TECHNICAL UNIVERSITY OF CLUJ-NAPOCA
ACTA TECHNICA NAPOCENSIS
Series: Applied Mathematics, Mechanics, and Engineering
Vol. 62, Issue IV, November, 2019

ABOUT THE STUDY OF FRAMES BY TRANSFER-MATRIX METHOD (TMM) - SIMILARITY OF DENTAL BRIDGES WITH FRAMES

Mihai TRIPA, Dorina SORCOI, Iulia FLORESCU, Lidia SORCOI, Daniela PAUNESCU, Mihaela SUCIU

Abstract

Similarity with orthodontic problems, makes the study of frames a very important problem, with practical applications in life domains, in the field of health, especially in dentistry. This work presents an analytical calculus for a frame, using the Transfer-Matrix Method (TMM). The frame has two vertical poles, embedded at inferior ends and with a vertical concentrated load, in the middle of horizontal part of frame. The two pole teeth can be assimilated with the two vertical parts of frame and the aggregation elements, together with the bridge body, can be assimilated with the horizontal part of frame. We can determine the displacements aggregation elements. The results will allow, in practice construction of dental bridges to ensure the best resistance. We can solve this problem very easy on an appropriate soft.

Key words: dental bridge, frame, aggregation elements, bridge body, pole teeth, Transfer-Matrix Method (TMM).

1. INTRODUCTION

The frames are meandering beams that can be studied by different methods, including the Transfer-Matrix Method (TMM).

Similarity with orthodontic problems, makes the study of frames a very important problem, with practical applications in life domains, in the field of health, especially in dentistry. Classical frames calculus is presented in [5].

In [1], [2] and [3] are presented studies about some biomechanics applications on femoral bone by different methods.

The importance for the health field of dental bridges in England and Wales is presented in [4]. [9] gives us the basis of frames calculus by TMM.

Another calculus about exponential matrix in robot geometrical modeling is presented in [10]. [6] and [7] present studies about $\mathrm{Co}-\mathrm{Cr}$ dental bridges using different methods. In [8] is presented studies about integrated construction and simulation for crowns and bridges. Studies about design of dental bridges are presented in [11]. Study of bending beams on elastic environment by TMM is presented in [12].

2. THE DENTAL BRIDGE AS A FRAME

As a fixed prosthesis, the dental bridge is very often used in orthodontics, for the morphological restoration of the missing teethpartial edentation, or for the protection and remodeling teeth that have suffered major damages. Dental bridges have the role of compensating for mastcatory, aesthetic and phonetic functions of absent teeth and to prevent complications that may occur as a result of tooth loss. A dental bridge consists of two components, meaning aggregation elements-at least two, the bridge body-which replaces missing teeth and the pole teeth. Aggregation elements represent dental crowns which the bridge rests on the pole teeth (Fig. 1.).

Fig. 1. A dental bridge

Dental bridges can by in medial extension-an extension to the front of the mouth (anterior part) or in distal extension-an extension to the back of the mouth cavity (posterior part).

The pole teeth can be assimilated with the two vertical parts of frame and the aggregation elements, together with the bridge body, can be assimilated with the horizontal part of frame.

The dental bridge is required by an uniformly distributed theoretical force. The most unfavorable case is given by a concentrated vertical force acting in the middle of horizontal opening of frame, equivalent to the uniformly distributed load (Fig. 2.).

Fig. 2. A dental bridge as a frame
For this work, we consider the two vertical poles of frame embedded at inferior ends.

3. FRAME CALCULUS WITH TMM

Analytical calculus for frame with two vertical poles embedded at inferior ends and with a vertical concentrated load in the middle of horizontal part of frame is based of theory Dirac's and Heaviside's functions and operators [9].

