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Abstract: This article aims to present a system for making inference (derivation) on any logical knowledge 

base with the goal to achieve its saturation. Typical knowledge bases from literature are comprised of facts 

and deduction rules. In our work was considered an extra layer of this ontology: the one of constraints. So, 

in our case, the KB is a triple: (F,R,N). The concrete implementation of the system for derivation was 

made in the object-oriented language C#. The KB is represented in OO environment as a collection of 

objects of classes corresponding to each type of knowledge. The system takes at input the knowledge base 

(in OO representation), applies the derivation algorithm and produces at output the saturated set of facts. 

The testing was done on three types of KBs: small, medium and large. Results and comparisons are 

presented to the reader in tabular form.  
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1. INTRODUCTION   

 

In this paper is proposed an inference engine 

for achieving the saturation of logical 

knowledge bases. The system uses at its basis an 

algorithm for making derivation that applies 

rules on facts in order to deduce new knowledge 

from the factual part and at the same time checks 

not to violate any negative constraint stated in 

the set. In ordinary logics this is known the 

Modus Ponens principle. Saturation of the 

knowledge base is the state when, after an 

application of rules on  the facts no new 

knowledge can be deduced.Our system differs 

from the existing state-of-art solutions in the fact 

that it adds an extra layer to the ontology, which 

is that of (negative) constraints.  

In what follows we will make an 

introduction into logical formalisms, presenting 

the basic theoretical notions related to the 

domain. 

 

1.1.Basic Terms - Definitions 

We will considere here only the positive 

existential syntactic fragment of First Order 

Logics, i.e. FOL(∃,Λ), (Baget et al.) [2] which is 

the one comprised of formulas built with the 

quantifiers (∃,Λ) and only the connectors 

implication (→) and conjunction (Λ). No 

disjunction and negation is implied, and a 

special constant is used to denote falsity (⊥). 

A Vocabulary is a triple consisting of thee 

disjoint sets:  

 Voc=(C,V,P)                (1)  

where C is a finite set of constants, V is an 

infinite set of variables and P a finite set of 

predicates. A function ar:P→N associates a 

natural number to a predicate p∈P that defines 

its arity. A term over Voc is a constant t∈C, or a 

variable t∈V. 

An atomic formula (atom) over Voc is a 

predicate: p(t1,…tn), where p∈P, ar(p)=n, and 

t1,…tn are terms of Voc, that are constants or 

variables; in general former are represented in 

uppercase and latter in lowercase letters.   A 

ground atom is a predicate that contains only 

constants. A conjunct is named a conjunction of 

atoms, and a ground conjunct is one of ground 

atoms. A variable of a formula is called free if it 

isn’t found in the scope of any quantifier. A 



 

 

formula is closed if it has no free variables (also 

named sentence). 

The most primitive form to represent knowledge 

are facts. A fact can be represented by a ground 

atom because this signifies a primitive form of 

knowledge. To represent incomplete knowledge 

are implied existentially quantified variables. 

For example: “Teacher John  teaches a student 
we don’t know the name of” is represented in 

First Order Logics by formula: 

 ∃x(teacher(John) Λ student(x) Λ 

teaches(John,x)           (2) 

The second main formalism for knowledge 

representation are rules. Rules are logical 

formulas that allow to infer (derive, produce) of 

new facts from the explicit stated ones. They 

encode the so-called intentional knowledge, 

regarded as an ontology layer that reinforces the 

expressiveness of the knowledge base. Uses 

variables and unknown individuals and are 

known in other places as existential rules, such 

as in (Baget et al)[2].  An existential rule is a 

closed formula of the form: 

R = ∀�⃗((∀�⃗B) → (∃	⃗H))             (3) 
where B and H are called the rule’s body and 

head, respectively. These are facts (conjuncts of 

atoms) in which vars(B)= �⃗ ∪ �⃗ and vars(H)= 

	⃗ ∪ �⃗, where the notations vars and terms are 

used to denote the set of variables and terms 

from a fact. Notation �⃗ is used as a shorthand for 

a sequence of variables (x1,x2,…xn). 

