

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 62, Issue III, September, 2019

INFERENCE SYSTEM TO ACHIEVE SATURATION OF (F, R, N)

KNOWLEDGE BASES

Andrei ZAMFIRA, Horia CIOCARLIE

Abstract: This article aims to present a system for making inference (derivation) on any logical knowledge

base with the goal to achieve its saturation. Typical knowledge bases from literature are comprised of facts

and deduction rules. In our work was considered an extra layer of this ontology: the one of constraints. So,

in our case, the KB is a triple: (F,R,N). The concrete implementation of the system for derivation was

made in the object-oriented language C#. The KB is represented in OO environment as a collection of

objects of classes corresponding to each type of knowledge. The system takes at input the knowledge base

(in OO representation), applies the derivation algorithm and produces at output the saturated set of facts.

The testing was done on three types of KBs: small, medium and large. Results and comparisons are

presented to the reader in tabular form.

Key words: knowledge base, derivation algorithm, inference engine, saturation, forward chaining

1. INTRODUCTION

In this paper is proposed an inference engine

for achieving the saturation of logical

knowledge bases. The system uses at its basis an

algorithm for making derivation that applies

rules on facts in order to deduce new knowledge

from the factual part and at the same time checks

not to violate any negative constraint stated in

the set. In ordinary logics this is known the

Modus Ponens principle. Saturation of the

knowledge base is the state when, after an

application of rules on the facts no new

knowledge can be deduced.Our system differs

from the existing state-of-art solutions in the fact

that it adds an extra layer to the ontology, which

is that of (negative) constraints.

In what follows we will make an

introduction into logical formalisms, presenting

the basic theoretical notions related to the

domain.

1.1.Basic Terms - Definitions

We will considere here only the positive

existential syntactic fragment of First Order

Logics, i.e. FOL(∃,Λ), (Baget et al.) [2] which is

the one comprised of formulas built with the

quantifiers (∃,Λ) and only the connectors

implication (→) and conjunction (Λ). No

disjunction and negation is implied, and a

special constant is used to denote falsity (⊥).

A Vocabulary is a triple consisting of thee

disjoint sets:

 Voc=(C,V,P) (1)

where C is a finite set of constants, V is an

infinite set of variables and P a finite set of

predicates. A function ar:P→N associates a

natural number to a predicate p∈P that defines

its arity. A term over Voc is a constant t∈C, or a

variable t∈V.

An atomic formula (atom) over Voc is a

predicate: p(t1,…tn), where p∈P, ar(p)=n, and

t1,…tn are terms of Voc, that are constants or

variables; in general former are represented in

uppercase and latter in lowercase letters. A

ground atom is a predicate that contains only

constants. A conjunct is named a conjunction of

atoms, and a ground conjunct is one of ground

atoms. A variable of a formula is called free if it

isn’t found in the scope of any quantifier. A

formula is closed if it has no free variables (also

named sentence).

The most primitive form to represent knowledge

are facts. A fact can be represented by a ground

atom because this signifies a primitive form of

knowledge. To represent incomplete knowledge

are implied existentially quantified variables.

For example: “Teacher John teaches a student
we don’t know the name of” is represented in

First Order Logics by formula:

 ∃x(teacher(John) Λ student(x) Λ

teaches(John,x) (2)

The second main formalism for knowledge

representation are rules. Rules are logical

formulas that allow to infer (derive, produce) of

new facts from the explicit stated ones. They

encode the so-called intentional knowledge,

regarded as an ontology layer that reinforces the

expressiveness of the knowledge base. Uses

variables and unknown individuals and are

known in other places as existential rules, such

as in (Baget et al)[2]. An existential rule is a

closed formula of the form:

R = ∀�⃗((∀�⃗B) → (∃	⃗H)) (3)
where B and H are called the rule’s body and

head, respectively. These are facts (conjuncts of

atoms) in which vars(B)= �⃗ ∪ �⃗ and vars(H)=

	⃗ ∪ �⃗, where the notations vars and terms are

used to denote the set of variables and terms

from a fact. Notation �⃗ is used as a shorthand for

a sequence of variables (x1,x2,…xn).

Existential rules bring with them new features,

besides normal rules, some of them are: allow

many atoms in the head of the rule (as shown in

def.3), possibility to represent existential

variables and unrestricted arity for predicates.