We can consider vertical poles of length l and horizontal part of length $2 l$, trying a similarity with a dental bridge with only one missing tooth (Fig. 1. and Fig. 2.). The charge density for a concentrated vertical load at the middle is:

$$
\begin{equation*}
q(x)=-F \cdot \delta(x-l) \tag{1}
\end{equation*}
$$

We note the vertical poles with A and C and the horizontal part with B. The embedded supports are noted with 0 and 3 , the left section of the horizontal part of the frame is marked with 1 and the right section is marked with 2 , (Fig. 2.). We note with: E - modulus of longitudinal elasticity (Young modulus), A - the area of frame transversal section, I - the moment of inertia. We must calculate the displacements
of two nodes, l and 2 , for the frame. After the general approach presented in [9], we have, for each of the three parts of the frame, the following matrix:

$$
\begin{align*}
& {\left[T_{0,1}^{n}\right]=\left[\begin{array}{ccc}
\frac{12 E I}{l^{3}} & 0 & \frac{6 E I}{l^{2}} \\
0 & -\frac{E A}{l} & 0 \\
\frac{6 E}{l^{2}} & 0 & -\frac{4 E A}{l}
\end{array}\right]} \\
& \text { (2) }\left[\left[_{01}^{n}\right]=\left[\begin{array}{ccc}
\frac{12 E I}{l^{l}} & 0 & \frac{6 E I}{l^{2}} \\
0 & \frac{E A}{l} & 0 \\
\frac{6 E I}{l} l^{2} & 0 & -\frac{2 E A}{l}
\end{array}\right]\right. \tag{3}\\
& {\left[T_{10}^{A}\right]=\left[\begin{array}{ccc}
\frac{12 E I}{l^{l}} & 0 & -\frac{6 E I}{l^{2}} \\
0 & \frac{E A}{l} & 0 \\
\frac{6 E I}{l^{2}} & 0 & -\frac{2 E I}{l}
\end{array}\right]} \tag{4}\\
& {\left[r_{1}^{2]}\right]=\left[\begin{array}{ccc}
-\frac{12 E I}{l^{l}} & 0 & -\frac{6 E I}{l^{2}} \\
0 & -\frac{E A}{l} & 0 \\
-\frac{6 E I}{l^{2}} & 0 & -\frac{4 E I}{l}
\end{array}\right]} \tag{5}\\
& {\left[\left[T_{a l}^{s}{ }^{s}\right]=\left[\begin{array}{ccc}
-\frac{E A}{2 l} & 0 & 0 \\
0 & \frac{3 E I}{2 l^{l}} & -\frac{3 E l}{2 l^{2}} \\
0 & \frac{3 E E}{2 l^{2}} & -\frac{E l}{l}
\end{array}\right]\right.} \tag{6}\\
& {\left[T_{l}^{a k}\right]=\left[\begin{array}{ccc}
-\frac{E A}{2 l} & 0 & 0 \\
0 & -\frac{3 E I}{2 L^{B}} & \frac{3 E I}{2 l^{2}} \\
0 & \frac{3 E l}{2 l^{2}} & -\frac{E I}{l}
\end{array}\right](9)} \tag{9}
\end{align*}
$$

$$
\begin{aligned}
& {\left[T_{t 0}^{s]}\right]=\left[\begin{array}{ccc}
\frac{E A}{2 l} & 0 & 0 \\
0 & \frac{E E I}{2^{B}} & \frac{3 E I}{2^{l}} \\
0 & -\frac{3 E I}{2 l^{2}} & -\frac{E I}{l}
\end{array}\right] \text { (8) }}
\end{aligned}
$$

and vectors:

with following observations:

Because supports 0 and 3 are embedded, the displacements within them are known, with following displacement vectors:

$$
\left\{D_{0}\right\}=\left\{\begin{array}{l}
x_{0} \tag{16}\\
y_{0} \\
\omega_{0}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}=\left\{D_{3}\right\}=\left\{\begin{array}{l}
x_{3} \\
y_{3} \\
\omega_{3}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
0 \\
0
\end{array}\right\}
$$

We must write the balance of nodes 2 and 3 with help of two condensed matrix equations:
$\left\{\left[T_{11}^{A}\right] \cdot\left\{D_{1}\right\}+\left\{U_{12}^{B}\right\}+\left[T_{00}^{B}\right] \cdot\left\{D_{1}\right\}+\left[T_{0}^{B}\right] \cdot\left\{D_{2}\right\}+\left\{U_{02}^{B}\right\}=0\right.$
$\left\{\left[T_{10}^{A}\right] \cdot\left\{D_{1}\right\}+\left\{U_{12}^{B}\right\}+\left[T_{11}^{B}\right] \cdot\left\{D_{2}\right\}+\left[T_{11}^{C}\right] \cdot\left\{D_{2}\right\}=0\right.$
with:

$$
\left\{D_{1}\right\}=\left\{\begin{array}{l}
x_{1} \tag{19}\\
y_{1} \\
\omega_{1}
\end{array}\right\} \quad \text { (18) and } \quad\left\{D_{2}\right\}=\left\{\begin{array}{l}
x_{2} \\
x_{2} \\
a_{2}
\end{array}\right\}
$$