Existential rules bring with them new features, 

besides normal rules, some of them are: allow 

many atoms in the head of the rule (as shown in 

def.3), possibility to represent existential 

variables and unrestricted arity for predicates. 

This increase in expressiveness does not come 

alone but also with an increase in complexity of 

reasoning, some problems in the general 

existential rules framework are undecidable (e.g. 

implication, entailment). For classes of 

existential rules that ensure decidability while 

keeping expressiveness to be seen works of 

(Baget et al)[2], (Chein and Mugnier)[3]. 

The third form of knowledge is one used to 

represent negativity, that is to show how things 

are not ought to be; these are called negative 
constraints. This is the counterpart notion of 

integrity constraints from database systems, 

used to place restrictions on data and preserve its 

semantics. A negative constraint is a rule that has 

no head, only body: 

N = ∀�⃗(B → ⊥)              (4) 

Negative constraints play an important role in 

logical knowledge bases, they are devices used 

to detect inconsistencies in the factual part. Their 

triggering is interpreted as presence of 

inconsistency. An example would be: 

N=retiredFrom(x,y) Λ worksIn(x,y) →⊥       (5) 

that states that it is impossible for a person to be 

retired from a place and yet to work there. 

After having specified the main logical 

formalisms of knowledge representation, we can 

now say what a knowledge base is. 

A knowledge base (KB) over a vocabulary Voc 

is an entity: K=(F,R,N) consisting of a finite set 

of facts, rules and negative constraints.  

Let V be a set of variables and T a set of terms 

T on a vocabulary.  A substitution σ of V by T 

(denoted σ:V→T) is a mapping from V to T. Let 

F be a fact; σ(F) denotes the fact obtained from 

F by replacing each occurrence of x∈V∩ vars(F) 

by σ(x). A homomorphism from a fact F to a fact 

F’ is a substitution σ of vars(F) by terms(F’) such 

that σ(F) ⊆F’.  

A rule R = B → H is applicable to a fact 

F if there is a homomorphism σ from B to F. The 

rule’s application produces a new fact α(F,R, σ) 

= F∪σsafe(H), where σsafe is called safe 

substitution because it replaces existential 

variables with fresh (not introduced) ones. These 

are important not to attribute used variables to 

new facts, which causes problems when rules are 

reapplied on the new facts.  

Rules can follow an order for 

application, i.e. it is possible that a rule R2 is not 

applicable to any fact from the set but to become 

so after applying other rules. This gives birth to 

the concepts of derivation sequence and R-
derivation.  
Let F be a fact and R a set of rules. A fact F’ is 

called an R-derivation of F if there is a finite 

sequence called derivation sequence 

(F0,F1,…Fn) in which F0=F, Fn=F’ and for 

i=0, . . �������� there is a rule Ri∈R applicable to Fi and 

Fi+1 is its immediate derivation. For more about 
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these notions reader is referred to (Baget et 

al.)[2] and Abdallah [1].  

When having a set of facts F and one of rules 

R we are interested in unfolding all implicit 

knowledge from facts by applying the rules. This 

process is called saturation procedure and relies 

on a breadth-first search with forward chaining 

scheme [x],[y]. It begins from a derivation 

sequence in which F0 is the initial set and at each 

step a new fact Fi is produced from the current 

fact Fi-1 by computing all homomorphisms from 

the bodies of  all rules to Fi-1 and then make the 

rule applications. The fact obtained after step k 

is called k-saturation of F. Next we will try to 

give a formal definition of these notions, as is 

shown in (Baget et al)[2]. 

Let F be a fact and R a set of rules. With 

Π(R,F) we denote the set of homomorphisms 

from bodies of all rules to fact F.   

Π(R, F) = {(R,σ)| R∈R and σ homorph. from 
body(R) to F}                 (6) 

The direct saturation of an arbitrary fact F with 

R is defined: 

ClR(F) = ⋃ σ����(head(R))( ,!)∈"(#,$)      (7)  

The k-saturation of F with R is denoted by 

ClR
k(F) and is inductively calculated: 

Cl#
' (() = (,  

*+ 
, (() = *+ -*+ 

,./(()0 , 123 4++ 5 > 0     

(8)  
The saturation procedure is known in the 

database community as naïve chase (Cali et 

al.)[3]. It has been used in database reparations 

that do not respect its functional dependencies. 