This increase in expressiveness does not come

alone but also with an increase in complexity of

reasoning, some problems in the general

existential rules framework are undecidable (e.g.

implication, entailment). For classes of

existential rules that ensure decidability while

keeping expressiveness to be seen works of

(Baget et al)[2], (Chein and Mugnier)[3].

The third form of knowledge is one used to

represent negativity, that is to show how things

are not ought to be; these are called negative
constraints. This is the counterpart notion of

integrity constraints from database systems,

used to place restrictions on data and preserve its

semantics. A negative constraint is a rule that has

no head, only body:

N = ∀�⃗(B → ⊥) (4)

Negative constraints play an important role in

logical knowledge bases, they are devices used

to detect inconsistencies in the factual part. Their

triggering is interpreted as presence of

inconsistency. An example would be:

N=retiredFrom(x,y) Λ worksIn(x,y) →⊥ (5)

that states that it is impossible for a person to be

retired from a place and yet to work there.

After having specified the main logical

formalisms of knowledge representation, we can

now say what a knowledge base is.

A knowledge base (KB) over a vocabulary Voc

is an entity: K=(F,R,N) consisting of a finite set

of facts, rules and negative constraints.

Let V be a set of variables and T a set of terms

T on a vocabulary. A substitution σ of V by T

(denoted σ:V→T) is a mapping from V to T. Let

F be a fact; σ(F) denotes the fact obtained from

F by replacing each occurrence of x∈V∩ vars(F)

by σ(x). A homomorphism from a fact F to a fact

F’ is a substitution σ of vars(F) by terms(F’) such

that σ(F) ⊆F’.

A rule R = B → H is applicable to a fact

F if there is a homomorphism σ from B to F. The

rule’s application produces a new fact α(F,R, σ)

= F∪σsafe(H), where σsafe is called safe

substitution because it replaces existential

variables with fresh (not introduced) ones. These

are important not to attribute used variables to

new facts, which causes problems when rules are

reapplied on the new facts.

Rules can follow an order for

application, i.e. it is possible that a rule R2 is not

applicable to any fact from the set but to become

so after applying other rules. This gives birth to

the concepts of derivation sequence and R-
derivation.
Let F be a fact and R a set of rules. A fact F’ is

called an R-derivation of F if there is a finite

sequence called derivation sequence

(F0,F1,…Fn) in which F0=F, Fn=F’ and for

i=0, . . �������� there is a rule Ri∈R applicable to Fi and

Fi+1 is its immediate derivation. For more about

3

these notions reader is referred to (Baget et

al.)[2] and Abdallah [1].

When having a set of facts F and one of rules

R we are interested in unfolding all implicit

knowledge from facts by applying the rules. This

process is called saturation procedure and relies

on a breadth-first search with forward chaining

scheme [x],[y]. It begins from a derivation

sequence in which F0 is the initial set and at each

step a new fact Fi is produced from the current

fact Fi-1 by computing all homomorphisms from

the bodies of all rules to Fi-1 and then make the

rule applications. The fact obtained after step k

is called k-saturation of F. Next we will try to

give a formal definition of these notions, as is

shown in (Baget et al)[2].

Let F be a fact and R a set of rules. With

Π(R,F) we denote the set of homomorphisms

from bodies of all rules to fact F.

Π(R, F) = {(R,σ)| R∈R and σ homorph. from
body(R) to F} (6)

The direct saturation of an arbitrary fact F with

R is defined:

ClR(F) = ⋃ σ����(head(R))(,!)∈"(#,$) (7)

The k-saturation of F with R is denoted by

ClR
k(F) and is inductively calculated:

Cl#
' (() = (,

*+
, (() = *+ -*+

,./(()0 , 123 4++ 5 > 0

(8)
The saturation procedure is known in the

database community as naïve chase (Cali et

al.)[3]. It has been used in database reparations

that do not respect its functional dependencies.

Other types of chases had been proposed in

literature, differing only on how they handle

existential variables and redundancy. For more

about this to be seen (Deutsch et al.)[7] and

(Marnette)[10].

1.1.Saturation: Example

Overall, what we can do when having a set of

facts supplied by a set of rules and one of

negative constraints is to use the rules in order to

derive all implicit knowledge from the facts and

in the same time be careful not to violate any

negative constraints stated in the set. The result

of this procedure is a set of facts extending the

initial one. In ordinary logic this is called

application of the Modus Ponens principle, and

in Datalog is referred as Elementary production

Principle (Ceri et al)[4]. In order for it to work,

the body of the rule should map on some facts

from the set, other said, there is a substitution of

variables that makes the body of the rule

resemble to some facts from the set.

