2.041E+08 2.21E-05 8.165E+09 4.25E-06 
90 2.041E+08 2.03E-05 8.165E+09 3.79E-06 

 
 

Table 6 

The first two eigenpulsation for the angular speed 

ω=10000(1/s) 

Nr. 

of 

el. 

Eigen-

pulsation 

p1 

ε 

Eigen-

pulsation 

p2 

ε 

 Hz --  -- 

5 1.82E+08 2.38E-01 8.52E+09 2.63E-02 
10 1.39E+08 1.10E-01 8.29E+09 1.32E-02 
15 1.23E+08 4.14E-02 8.18E+09 4.65E-03 
20 1.18E+08 2.16E-02 8.15E+09 2.37E-03 
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25 1.16E+08 1.33E-02 8.13E+09 1.43E-03 
30 1.14E+08 8.97E-03 8.12E+09 9.61E-04 
35 1.13E+08 6.47E-03 8.11E+09 6.89E-04 
40 1.12E+08 4.88E-03 8.10E+09 5.18E-04 
45 1.12E+08 3.82E-03 8.10E+09 4.04E-04 
50 1.11E+08 3.07E-03 8.09E+09 3.23E-04 
55 1.11E+08 2.52E-03 8.09E+09 2.65E-04 
60 1.11E+08 2.10E-03 8.09E+09 2.21E-04 
65 1.11E+08 1.78E-03 8.09E+09 1.87E-04 
70 1.10E+08 1.53E-03 8.09E+09 1.60E-04 
75 1.1E+08 1.33E-03 8.08E+09 1.39E-04 
80 1.1E+08 1.17E-03 8.08E+09 1.22E-04 
85 1.1E+08 1.03E-03 8.08E+09 1.08E-04 
90 1.1E+08 9.15E-04 8.08E+09 9.56E-05 

 

 A comparison of two eigenpulsations for the 
three angular speeds is shown in Figure 11 and 
13  and a comparison of the error in the three 
cases is presented in Figure 12 and 14. 

 
Fig. 11. Comparison between eigenpulsation p1(Hz) 

for each case 
 
 

 
Fig. 12. Comparison between ε of eigenpulsation 

p1(Hz) for each case 

 

 
Fig. 13. Comparison between eigenpulsation p2(Hz) 

for each case 
 

 
Fig. 14. Comparison between ε of eigenpulsation 

p2(Hz) for each case 

 
4. CONCLUSIONS  
  

In the paper we analyzed how the number of 
finite elements chosen for the study of a beam 
can influence the accuracy of the obtained 
results and the necessary computational time. 
For the input data used in the paper it was 
concluded that a number of several dozen finite 
elements can provide a satisfactory result in a 
modal analysis. Increasing the number of finite 
elements does not lead to a significant increase 
in the result. If the number of finite elements 
increases to several hundred, the time required 
to get the results is a few hours when using the 
Matlab computing platform, so it is prohibitive. 

The conclusion is that an analysis of the 
discretization, in the case of the dynamic 
analysis of multicorp systems using the finite 
element method, is required. A too small number 
of finite elements used can lead to significant 
error results, while a large number of finite 
elements, even if they provide greater precision, 
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leads to prohibitive computation times. 
Moreover, this high precision is often not 
necessary at all. 
   
8. REFERENCES  

  
[1] Fanghella, P., Galletti, C., Torre, G., An 

explicit independent-coordinate formulation 
for equations of motion of flexible multibody 
systems. Mech. Mach. Theory 38, 417–437, 
2003.  

[2] De Falco, D., Pennestri, E., Vita, L., An 
investigation of the influence of 
pseudoinverse matrix calculations on 
multibody dynamics by means of the 
Udwadia–Kalaba formulation. J. Aerosp. 
Eng. 22(4), 365–372, 2009.  

[3] Gerstmayr, J., Schberl, J., A 3D finite 
element method for flexible multibody 
systems. Multibody Syst. Dyn. 15(4), 305–
320, 2006.  

[4] Hassan, M., Marin, M.,  Ellahi, R,  Alamri, 
SZ, Exploration of convective heat transfer 
and flow characteristics synthesis by Cu–
Ag/water hybrid-nanofluids, Heat Transfer 
Research, 49 (18), 1837-1848 (2018) 

[5] Marin, M., Craciun, EM, Uniqueness results 
for a boundary value problem in dipolar 
thermoelasticity to model composite 
materials, Composites Part B: Engineering 
126, 27-37(2017), 

[6] Mayo, J., Dominguez, J., Geometrically 
nonlinear formulation of flexible multibody 
systems in terms of beam elements: 
geometric stiffness. Comput. Struct. 59(6), 
1039–1050, 1996.  

[7] Negrean I., New Formulations in Analytical 
Dynamics of Systems, Acta Technica 
Napocensis, Series: Applied Mathematics, 
Mechanics and Engineering, Vol. 60, Issue I, 
pp. 49-56, 2017.  

