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Abstract: Based on the data collected during a full-scale experiment, the order/disorder characteristics of 
a compartment fire are researched. We discuss methods, algorithms and the novelty of our entropic 
approach. From our analysis, we claim that the permutation type hypoentropies can be successfully used 
to detect unusual data and to perform relevant analysis of fire experiments. 
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1. INTRODUCTION  

 

The purpose of this paper is to present an 

analysis of the evolution of the temperature 

during a full-scale fire experiment. We compare 

two known encoding algorithms and propose 

new statistical complexities, pointing out 

abnormal values and structure of the 

experimental time series. We apply our methods 

on a single experimental data set, as an 

illustration. For other recent studies using the 

entropic analysis of the fire phenomena see [16] 

and [20].  

The experiment has been carried out using a 

container (single-room compartment) as shown 

in Fig.1. The container had the following 

dimensions: 12 m × 2.2 m × 2.6 m. A single 

ventilation opening was available, namely the 

front door of the container which remained open 

during the experiment. Parts of the walls and the 

ceiling of the container were furnished with 

oriented strand boards (OSB). The fire source 

has been a wooden crib, made of 36 pieces of 

wood strips 2.5 cm × 2.5 cm× 30 cm, on which 

has been poured 500 ml ethanol shortly before 

ignition. The fire bed was situated at 1.2 m below 

the ceiling. The measurement devices consisted 

in six built-in K-type thermocouples, fixed at 

fkey locations as shown in Fig.1, connected to a 

data acquisition logger.  Flames were observed 

to impinge on the ceiling and exit through the 

front door opening, and we also noted the 

ignition of crumpled newspaper, stages of fire 

development which are known as indicators of 

flashover. 

 
Fig. 1 The right-side view scheme of arrangement 

(instrumentation) of the flashover container 

A thorough description of the experimental 

setup (materials and methods) and data analysis 

can be found in [15]. In Section 2 we present the 

theoretical background and algorithms used to 

analyze the experimental data collected during a 

full-scale fire experiment conducted at Fire 

Officers Faculty in Bucharest.  Section 3 is 

dedicated to the analysis of the collected raw 

data.   

2. THEORETICAL BACKGROUND AND 

REMARKS  

 

2.1 Entropy and statistical complexity 

The natural logarithm is used below, as 

elsewhere in this paper. 
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Shannon’s entropy (Shannon, 1948) is 

defined as ���� = − ∑ �	log �	�	�� , where � =���, … , ��� is a finite probability distribution. It 

is nonnegative and its maximum value is ���� = log �, where 

� = �1
� , … , 1

��. 
Throughout the paper we use the convention 0 ∙ log 0 = 0.    
The Kullback-Leibler divergence [9] is 

defined by  ���‖�� = ∑ �	�log �	�	�� − log �	�, 

where � = ���, … , ��� and � = ���, … , ��� are 

probability distributions. It is nonnegative and it 

vanishes for � = �. 

If the value 0 appears in probability 

distributions � = ���, … , ��� and � =���, … , ���, it must appear in the same positions 

for the sake of significance. Otherwise one 

usually considers the conventions 0 log �
 = 0 

for ! ≥ 0 and # log $
� = ∞ for # > 0. We remark 

that these are strong limitations and such 

conditions rarely occur in practice. In this paper 

we analyze some experimental fire data and 

discuss how to overcome this issue.  

The Jensen-Shannon divergence (see [11] 

and [17] is 

'(��‖�� = 1
2 � �� *� + �

2 � + 1
2 � �� *� + �

2 �
= � �� + �

2 � − ���� + ����
2 . 

The Jeffreys divergence [8] is defined 

by �,��‖�� = ���‖�� + ���‖��. It holds 

'(��‖�� ≤ �
. �,��‖�� (see (Lin, 1991) and 

(Crooks, 2008)). 

The disequilibrium-based statistical 
complexity (LMC statistical complexity) 
introduced in [12] is defined as /��� =
���� 0�1�

234 �,  where ����, interpreted as 

disequilibrium, is the quadratic distance ���� =
∑ 5�	 − �

�67�	�� . 