Next we will present an example of how the

saturation procedure works on a knowledge

base, for the reader to better understand since

this is the main scope of this research.

Let’s consider the knowledge base K=(F,R,N):
- F ={p(A),q(B),s(B)}

- R ={p(x) →r(x,y), p(x)Λs(y) →p(y), q(x) →r(x,y),

r(x,y) →t(x)}

- N = ϕ

The derivation algorithm is a breadth-first

search which uses a forward chaining scheme

that works by applying each rule on the initial

set of facts and after one iteration the set of

deduced facts is added to the initial one.In our

example this is:

789:;: *+
'(=) = =

 789:>: *+
/ (=) = = ∪ ?3(@, �/), p(B),

r(B, yE)F GH5�I J/K5Lℎ N/?(�, @)F, JE K5Lℎ NE =
?(�, @), (�, O)F, JP K5Lℎ NP = ?(�, O)F

789:Q: *+
E(()

= *+
/ (() ∪ ?L(@)F GH5�I JR K5Lℎ NR

= ?(�, @), (�, �/)F4�S JRK5Lℎ NT
= ?(�, O), (�, �E)F

789:U: �2 �VK 14WLH 43V X32SGWVS 132Y 3G+V

 4XX+5W4L52�
→ X32WVSG3V ℎ4+LH 41LV3 3 HLVXH

2. RELATED WORKS

All the work presented in this paper has been

done to implement a private project developed

for the needs of an institution, Université de La

Rochelle, France, in collaboration with some of

the staff there.

For the theoretical part of this article, in

order to familiarize with the notions of the

domain of KR logical formalisms, 2 main

resources studied by authors worth mention.

First is the phd thesis of Arioua Abdallah [1]

(one of the staff from Univ. LR), which is about

knowledge representations formalisms,

reasoning services, query answering in presence

of inconsistency. The second is the book of

Dung [8], which was used by [1] to instantiate

an argumentation framework using for

representation the logical language Datalog+.

Some other important works in this field

worth mention are those of (Poggi et al.)[11] and

(Croitoru et al.)[6], which are all about advanced

notions and concepts of this field.

Rule-based engines are frameworks that

have been created in object-oriented languages

in the scope to add a logic layer into the

applications and to separate it from data, which

brings a series of advantages. We will enumerate

here the ones from C#, since this is the language

used to implement also our inference engine

system: NRules, SimpleRules.Net, NxBRE,

DROOLS.Net, etc. For more information about

these reader is referred to [12], [13], [14], [15].

None of these systems can be used to achieve

our objective, that is to deduce new facts by

inference while checking not to cross any

negative constraints from the set, and the process

repeats until is obtained saturation. This is why

we had to design and implement from the scratch

our own inference engine for this special

purpose that respects the stated requirements.

The novelties brought by our derivation

system compared to the rule engines from the

literature are:

• knowledge base, in its pure logical form

that is stored in files, is formalized in

pure FOL syntax, in order to be

understood by reader who is familiar

with this syntax (and not some unknown

other); thus our system can be seen as an

FOL syntax parser

• adds a new class of knowledge that is

used to impose restrictions on the factual

part (constraints) in order to preserve

consistency of the knowledge base: facts

newly produced are validated against the

set of constraints not to violate them and

if they do then are not added to the

memory

• increased expressivity of knowledge: are

represented also the variables used in KR

formalisms (facts, rules) and even their

logical quantifiers, which can be useful

to capture and show complex First Order

Logics formulae

• use optimization strategies: forward

chaining and Backtracking algorithm for

the process of finding facts to match a

rule’s body in an iterative, progressive

and ordered fashion, which simplify

computations especially in case of large

knowledge bases (sets of fact and rule)

3. SYSTEM DESIGN

In order to be able to process it and apply the

algorithm for derivation we must find a way to

represent the logical knowledge as an object-

oriented structure. Next we will show our

considered design approach.

3.1. Object Structure

Each logical KR formalism (fact, rule,

negative constraint) is represented by a type

class that defines instance variables and methods

specific to that formalism.

An atom, which is the most basic form of

data, was represented in OO by a class Atom that

has as attributes its name and a collection of its

values. Defines 2 constructors and 2 methods

(besides get/set) to print the atom in the normal

form to the user: p(x1,x2,…xn).
A fact, as it was stated in the definition from

introduction, is the existential closure of a

conjunction of atoms. This was represented in

OO by a class Fact that has data a collection of

Atom objects and, similar with Atom class,

defines 2 constructors and 2 methods for the

pretty-print of the fact in its usual form to us.