[8] Negrean I., Mass Distribution in Analytical 
Dynamics of Systems, Acta Technica 
Napocensis, Series: Applied Mathematics, 
Mechanics and Engineering, Vol. 60, Issue II, 
pp. 175-184, 2017. 

[9] Negrean I., Generalized Forces in Analytical 
Dynamics of Systems, Acta Technica 
Napocensis, Series: Applied Mathematics, 

Mechanics and Engineering, Vol. 60, Issue 
III, pp. 357-368, 2017. 

[10] Negrean I., Advanced Notions in Analytical 
Dynamics of Systems, Acta Technica 
Napocensis, Series: Applied Mathematics, 
Mechanics and Engineering, Vol. 60, Issue 
IV, pp. 491-502, 2017. 

[11] Negrean I., Advanced Equations in 
Analytical Dynamics of Systems, Acta 
Technica Napocensis, Series: Applied 
Mathematics, Mechanics and Engineering, 
Vol. 60, Issue IV, pp. 503-514, 2017. 

[12] Neto, M.A., Ambrosio, J.A.C., Leal, R.P., 
Composite materials in flexible multibody 
systems. Comput. Methods Appl. Mech. Eng. 
195(5051), 6860–6873, 2006.  

[13] Piras, G., Cleghorn, W.L., Mills, J.K., 
Dynamic finite-element analysis of a planar 
high speed, high-precision parallel 
manipulator with flexible links. Mech. Mach. 
Theory 40(7), 849–862, 2005.  

[14] Scutaru, ML,  Chircan, E.,  Marin, M., 
Study of an Elastic Beam, in Centrifugal 
Field, using Finite Element Method. Series: 
Applied Mathematics, Mechanics, and 
Engineering Vol. 62, Issue II, June, 2019 

[15] Simeon, B., On Lagrange multipliers in 
flexible multibody dynamic. Comput. 
Methods Appl. Mech. Eng. 195 (50–51), 
6993–7005, 2006. 

[16] Vlase, S., A Method of Eliminating  
Lagrangian-multipliers from the Equation of 
Motion of Interconnected Mechanical 
Systems. Journal of Applied Mechanics-
Transactions of ASME, 54(1), 235-237,1987.  

[17] Vlase, S., Eigenvalues and Eigenmodes of 
an Inclined Homogeneous Truss in a 
Rotational Field . Vol.59, (7-8), 699-715, 
2014. 

[18] Vlase, S., Teodorescu, P. P., Itu, C. et al., 
Elasto-Dynamics of a Solid with a General 
"Rigid" Motion using FEM Model Part II. 
Analysis of a Double Cardan Joint. Romanian 
Journal of Physics, Vol. 58, 7-8, pp. 882- 
892,2013.  

[19] Vlase, S., Marin, M., Öchsner, A. et al. 
Motion equation for a flexible one-
dimensional element used in the dynamical 
analysis of a multibody system. Continuum 



496 
 

 

Mech. Thermodyn. 31: 715. https:// 
doi.org/10.1007 /s00161-018-0722-y, 2019.  

[20] Vlase, S., Dynamical response of a 
multibody system with flexible element with 
a general three-dimensional motion. Rom. J. 
Phys. 57(3–4), 676–693, 2012.  

[21] Vlase, S., Danasel, C., Scutaru, M.L., 
Mihalcica, M., Finite element analysis of 
two-dimensional linear elastic systems with a 

plane rigid motion. Rom. J. Phys. 59(5–6), 
476–487, 2014.   

[22] Vlase, S., Itu, C., Vasile, O.et al., Vibration 
Analysis of a Mechanical System Composed 
of Two Identical Parts. Romanian Journal of 
Acoustic and Vibration,  Vol. 15, Issue: 1, 
58-63, 2018. 

 

      Influența numărului de elemente finite în determinarea răpspunsului modal in analiza 

sistemelor multicorp cu elemente elastice  
  

Rezumat: Utilizarea metodei elementelor finite pentru analiza dinamică a sistemelor multicorp cu 

elemenete elastic presupune rezolvarea a numeroase probleme, legate de tehnicile de calcul și de 

particularitățile unui astfel de studiu prin comparație cu tehnicile aplicate la studiul cu elemente 

finite în cazul classic. Pentru astfel de sisteme apar caracteristici special, determinate de 

nelinearitatea coeficienților matriceali care apar în sistemul de ecuații diferențiale care descriu 

răspunsul sistemului mechanic și de apariția unor termeni suplimentari, caracteristi în cadrul acestor 

ecuații. In lucrare se face o comparație între calculul cu elemente finite considerând funcții de 

interpolare de gradul trei și funcțiile de interpolare de gradul 5. Este analizat și modul în care 

numărul de elemente finite considerat pentru discretizarea unei bare poate influența rezultatele 

obținute. 
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