The Jensen-Shannon statistical complexity 

[10], [22] is defined by /�,8���� =
9�,8���� 0�1�

234 �,  where the disequilibrium 

9�,8����  is 9�,8���� = : ∙ '(��‖��. Here 

: = �max1 '(��‖���-1 is the normalizing 

constant and � = 5�
� , … , �

�6.  For the 

computation of the normalizing constant, the 

maximum is attained for � such that there exists >, �	 = 1.  

By replacing the disequilibrium by �,��‖��, 

called further Jeffreys disequilibrium, and define 

the Jeffreys statistical complexity formula as 

/,��� ≡ �,��‖�� 0�1�
234 �, one encounters the 

following limitation: since � has no zero 

components, the probability distribution � must 

have only strictly positive components, a fact 

which depends on the algorithms used to 

determine the underlying probability 

distribution. This replacement was briefly 

mentioned as an alternative to the Jensen-

Shannon complexity measure in [18]; here we 

follow this idea. For fire experiments, the 

collected data yields, by various algorithms, 

some underlying probability distributions which 

have zero components, hence there is a need for 

an alternative to the Kullback-Leibler 

divergence. Therefore, in an attempt to 

overcome the restrictions of the Kullback-

Leibler divergence,  our approach is based on the 

Ferreri’s hypodivergence at the level @ [5], 

which solves these issues, defined as 

AB��‖�� = �
B ∑ �1 + @�	��	�� log �CBDE

�CBFE  with 

@ > 0.  
Remark 1 As mentioned by Ferreri, AB��‖�� is 

always non-negative. (It only vanishes for � =�.)  The proof of the positivity can be done via 

the so-called Log sum inequality, from which it 

follows immediately. Another way is to use the 

same strategy as for the positivity of the 

Kullback-Leibler divergence:  first we note that log # ≤ # − 1  for all # > 0, then we infer that 

@AB��‖�� = − ∑ G1 + @�>H�>=1 log 1+@�>
1+@�>

≥
− ∑ G1 + @�>H�>=1 �1+@�>

1+@�>
− 1� = 0. 

We use the Jeffreys-Ferreri hypodivergence 
at the level @, defined by  �B,I��‖�� ≡AB��‖�� + AB��‖�� (see formula (5.3) in [5]), 

to define the Jeffreys-Ferreri disequilibrium at 
the level @ by  �B,I��‖�� and the Jeffreys-
Ferreri statistical complexity at the level @ as 

/B,I��� ≡ �B,I��‖�� IJ�1�
IJ�K�, where Ferreri’s 

hypoentropy at the level λ is 
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LB��� = �
B �1 + @�log�1 + @� − �

B ∑ �1 +�	��@�	� log�1 + @�	�  with @ > 0. 
Ferreri’s hypoentropy is positive and its 

maximum value is LB���, where � = 5�
� , … , �

�6. 
See [6]. 

It is known that limB→O LB��� = ����, and 

limB→O AB��‖�� = ���‖��, and we emphasize 

that the second limit is finite when the value 0 

does not appear in the probability 

distribution � = ���, … , ��� or it appears in the 

same positions as in � = ���, … , ���, otherwise ���‖�� = ∞.  

Moreover, it holds limB→O /B,I��� = /,���. 
See in Fig. 2 a graphical comparison of 

�,��‖1 − �� and �B,I��‖1 − ��, for @ =50,100, … ,250 and � = �Q, 1 − Q�, for Q =0.01,0.03, … ,0.99.  It  is  important to mention 

that  �B,I
 approaches �, when  @ approaches 

infinity. We also mention that �B,I
 is well 

defined in the entire range 0 ≤ Q ≤ 1, while �, 

requires 0 < Q < 1. 

 
Fig. 2 Plots of the Jeffreys divergence (here denoted JD) 

and the Jeffreys-Ferreri divergences  

(with thinner line style) for @ = 50,100, … ,250 

 

Seeing that �B,I��‖�� < �,��‖��  holds for � = 1 − �, � = 2 (Fig. 2), we check if this 

always holds. It is of mathematical interest and 

it clarifies our experimental results. The positive 

answer may be known, but since we have had no 

reference for it, we provide its proof as follows.  