A rule was represented by a class Rule

that has attributes two facts: one is the body

(premise) and another is the head (conclusion).

A negative constraint is a rule that has no head,

so this was specified by a class that has as data

only one fact (the body). This structure is

presented in Fig.2, that represents the UML class

diagram of the inference system.

5

Fig.1: UML activity diagram of the derivation system

The logical knowledge base is stored into

external files, one for each KR type (fact, rule,

constraint) and is represented in the raw First

Order Logic syntax. The main operations

performed by the derivation system are the

following:

i. read the external files of the KB, loads

data into objects of the system and

creates collections to store all the

objects

ii. applies the derivation algorithm over the

knowledge base stored in objectual form

(collections of objects) in order to

deduce all implicit knowledge from the

explicit ones; the process goes

recursively until the KB saturation is

achieved

iii. after the set of all new facts (saturated)

has been computed, translate them into

FOL formulae and append them on the

file with the initial set of facts

 This process is shown in Fig.1, which

represents the UML activity diagram of system.

3.2. Algorithm for Derivation

The core algorithm that is used by our

inference engine to deduce new facts can be

specified using the following pseudo-code:

Algorithm R-derivation:

Input: facts set, rules set, constraints set

Output: set of deduced facts

Variables: Dictionary[] (stores the variables of
a rule together with their values found during
the matching on facts)

Fig.2: UML class diagram of the system

Begin

while (new facts are produced from rule
applications)

 begin

1. Take each rule from the set and try to find a
set of facts that match its body

2. Take each atom (conjunct) from the rule’s
body and try to find a fact in the set that
match it: 3 steps process

2.1.Check to see if has the same name with
the fact

2.2.Check to see if has same arity with the
fact

2.3.Check into the Dictionary[] if the atom
has variables that have been assigned
(this is the case in previous conjunct
matches); if Yes then check if their values
are same with the corresponding ones
from the fact

3. If all the above 3 conditions have been filled
then the fact matched the conjunct, so the
conjunct’s variables are substituted in the
Dictionary[] with the corresponding values
from the fact

4. If there was a conjunct from the crt. rule that
was not matched by any fact from the set then
break the search of next conjuncts, since the
crt. rule cannot be matched

5. If all conjuncts of the rule have been matched
on facts from set then the rule was matched,
so is computed the fact from the head based
on the values of variables from Dictionary
(the substitution of the rule)

6. Validate the newly produced fact on the set of
constraints in order not to violate some

7. If the fact is valid then add it to the set of
produced facts, else discard it

 end_w

End.

4. IMPLEMENTATION

For the actual implementation of our system

we headed towards the C# programming

language. We chose this option because of the

numerous advantages that the .NET platform

has, such that is a much younger platform (e.g.

than Java), portability (projects can be run on

multiple platforms), scalability and reliability,

non-verbose and easy to code syntax.

The development environment that was used

to build the project is Microsoft Visual Studio

2012.

The idea was to represent the knowledge base

as an object-oriented structure in order to apply

the derivation algorithm on it and deduce all

implicit knowledge by matching rules on facts.

As it was shown in the design phase, each logical

form of data was specified by a class, and each

set of logical knowledge was represented by a

collection of objects instances of a particular

class type. In what follows we’ll dive into more

details about the implementation and inner

workings of the core component of this engine,

the inference algorithm.

In the implementation of the algorithm for

derivation we considered two case scenarios

regarding the structure of facts, which lead each

one to a different strategies of implementation.

The first version considers that facts are single

atoms of data, such as p(x1,x2,x3) and the second

version considers facts in their generic form,

conjuncts of atoms (as it was shown in def. of

section 1).

Version 1

 In this case, in order to find a subset of facts

that match the body of a rule, the algorithm takes

each atom (conjunct) of the rule and look up

in the set of facts to find one that matches it

based on all necessary 3 conditions: name, arity

and values of variables (if assigned in previous

conjuncts matches). If all atoms from the rule’s

body have been iterated and found facts for them

then the rule matched. The next step is to deduce

the conclusion, for that is created the new fact

from the rule’s head that has the same name with

the rule’s conjunct and as values it has those of

the variables of conjunct as have been found

during the matching process of the rule and that

are stored into the Dictionary[] data structure.