Other types of chases had been proposed in 

literature, differing only on how they handle 

existential variables and redundancy. For more 

about this to be seen (Deutsch et al.)[7] and 

(Marnette)[10].  

 

1.1.Saturation: Example 

Overall, what we can do when having a set of 

facts supplied by a set of rules and one of 

negative constraints is to use the rules in order to 

derive all implicit knowledge from the facts and 

in the same time be careful not to violate any 

negative constraints stated in the set. The result 

of this procedure is a set of facts extending the 

initial one. In ordinary logic this is called 

application of the Modus Ponens principle, and 

in Datalog is referred as Elementary production 

Principle (Ceri et al)[4]. In order for it to work, 

the body of the rule should map on some facts 

from the set, other said, there is a substitution of 

variables that makes the body of the rule 

resemble to some facts from the set.   

Next we will present an example of how the 

saturation procedure works on a knowledge 

base, for the reader to better understand since 

this is the main scope of this research. 

Let’s consider the knowledge base K=(F,R,N): 
- F ={p(A),q(B),s(B)} 

- R ={p(x) →r(x,y), p(x)Λs(y) →p(y), q(x) →r(x,y), 

r(x,y) →t(x)}  

- N = ϕ 

The derivation algorithm is a breadth-first 

search which uses a forward chaining scheme 

that works by applying each rule on the initial 

set of facts and after one iteration the set of 

deduced facts is added to the initial one.In our 

example this is: 

 

789:;:  *+ 
'(=) = = 

 789:>: *+ 
/ (=) = = ∪ ?3(@, �/), p(B),

r(B, yE)F GH5�I J/K5Lℎ  N/?(�, @)F,  JE K5Lℎ NE =
?(�, @), (�, O)F, JP K5Lℎ NP = ?(�, O)F 

789:Q: *+ 
E(()

= *+ 
/ (() ∪ ?L(@)F GH5�I JR K5Lℎ NR

= ?(�, @), (�, �/)F4�S JRK5Lℎ NT
= ?(�, O), (�, �E)F 

789:U: �2 �VK 14WLH 43V X32SGWVS 132Y 3G+V 

 4XX+5W4L52� 
→ X32WVSG3V ℎ4+LH 41LV3 3 HLVXH 
 

2. RELATED WORKS 

All the work presented in this paper has been 

done to implement a private project developed 

for the needs of an institution, Université de La 

Rochelle, France, in collaboration with some of 

the staff there. 

For the theoretical part of this article, in 

order to familiarize with the notions of the 

domain of KR logical formalisms, 2 main 

resources studied by authors worth mention. 

First is the phd thesis of  Arioua Abdallah [1] 

(one of the staff from Univ. LR ), which is about 

knowledge representations formalisms, 

reasoning services, query answering in presence 



 

 

of inconsistency. The second is the book of 

Dung [8], which was used by [1] to instantiate 

an argumentation framework using for 

representation the logical language Datalog+.  

Some other important works in this field 

worth mention are those of (Poggi et al.)[11] and 

(Croitoru et al.)[6], which are all about advanced 

notions and concepts of this field. 

Rule-based engines are frameworks that 

have been created in object-oriented languages 

in the scope to add a logic layer into the 

applications and to separate it from data, which 

brings a series of advantages. We will enumerate 

here the ones from C#, since this is the language 

used to implement also our inference engine 

system: NRules, SimpleRules.Net, NxBRE, 

DROOLS.Net, etc. For more information about 

these reader is referred to [12], [13], [14], [15].   

None of these systems can be used to achieve 

our objective, that is to deduce new facts by 

inference while checking not to cross any 

negative constraints from the set, and the process  

repeats until is obtained saturation. This is why 

we had to design and implement from the scratch 

our own inference engine for this special 

purpose that respects the stated requirements.  