Proposition 1 The Ferreri divergence AB��‖�� is monotonically increasing as a 

function of @.  

Together with the known monotonicity of the 

Ferreri entropy, it yields �B,I��‖�� <
�,��‖�� for all @ > 0, positive integers � and 

probability distributions � = ���, … , ��� and � = ���, … , ���.  

Proof. We establish that its derivative with 

respect to @ is non-negative. It suffices to see that \
\B AB��‖��=

\
\B ]∑ 5�

B + �	6�	�� log �CBDE
�CBFE^ 

= − _ 1
@7 log 1 + @�	1 + @�	

�

	��
+ _ �1

@ + �	�
�

	��
1 + @�	1 + @�	

∙ �	�1 + @�	� − �	�1 + @�	�
�1 + @�	�7

= _ `− 1
@7 log 1 + @�	1 + @�	

�

	��
+ �1

@ + �	� 1
1 + @�	 ∙ �	 − �	1 + @�	a 

= _ �− 1
@7 log 1 + @�	1 + @�	 + 1

@ ∙ �	 − �	1 + @�	�
�

	��
= 1

@7 _ b@��	 − �	�
1 + @�	

�

	��
− log 1 + @�	1 + @�	 c 

= 1
@7 _ �1 + @�	1 + @�	 − 1 − log 1 + @�	1 + @�	 �

�

	��
≥ 0. 

It vanishes only for the case � = �.   
Remark 2 The Jeffreys-Ferreri statistical 

complexity is defined above without 

normalizing the disequilibrium, however the 

interested reader can also normalize it. The 

maximum of �B,I��‖�� is attained for � such 

that there exists >, �	 = 1. The proof of this fact 

follows using the same recipe as in [14]. 

Straightforward computation yields 

max1 �B,I��‖�� = �1 − 1
�� log�1 + @� 

which shows that the disequilibrium �B,I��‖��  

is bounded from above by by log�1 + @�. Its 

boundedness makes the normalization less 

interesting in our context. The disequilibrium of 

the Jeffreys statistical complexity cannot be 

normalized, and it is not defined for probability 

distributions with null components. 

As in the case of the known complexities 

/���, /�,8����, the new one,  /B,I���, would be 

zero (minimum complexity) for � = � or if 

there exists > such that �	 = 1.  These two cases 

describe very different states of the system, 

considered simple, states with maximum, 

respectively minimum entropy. 
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The mutual information is defined by  d�e, f� = �G��g,h�‖�g ⊗ �hH
= ���g� + ���h� − �G��g,h�H. 

Here e and f are discrete random variables 

with probability distributions �g and �h, the 

joint probability is ��g,h� and the direct product 

is �g ⊗ �h. We introduce the PYR statistical 
complexity by 

/�1hj��e, f� ≡ d�e, f� 0�1k�
234 � ⋅ 0�1m�

234 n , 

where � is the number of components of �g , o 

is the number of components of �h. It is known 

that 0 ≤ d�e, f� ≤ min {���g�, ���h�}. To 

overcome the restrictions of the Shannon 

entropy and Kullback-Leibler divergence, our 

approach is based again on the hypoentropies 

and hypodivergences at the level @. Therefore, 

we consider the PYR statistical complexity  at 

the level @ as /B,	1hj�e, f� ≡ dB,	�e, f� IJ�1k�
IJ5r

s,…,rs6 ⋅
IJ�1m�

IJ5 r
t,…, r

t6. Here  

dB,��e, f� ≡  ABG��g,h�‖�g ⊗ �hH or 

dB,7�e, f� ≡  LB��g� + LB��h� − LBG��g,h�H. 

The two definitions do not coincide, but it 

holds limB→O dB,	�e, f� = d�e, f�, increasingly for 

for > = 1. Therefore limB→O /B,	1hj�e, f� =
/�1hj��e, f�. The increasing monotonicity of 

the information dB,��e, f� can be immediately 

inferred from Proposition 1 and we call dB,��e, f� hypoinformation. It takes the value 

zero for independent random variables. 