It can be well thought that this problem of

matching a rule on a set of facts does not have a

single solution, but multiple, since multiple sets

of facts can be found that match the body of a

rule. As it is well known, in the case of problems

that have multiple solutions is used the

Backtracking algorithm in order to walk through

all possibilities and find every possible solution

to the given problem. I think the most well-

known problem that relies on Backtracking

algorithm in order to find its solutions is

“Queens problem”, which asks how to place N

queens on a NxN chess board with condition not

to attack one another.

The Backtracking algorithm involves searching

through n sets Si for elements of a result set X

between which must exist a relation φ. Our

currently studied problem is very similar,

implying searching n times through a set for

elements that must fulfill 3 conditions in order to

be included in the final result set of facts X of n

elements. After a solution was found the

algorithm goes back to the previous conjunct

being checked and reiterates through the set of

facts starting from the point it was left at last

found, in order to find another fact that could

match the conjunct. The algorithm stops when

its backtrack counter variable reaches value 0,

which means it has been walked through all

possibilities and all solutions found.

Version 2

7

This version of the algorithm considers the facts

in their general form, as conjunctions of atoms.

This is a much difficult to implement case since

now it cannot be iterated through conjuncts of

the rule and search for them facts in the set, since

now facts are not single atoms of data. Now the

strategy is somehow reversed, the set of facts

being iterated and for each one we look-up the

array of conjuncts of the rule for a subset that

could match the fact currently checked. It ends

when all conjuncts of the rule had been matched.

This strategy also relies on the Backtracking

algorithm for finding all solutions to the

problem, but the search space and result vector

are now others.

5. EXPERIMENTS AND RESULTS

For the testing phase of our inference system

we used 3 knowledge bases of different sizes:

- small: 6 items in each set of knowledge

(units)

- medium: 60 items in each set of

knowledge (tens)

- large: 200 items in each set of knowledge

(hundreds)

Our algorithm based on optimization

techniques (presented earlier) has been

compared with a more primitive solution who

works by making all possible combinations of

facts of length equal to that of the rule, then

verify to see if each combination is a match. This

way all solutions are guaranteed to be found

since the whole space of solutions is searched,

but the drawback is the high volume of time and

computations required. Results obtained are

presented in the next two tables, one for each

version of the derivation algorithm, showing the

number of operations and time required by each

method.

The tests were performed on an Asus

Vivobook laptop having an Intel Dual Core @

1.5GHz with x64 architecture, 1.5GB DDR3 and

240GB hard-disk space running on a Windows

10 operating system. To be precised that the tests

results may vary greatly on the machine on

which are done, depending on its resources,

architecture and many more.

TABLE 1

Tests results of version 1 of algorithm

Solution

Knowledge Base

Units

Ops. Tm.

(103) (ms)

Tens

Ops. Tm.

(106) (ms)

Hundreds

Ops. Tm.

(109) (s)

Optimal 1,585 10 2,556 690 0,444072 3,94

Basic 4,005 33 4,890 990 1,880432 7,95

TABLE 2

Tests results of version 2 of algorithm

Solution

Knowledge Base

Units

Ops. Tm.

(103) (ms)

Tens

Ops. Tm.

(106) (ms)

Hundreds

Ops. Tm.

(109) (s)

Optimal 1,858 15 3,506808 990 0,999548 6,94

Basic 5,115 43 5,670880 1880 3,770032 11,95

6. CONCLUSIONS

As it has been said in section 2, all the

work presented in this article has been filed for

the development of a private project for the

needs of a university in France (Universite de La

Rochelle), and everything presented here are

original contributions, ideas and solutions of the

authors.

The system presented here is intended an

inference engine that can operate on any logical

knowledge base. The main novelty brought by

our work is that we consider knowledge bases

which have an extra layer of security on data,

represented by negative constraints, so our

system not only does simple applications of

rules on facts but also validates the produced

knowledge with the stated restrictions. Another

important feature brought is that was designed

from scratch for the single goal of saturation of

the KB. We could not find something similar in

literature to which we can compare our work, the

only systems related are the business rule

engines frameworks from OO programming

languages, but we cannot use these to achieve

the goal of our system, and especially for our

type of KB. A comparison has been done in

section 2 of this article.