The novelties brought by our derivation 

system compared to the rule engines from the 

literature are: 

• knowledge base, in its pure logical form 

that is stored in files, is formalized in  

pure FOL syntax, in order to be 

understood by reader who is familiar 

with this syntax (and not some unknown 

other); thus our system can be seen as an 

FOL syntax parser 

• adds a new class of knowledge that is 

used to impose restrictions on the factual 

part (constraints) in order to preserve 

consistency of the knowledge base: facts 

newly produced are validated against the 

set of constraints not to violate them and 

if they do then are not added to the 

memory 

• increased expressivity of knowledge: are 

represented also the variables used in KR 

formalisms (facts, rules) and even their 

logical quantifiers, which can be useful 

to capture and show complex First Order 

Logics formulae 

• use optimization strategies: forward 

chaining and Backtracking algorithm for 

the process of finding facts to match a 

rule’s body in an iterative, progressive 

and ordered fashion, which simplify 

computations especially in case of large 

knowledge bases (sets of fact and rule) 

3.  SYSTEM DESIGN  

 

In order to be able to process it and apply the  

algorithm for derivation we must find a way to 

represent the logical knowledge as an object-

oriented structure. Next we will show our 

considered design approach.  
 

3.1. Object Structure 

 

Each logical KR formalism (fact, rule, 

negative constraint) is represented by a type 

class that defines instance variables and methods 

specific to that formalism.  

An atom,  which is the most basic form of 

data, was represented in OO by a class Atom that 

has as attributes its name and a collection of its 

values. Defines 2 constructors and 2 methods 

(besides get/set) to print the atom in the normal 

form to the user: p(x1,x2,…xn). 
A fact, as it was stated in the definition from 

introduction, is the existential closure of a 

conjunction of atoms.  This was represented in 

OO by a class Fact that has data a collection of 

Atom objects and, similar with Atom class, 

defines 2 constructors and 2 methods for the 

pretty-print of the fact in its usual form to us.  

A rule was represented by a class Rule 

that has attributes two facts: one is the body 

(premise) and another is the head (conclusion). 

A negative constraint is a rule that has no head, 

so this was specified by a class that has as data 

only one fact (the body). This structure is 

presented in Fig.2, that represents the UML class 

diagram of the inference system. 
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Fig.1: UML activity diagram of the derivation system 

The logical knowledge base is stored into 

external files, one for each KR type (fact, rule, 

constraint) and is represented in the raw First 

Order Logic syntax. The main operations 

performed by the derivation system are the 

following: 

i. read the external files of the KB, loads 

data into objects of the system and 

creates collections to store all the 

objects 

ii. applies the derivation algorithm over the 

knowledge base stored in objectual form 

(collections of objects) in order to 

deduce all implicit knowledge from the 

explicit ones; the process goes 

recursively until the KB saturation is 

achieved  

iii. after the set of all new facts (saturated) 

has been computed, translate them into 

FOL formulae and append them on the 

file with the initial set of facts 

 This process is shown in Fig.1, which 

represents the UML activity diagram of system.  

 

3.2. Algorithm for Derivation 

The core algorithm that is used by our 

inference engine to deduce new facts can be 

specified using the following pseudo-code: 

Algorithm R-derivation: 

Input: facts set, rules set, constraints set 

Output: set of deduced facts 

Variables: Dictionary[] (stores the variables of 
a rule together with their values found during 
the matching on facts) 

 

Fig.2: UML class diagram of the system 

Begin 

while (new facts are produced from rule 
applications) 

     begin  

1. Take each rule from the set and try to find a 
set of facts that  match its body 

2. Take each atom (conjunct) from the rule’s 
body and try to find a fact in the set that 
match it: 3 steps process 

2.1.Check to see if has the same name with 
the fact 

2.2.Check to see if has same arity with the 
fact 

2.3.Check into the Dictionary[] if the atom 
has variables that have been assigned 
(this is the case in previous conjunct 
matches); if Yes then check if their values 
are same with the corresponding ones 
from the fact 

3. If all the above 3 conditions have been filled 
then the fact matched the conjunct, so the 
conjunct’s variables are substituted in the 
Dictionary[] with the corresponding values 
from the fact 



 

 

4. If there was a conjunct from the crt. rule that 
was not matched by any fact from the set then 
break the search of next conjuncts, since the 
crt. rule cannot be matched 

5. If all conjuncts of the rule have been matched 
on facts from set then the rule was matched, 
so is computed the fact from the head based 
on the values of variables from Dictionary 
(the substitution of the rule) 

6. Validate the newly produced fact on the set of 
constraints in order not to violate some  

7. If the fact is valid then add it to the set of 
produced facts, else discard it 

     end_w 

End. 