 
 

Fig. 3 dB,7�e, f�, � = 2,3, … ,1000 

 

Remark 3 Applied on our experimental data, dB,7�e, f�  decreases as a function of @. See Fig 

and Fig. This fact does not hold true in general, 

that is dB,7�e, f� is not necessarily decreasing as 

a function of @, for fixed random variables e, f. 

A visual counterexample is the plot of dB,7�e, f� 

for the independent variables e = f =
5�

� , … , �
�6 (Fig. 3).  

 

2.2 Extraction of the underlying probability 

distribution 

The permutation entropy PE [1] quantifies the 

randomness and the complexity of a time series 

based on the appearance of ordinal patterns, that 

is on comparisons of neighboring values of time 

series. Following the encoding steps in the PE-

algorithm [1], which we include further for the 

sake of convenience, and using the hypoentropy 

instead of the Shannon entropy, we formulate 

the PHE-algorithm (Permutation HypoEntropy 
algorithm) as follows. For more details on the 

PE-algorithm see [15].  

Let u = �Q�, … , Q�� be a time series with 

distinct values.  

Step 1.  The increasing rearranging of the 

components of each v-tuple GQ	, … , Q	Cwx�H as 

5Q	CFrx�, … , Q	CFyx�6 yields a unique 

permutation of order v denoted by z =G��, … , �wH, an encoding pattern that describes the 

up-and-downs in the considered j-tuple.  

Example 1 For the 5-tuple �2.1,   1.3, 3.3,1.1,   4.2� the corresponding permutation 

(encoding) is �4,   2, 1, 3,   5�. 
Step 2. The absolute frequency of this 

permutation (the number of v-tuples which are 

associated to this permutation) is  :| ≡ #{>: > ≤ � − �v − 1�,GQ	, … , Q	Cwx�H is of type z}. 

These values have the sum equal to the 

number of all consecutive j-tuples, that is � −�v − 1�.  
Step 3. The permutation hypoentropy of order v 

is defined as 

����v� ≡ �
B �1 + @�log�1 + @� − �

B ∑ �1 +|@�|� log�1 + @�|� ,   
where �| = ��

�x�wx��  is the relative frequency of 

the permutation z, and @ > 0.    

In [1] the measured values of the time series 

are considered distinct. The authors neglect 

equalities and propose to break them by adding 

small random perturbations (random noise) to 

the original series.    
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Another known approach is to rank the 

equalities according to their order of emergence 

(to rank the equalities with their 

sequential/chronological order). See for instance 

[2] and [4]. We use this method throughout the 

paper to compute ����v� for v =3, 4, 5.  

Applying the PHE-algorithm for 

experimental fire data, /B,I��� cannot be zero. 

The number of the encoding patterns which 

occur is > 1 and these patterns are not 

equiprobable: some patterns may be rare or 

locally forbidden (that is, one encounters such 

patterns at some thermocouples, but not in all 

time series), as discussed in [15].   

Following the encoding steps in the TLPE-

algorithm (Two-Length Permutation Entropy 
algorithm [21] and using again the hypoentropy 

instead of the Shannon entropy, we formulate 

the TLPHE-algorithm (Two Length Permutation 
HypoEntropy algorithm) as follows. For other 

details on the TLPE-algorithm see [15].  

Step 1. Given the v-tuple u = GQ�, … , QwH, we 

start encoding the last :≤v elements GQwx�C�, … , QwH according to the ordinal position 

of each element, that is, every Q� is replaced by a 

symbol which indicates the position occupied by Q� within the increasing rearranging of the 

considered :-tuple.  

Next, we proceed by encoding each previous 

element Qn up to o =  1 according to the 

symbol provided by Step 1 applied to the :-tuple �Qn, … , QnC�x��.   

Example 2 Encoding obtained by the 

chronological ordering of equal values: �3.1,   3.1, 3.1, 4,   3.1� → �1,   1, 1, 3,   2� 

for : =3 and j=5.  

Step 2 and Step 3 coincide with Step 2 and Step 

3 in the PHE-algorithm above.  