The system can be found on the author’s drive:

https://drive.google.com/open?id=1QzbIogncF

L-b-zymGP2JhtXtQN9ZQwDT, together with

the 3 knowledge bases which were used to

perform the tests:

https://drive.google.com/open?id=

13QZP8MhbpriTTI6F7Dgiu7uDwmdlcdZ-

REFERENCES

[1] A.Abdallah, Formalizing and Studying
Dialectical Explanations in Inconsistent
Knowledge Bases Phd Thesis, Universite

de La Rochelle, October 2016.

[2] J.F.Baget, M.Leclre, M.Mugnier,

E.Salvat, On Rules with Existential
Variables: Walking the Decidability Line,

Artificial Intelligence, vol.175, pp.1620-

1654.

[3] A.Cali, G.Gottlob, M.Kifer, Taming the
Infinite Chase: Query Answering under
Expressive Relational Constraints,

Proceedings of the International

Conference on Principles of Knowledge

Representation and Reasoning (2008),

pp.70-80.

[4] S.Ceri, G.Gottlob, L.Tanca, What You
Always Wanted to Know about Datalog,

IEEE Transactions on Knowledge and

Data Engineering (1989)

[5] S.Ceri, G.Gottlob, L.Tanca, Logic
Programming and Databases, Science and

Business Media, Springer (2012).

[6] M.Croitoru, S.Vesic, What can
Argumentation do for Inconsistent
Ontology Query Answering?, Proceedings

of the International Conference on

Scalable Uncertainty Management, pp.15-

29, Springer (2013).

[7] A.Deutsch, A.Nash, J.Rammel, The Chase
Revisited, Proceedings of the 27th ACM-

SIGMOD-SIGACT-SIGART Symposium

on Principles of Database Systems, ACM

2008, pp.149-158.

[8] P.M.Dung, On the Acceptability of
Arguments and its Fundamental Role in
Non-monotonic Reasoning, Logic
Programming and n-Person Games,
Artificial Intelligence, vol.77, pp.321-357,

(1995).

[9] D.Lembo, M.Lenzerini, R.Rosatti,

D.Savo, Inconsistency-Tolerant Semantics
for Description Logics, Proceedings of the

International Conference on Web

Reasoning and Rule Systems, pp.103-117,

Springer-Verlag (2010).

[10] B.Marnette, Generalized Schema
Mappings: from Termination to
Tractability, Proceedings of the 28th

ACM-SIGMOD-SIGACT-SIGART

Symposium on Principles of Database

Systems, ACM 2009, pp.13-22.

[11] A.Poggi, D.Lembo, D.Calvanese, G. De

Giacomo, M.Lenzerini, Linking Data to
Ontologies, Journal on Data Semantics X,

pp.133-173, Springer (2008).

[12] DROOLS.NET:

https://sourceforge.net/projects/drooldotn

et/

[13] SimpleRules.NET:

https://www.codeproject.com/Articles/11

81151/SimpleRules-Net-Easy-to-use-

Rules-Engine

[14] NRules:

https://github.com/NRules/NRules/wiki

[15] NxBRE:

https://sourceforge.net/projects/nxbre/

Un sistem de inferenta pentru obtinerea saturatiei bazelor de cunostinte (F, R, N)

Rezumat: Acest articol isi propune sa creeze un sistem pentru realizarea de inferente (derivatii) asupra oricarui tip de
baza de cunostinte logica cu obiectivul final sa ii obtina saturatia. Bazele de cunostinte din literatura de specialitate sunt
in general constituite dintr-un set de fapte si unul de reguli de deductie. In lucrarea noastra am mai adaugat un nivel la
aceasta ontologie: unul de constrangeri. Deci, in cazul nostru, o baza de cunostinte este o tripla (F,R,N). Inplementarea

concreta a sistemului de derivatii a fost facuta intr-un limbaj orientat-obiect, anume Java. Baza de cunostinte este

reprezentata in mediul OO ca niste colectii de obiecte ale claselor corespunzatoare fiecarui tip de cunostinte. Sistemul

primeste la intrare baza de cunostinte in reprezentare obiectuala, aplica algoritmul de derivare si produce setul de fapte

saturat. Testele au fost efectuate asupra a 3 tipuri de baze: mica, medie si mare. Rezultatele si comparatiile sunt prezentate

in forma de tabele.

Andrei ZAMFIRA, DrD, Politehnica University of Timisoara, Dept. of Computer Science,

andreizamfira@gmail.com;

Horia CIOCARLIE, Prof., Politehnica University of Timisoara, Dept. of Computer Science, E-mail :

horia.ciocarlie@cs.upt.ro