 

4. IMPLEMENTATION 

For the actual implementation of our system 

we headed towards the C# programming 

language. We chose this option because of the 

numerous advantages that the .NET platform 

has, such that is a much younger platform (e.g. 

than Java), portability (projects can be run on 

multiple platforms), scalability and reliability, 

non-verbose and easy to code syntax. 

The development environment that was used 

to build the project is Microsoft Visual Studio 

2012.  

The idea was to represent the knowledge base 

as an object-oriented structure in order to apply 

the derivation algorithm on it and deduce all 

implicit knowledge by matching rules on facts. 

As it was shown in the design phase, each logical 

form of data was specified by a class, and each 

set of logical knowledge was represented by a 

collection of objects instances of a particular 

class type. In what follows we’ll dive into more 

details about the implementation and inner 

workings of the core component of this engine, 

the inference algorithm.  

In the implementation of the algorithm for 

derivation we considered two case scenarios 

regarding the structure of facts, which lead each 

one to a different strategies of implementation.  

The first version considers that facts are single 

atoms of data, such as  p(x1,x2,x3) and the second 

version considers facts in their generic form, 

conjuncts of atoms (as it was shown in def. of 

section 1). 

Version 1 

 In this case, in order to find a subset of facts 

that match the body of a rule, the algorithm takes 

each atom (conjunct) of the rule and   look up 

in the set of facts to find one that matches it 

based on all necessary 3 conditions: name, arity 

and values of variables (if assigned in previous 

conjuncts matches). If all atoms from the rule’s 

body have been iterated and found facts for them 

then the rule matched. The next step is to deduce 

the conclusion, for that is created the new fact 

from the rule’s head that has the same name with 

the rule’s conjunct and as values it has those of 

the variables of conjunct as have been found 

during the matching process of the rule and that 

are stored into the Dictionary[] data structure.  

It can be well thought that this problem of 

matching a rule on a set of facts does not have a 

single solution, but multiple, since multiple sets 

of facts can be found that match the body of a 

rule. As it is well known, in the case of problems 

that have multiple solutions is used the 

Backtracking algorithm in order to walk through 

all possibilities and find every possible solution 

to the given problem. I think the most well-

known problem that relies on Backtracking 

algorithm in order to find its solutions is  

“Queens problem”, which  asks how to place N 

queens on a NxN chess board with condition not 

to attack one another.  

The Backtracking algorithm involves searching 

through n sets Si for elements of a result set X 

between which must exist a relation φ. Our 

currently studied problem is very similar, 

implying searching n times through a set for 

elements that must fulfill 3 conditions in order to 

be included in the final result set of facts X of n 

elements. After a solution was found the 

algorithm goes back to the previous conjunct 

being checked and reiterates through the set of 

facts starting from the point it was left at last 

found, in order to find another fact that could 

match the conjunct. The algorithm stops when 

its backtrack counter variable reaches value 0, 

which means it has been walked through all 

possibilities and all solutions found. 

Version 2 
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This version of the algorithm considers the facts 

in their general form, as conjunctions of atoms. 

This is a much difficult to implement case since 

now it cannot be iterated through conjuncts of 

the rule and search for them facts in the set, since 

now facts are not single atoms of data. Now the 

strategy is somehow reversed, the set of facts 

being iterated and for each one we look-up the 

array of  conjuncts of the rule for a subset that 

could match the fact currently checked.  It ends 

when all conjuncts of the rule had been matched. 

This strategy also relies on the Backtracking 

algorithm for finding all solutions to the 

problem, but the search space and result vector 

are now others.  