This algorithm leads, after computing the 

relative frequencies of the encoding sequences, 

to the two-length permutation hypoentropy 
(TLPHE�:, v�). 

Given the pair �:, v� of values, the number of 

symbolic (encoding) sequences of length v is :! :wx�, a number which can be much smaller 

than j!, so this algorithm is faster, it involves a 

simplified computation and sometimes it makes 

the results more relevant for big values of j.   

We deal with the equal values by using the 

same method as for PHE, that is we consider 

them ordered chronologically.  

At our best knowledge, in the scientific 

literature there are no algorithms adjusted to 

determine probability distributions or statistical 

complexities conceived for fire data analysis. 

For the sake of completeness, we include here 

the description of the encoding step of the PYR-

algorithm [13] that we recently developed for 

this purpose. By applying it repeatedly on our 

experimental data, we use its output to compute 

the PYR statistical complexity described in the 

previous section, a complexity that we claim that 

best fits the features of the fire data set 

environment. 

Figure 4 shows the idealized fire curve that 

describes the evolution of the temperature values 

during a fire experiment in a compartment. 

 
Fig. 4 Idealized time-temperature fire curve [7] 

 

Encoding Step Let o���� = min{�: Q� =max�Q�, … , Q��} determined for the data 

collected at the thermocouple T�.   The v-tuples 

with distinct elements are counted on behalf of a 

permutation as in the PHE-algorithm encoding 

step.  The same for each v-tuple GQ	, … , Q	Cwx�H 

that contains ties, after ordering the ties 

chronologically if > ≤ o����, or in reversed 

chronological order if > > o����. This step is 

an adjustment of the counting procedure inspired 

by the evolution of the fire: a v-tuple is 

considered on the ascending trend before the 

maximum value of the temperature is reached 

(the growth period), respectively on the 

descending trend afterwards (the decay period). 

Example 3 A 7-tuple which satisfies  Q	C� =Q	C. < Q	C� < Q	C7 < Q	C� = Q	C� = Q	C�, 

should be counted on behalf of the permutation �1, 4, 7, 2, 3, 5, 6� if it occurs on a growth period, 
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or on behalf of the permutation �4,1,7,2,6,5,3� if 
it appears during the decay period. 

The resulting hypoentropy, computed 

following Step 2 and Step 3 in the PHE-

algorithm above, is denoted by �f�����v�. 
In the next section we apply the above 

techniques and observe their capability to 

discern the changes of the Jeffreys-Ferreri 

statistical complexity of the experimental data.    

 

3. RAW DATA ANALYSIS 

 

The raw data set under consideration consists 

of measured temperatures during a compartment 

fire: six thermocouples T1, ..., T6 measure the 

temperatures every second during the 

experiment. Hence, we get six time-series 

consisting of 3046 entries (data points) and we 

aim to a better understanding of these results by 

modeling the time series using information 

theory, and to assess the performance of the 

discussed statistical complexities.    

See in Fig.5 the plots of the discussed 

hypoentropies at the level @ =1000, obtained 

using the experimental data. 

 
Fig. 5 Hypoentropies (PHE and TLPHE) at level 

λ=1000, for different embedding dimensions 

 

In what follows we analyze the dynamical 

behavior of the temperature in the compartment 

fire from the viewpoint of the statistical 

complexity. We aim to observe the features 
captured by the statistical complexity. The 

novelty of our approach consists in investigating 

the Jeffreys and the Jeffreys-Ferreri 
disequilibrium-based statistical complexities 
�/,��� and /B,I� using the technique described 

above (that is plugging, whenever 

significant/finite, the entropies PE and TLPE in 

the /,���  formula, respectively plugging  the 

entropies PHE and TLPHE in the  /B,I���  
formula). See the PE- algorithm [1] and the 

TLPE-algorithm [21]. 

In Fig.6 and Fig.7 one can see the plotted 

complexities /B,I  at @ = 1000 and @ = 10�7.  

By plotting the statistical complexity for each 

permutation type hypoentropy, we note that the 

convergence to /, , as  @ → ∞, is faster for the 

algorithms with fewer encoding patterns (see 

Fig.9- Fig.13). 

 
Fig. 6 The Jeffreys-Ferreri Statistical Complexity at level 

λ=1000 

 
Fig. 7 The Jeffreys-Ferreri Statistical Complexity at level 

λ=10^12  

A quick comparison of Fig.7 with the plot of 

the Jeffreys complexities in Fig.8 shows how the 

parametric (Jeffreys-Ferreri) complexity 

approach provides more useful insights for the 

fire data analysis, while some details are lost due 

to the infinite values of the Jeffreys complexity, 

for a bigger number of encodings (the plots 

corresponding to PE(5) and TLPE(3,5) in Fig.8; 

see also [15]).  

 
Fig. 8 The Jeffreys Statistical Complexity 

It is known [5] that LB��� is a monotonically 

increasing function of  @. Using the experimental 

data, we conjecture that /B,I
 is also 

monotonically increasing as a function of @. See 

below (see Fig.9 - Fig.13) the plot of /B,I  at 

various levels @. 

When the Jeffreys complexity /,��� is 

infinite (see Fig.8), plotting the Jeffreys-Ferreri 

complexities might be of interest, their plot (for 

instance for PHE(5) in Fig.12) being similar to 

the finite cases of /,���, due to the relatively 
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slow convergence as  @ → ∞ of /B,I
 to /,���, 

for a bigger number of encodings. 

 
Fig. 9 Jeffreys-Ferreri Statistical Complexity for the PHE 

algorithm, v = 5, @ = 100,200, … ,1000 

 
Fig. 10 Jeffreys-Ferreri Statistical Complexity for the 

PHE algorithm, v = 4, @ = 100,200, … ,1000 

 
Fig. 11 Jeffreys-Ferreri Statistical Complexity for the 

PHE algorithm, v = 4, @ = 40,90, … ,490 

 
Fig. 12 Jeffreys-Ferreri Statistical Complexity for the 

TLPHE algorithm, : = 3, v = 5 

 

 
Fig. 13 Jeffreys-Ferreri Statistical Complexity for the 

TLPHE algorithm, : = 2, v = 5 

 

In the hypoentropy - complexity plane we 

plot (see Fig. 14) the Jeffreys-Ferreri statistical 

complexity (for @ ∈ {100, 200, 300, … , 2000}) 

against the hypoentropy. We use different 

markers to plot the results for each thermocouple 

(as indicated in the legend), for instance T1 is 

plotted with o, T2 with *… We use different 

colors to differentiate the plots corresponding to 

different embeding dimensions. The color code 

in Fig.14Fig.  is: green for PHE(3), magenta 

TLPHE(2,5), blue PHE(4), black TLPHE(3,5) 

and red PHE(5). Once again we notice the 

unusual plotting of the time series at T5 (the 

squared plots situated below the rest of the 

“fireworks”). 

 
Fig. 14 - The hypoentropy - complexity plane 

 

From the above analysis, we conclude that the 

PHE- and TLPHE-algorithms can be 

successfully used to detect unusual data 

collected in fire experiments. According to our 

findings, the Jeffreys-Ferreri statistical 

complexity is a valid tool for the analysis of the 

evolution of the temperature in a compartment 

fire data. 

The new proposed Jeffreys and Jeffreys-

Ferreri statistical complexities can complement 

and validate the information provided by the 

usual LMC and Jensen-Shannon statistical 

complexities. See [15]. See Fig.15Fig and 

Fig.16Fig for a quick comparison to the Jensen-

Shannon and LMC statistical complexities [15]: 

we note that similar conclusions can be drawn, 

which confirm the Jeffreys-Ferreri statistical 

complexities as a valid tool to perform the 

analysis of experimental compartment fire data.   

For the plots of the permutation 

hypoentropies �f�����v� and mutual 

informations dB,��e, f�, dB,7�e, f�, see Fig. 17Fig 

– Fig.20 (v = 3, 4, @ = 100, 200, … ,1000�. 