 

5. EXPERIMENTS AND RESULTS 

 

For the testing phase of our inference system 

we used 3 knowledge bases of different sizes:  

- small: 6 items in each set of knowledge 

(units) 

- medium: 60 items in each set of 

knowledge (tens) 

- large: 200 items in each set of knowledge 

(hundreds) 
 

Our algorithm based on optimization  

techniques (presented earlier) has been 

compared with a more primitive solution who 

works by making all possible combinations of 

facts of length equal to that of the rule, then 

verify to see if each combination is a match. This 

way all solutions are guaranteed to be found 

since the whole space of solutions is searched, 

but the drawback is the high volume of time and 

computations required. Results obtained are 

presented in the next two tables, one for each 

version of the derivation algorithm, showing the 

number of operations and time required by each 

method. 

The tests were performed on an Asus 

Vivobook laptop having an Intel Dual Core @ 

1.5GHz with x64 architecture, 1.5GB DDR3 and 

240GB hard-disk space running on a Windows 

10 operating system. To be precised that the tests 

results may vary greatly on the machine on 

which are done, depending on its resources, 

architecture and many more.  
 

TABLE 1 

Tests results of version 1 of algorithm 

 

 

Solution 

Knowledge Base 

Units 

Ops.     Tm. 

(103)   (ms) 

Tens 

Ops.           Tm. 

(106)          (ms) 

Hundreds 

Ops.              Tm. 

(109)              (s) 

Optimal 1,585 10 2,556 690 0,444072 3,94 

Basic 4,005 33 4,890 990 1,880432 7,95 

 

TABLE 2 

Tests results of version 2 of algorithm 

 

 

Solution 

Knowledge Base 

Units 

Ops.     Tm. 

(103)   (ms) 

Tens 

Ops.           Tm. 

(106)          (ms) 

Hundreds 

Ops.              Tm. 

(109)              (s) 

Optimal 1,858 15 3,506808 990 0,999548 6,94 

Basic 5,115 43 5,670880 1880 3,770032 11,95 

 

6. CONCLUSIONS 

 

As it has been said in section 2, all the 

work presented in this article has been filed for 

the development of a private project for the 

needs of a university in France (Universite de La 

Rochelle), and everything presented here are 

original contributions, ideas and solutions of the 

authors. 

The system presented here is intended an 

inference engine that can operate on any logical 

knowledge base. The main novelty brought by 

our work is that we consider knowledge bases 

which have an extra layer of security on data, 

represented by negative constraints, so our 

system not only does simple applications of 

rules on facts but also validates the produced 

knowledge with the  stated restrictions. Another 

important feature brought is that was designed 

from scratch for the single goal of saturation of 

the KB. We could not find something similar in 

literature to which we can compare our work, the 

only systems related are the business rule 

engines frameworks from OO programming 

languages, but we cannot use these to achieve 

the goal of our system, and especially for our 

type of KB. A comparison has been done in 

section 2 of this article. 

The system can be found on the author’s drive: 

https://drive.google.com/open?id=1QzbIogncF

L-b-zymGP2JhtXtQN9ZQwDT, together with 

the 3 knowledge bases which were used to 

perform the tests:  



 

 

https://drive.google.com/open?id= 

13QZP8MhbpriTTI6F7Dgiu7uDwmdlcdZ- 
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Un sistem de inferenta pentru obtinerea saturatiei bazelor de cunostinte (F, R, N) 
 

Rezumat: Acest articol isi propune sa creeze un sistem pentru realizarea de inferente (derivatii) asupra oricarui tip de 
baza de cunostinte logica cu obiectivul final sa ii obtina saturatia. Bazele de cunostinte din literatura de specialitate sunt 
in general constituite dintr-un set de fapte si unul de reguli de deductie. In lucrarea noastra am mai adaugat un nivel la 
aceasta ontologie: unul de constrangeri. Deci, in cazul nostru, o baza de cunostinte este o tripla (F,R,N). Inplementarea 

concreta a sistemului de derivatii a fost facuta intr-un limbaj orientat-obiect, anume Java. Baza de cunostinte este 

reprezentata in mediul OO  ca niste colectii de obiecte ale claselor corespunzatoare fiecarui tip de cunostinte. Sistemul 

primeste la intrare baza de cunostinte in reprezentare obiectuala, aplica algoritmul de derivare si produce setul de fapte 

saturat. Testele au fost efectuate asupra a 3 tipuri de baze: mica, medie si mare. Rezultatele si comparatiile sunt prezentate 

in forma de tabele.  
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