614 
 

 

 
Fig. 15 LMC statistical complexity 

 
Fig. 16 Jensen-Shannon statistical complexity 

 

We plotted the mutual information with 

squares, respectively circles).  The plots of  dB,��e, f� and dB,7�e, f� increase (respectively 

decrease) with respect to λ (respectively 

decrease) to d�e, f�. 

 
Fig. 17  �f�����3� 

 
Fig. 18  �f�����4� 

 

The PYR algorithm has been used to compute 

the PYR statistical complexities (for the 

underlying marginal, joint and direct product 

probabilities). See Fig. 21 and Fig. 22. The plots 

of /B,�1hj�e, f� and /B,71hj�e, f� increase 

(respectively decrease)  with respect to @, to /�1hj��e, f�. We plotted the PYR complexities 

with squares, respectively circles. 

 
Fig. 19 Mutual information dB,��e, f�  

and dB,7�e, f�, v = 3    

 
Fig. 20  Mutual information dB,��e, f�  

and dB,7�e, f�, v = 4 

 
Fig. 21 PYR statistical complexity /B,�1hj�e, f� and 

/B,71hj�e, f�, j=3 

 
Fig. 22 PYR statistical complexity /B,�1hj�e, f� and 

/B,71hj�e, f�, j=4 

 

The discrete random variables e and f have 

been considered as follows: the range of e is the 

set of all permutations of order v, {z�, z7, … , zw!}, the range of f is {�, �}, where 

� (growth) and � (decay) are the only two 

possible positions of each v-tuple in each time 

series. A v-tuple GQ	, … , Q	Cwx�H is on the growth 

period of the time series, at the thermocouple 

T�, if > ≤ o����, otherwise it is on the decay 
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period. Therefore, the probabilities are (for v =3 and 4)  

�g�z	� =
  ��n �F �� wx��D��� �� ��D� |E, ������\ �	�� ��� 1hjx$���F	��n

��.�xwC� , > =
1,2, … , v!,  

 �h��� =��n �F �� wx��D��� �� ��� �F���� D�F	�\
��.�xwC� =

n��\�
��.�xwC�, �h��� = 1 − �g���. 

 

The joint probabilities are  ��g,h��z	, �� =
��n �F �� wx��D��� �� ��D� |E, ������\ �	�� ��� 1hjx$���F	��n,   �� ��� �F���� D�F	�\

��.�xwC� , 

 ��g,h��z	, �� =
��n �F �� wx��D��� �� ��D� |E, ������\ �	�� ��� 1hjx$���F	��n,   �� ��� \��$� D�F	�\

��.�xwC� ,  

for > = 1,2, … , v!. 
 

4. CONCLUSIONS 

 

 We propose new formulas for the statistical 

complexity (based on the hypoentropy and 

hypodivergence, on Jeffreys divergence and 

mutual information). We apply these formulas 

using various algorithms to determine the 

probability distributions, including the PYR-

algorithm, which we conclude that it is the most 

appropriate for the study of fire data. The newly 

proposed complexities are used to analyze a full-

scale experimental data set collected from a 

compartment fire.  

These results are improving and they agree 

with the current knowledge and  understanding 

of the general patterns of the evolution of fire, 

contributing to the theoretical basis of fire 

research.  

The level of the hypoentropy and 

hypodivergence not only increases the 

sensitivity of the statistical complexities, but it is 

an efficient way to avoid the constraints 

encountered for the Shannon entropy and 

Kullback-Leibler divergence. 

Our results might also indicate a turbulence 

or a malfunction of the thermocouple T5, 

however, this is beyond the scope of the present 

paper to discuss it in detail. 
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Codificări pentru calculul hipoentropiei de permutare şi aplicaţii ale lor pe date obţinute din 

incendiu de compartiment la scară reală 

 

Pe baza datelor colectate în timpul unui experiment la scară reală, sunt investigate caracteristicile de 
ordine/dezordine ale unui incendiu de compartiment. Discutăm metode, algoritmi şi noutatea acestei 
abordări bazată pe entropie. În urma analizei noastre, afirmăm ca hipoentropiile de tip permutare pot 
fi folosite cu success la detectarea unor date neobişnuite şi pentru a face investigaţii relevante ale 
experimentelor de foc. 
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