The developed matrix equations are:

$$
\begin{align*}
& \left\{\left[\begin{array}{ccc}
-\frac{12 E I}{l^{3}} & 0 & -\frac{6 E I}{l^{2}} \\
0 & -\frac{E A}{l} & 0 \\
-\frac{6 E I}{l^{2}} & 0 & -\frac{4 E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
y_{1} \\
\omega_{1}
\end{array}\right\}+\left\{\begin{array}{l}
0 \\
-\frac{F}{4} \\
-\frac{F l}{24}
\end{array}\right\}+\left[\begin{array}{ccc}
-\frac{E A}{2 l} & 0 & 0 \\
0 & -\frac{3 E I}{2 l^{3}} & -\frac{3 E I}{2 l^{2}} \\
0 & -\frac{3 E I}{2 l^{2}} & -\frac{2 E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
y_{1} \\
\omega_{1}
\end{array}\right\}+\right. \\
& +\left[\begin{array}{ccc}
\frac{E A}{2 l} & 0 & 0 \\
0 & \frac{3 E I}{2 l^{3}} & -\frac{3 E I}{2 l^{2}} \\
0 & \frac{3 E I}{2 l^{2}} & -\frac{E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{2} \\
y_{2} \\
\omega_{2}
\end{array}\right\}+\left\{\begin{array}{c}
0 \\
-\frac{F}{4} \\
-\frac{F l}{24}
\end{array}\right\}=0 \\
& {\left[\begin{array}{ccc}
-\frac{E A}{2 l} & 0 & 0 \\
0 & \frac{3 E I}{2 l^{3}} & -\frac{3 E I}{2 l^{2}} \\
0 & \frac{3 E I}{2 l^{2}} & -\frac{E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{1} \\
y_{1} \\
\omega_{1}
\end{array}\right\}+\left\{\begin{array}{c}
0 \\
-\frac{F}{4} \\
-\frac{F l}{24}
\end{array}\right\}+\left[\begin{array}{ccc}
\frac{E A}{2 l} & 0 & 0 \\
0 & -\frac{3 E I}{2 l^{3}} & \frac{3 E I}{2 l^{2}} \\
0 & \frac{3 E I}{2 l^{2}} & -\frac{2 E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{2} \\
y_{2} \\
\omega_{2}
\end{array}\right\}+} \\
& +\left[\begin{array}{ccc}
-\frac{12 E I}{l^{3}} & 0 & -\frac{6 E I}{l^{2}} \\
0 & -\frac{E A}{l} & 0 \\
-\frac{6 E I}{l^{2}} & 0 & -\frac{4 E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{2} \\
y_{2} \\
\omega_{2}
\end{array}\right\}=0 \tag{20}
\end{align*}
$$

or:

$$
\left\{\left\{\left[\begin{array}{ccc}
-\frac{12 E I}{l^{3}}-\frac{E A}{2 l} & 0 & -\frac{6 E I}{l^{2}} \\
0 & -\frac{E A}{l}-\frac{3 E I}{2 l^{3}} & -\frac{3 E I}{2 l^{2}} \tag{21}\\
-\frac{6 E I}{l^{2}} & -\frac{3 E I}{2 l^{2}} & -\frac{6 E I}{l}
\end{array}\right]\left\{\begin{array}{cc}
x_{1} \\
y_{1} \\
\omega_{1}
\end{array}\right\}+\left[\begin{array}{ccc}
-\frac{E A}{2 l} & 0 & 0 \\
0 & -\frac{3 E I}{2 l^{3}} & -\frac{3 E I}{2 l^{2}} \\
0 & -\frac{3 E I}{2 l^{2}} & -\frac{2 E I}{l}
\end{array}\right]\left\{\begin{array}{l}
x_{2} \\
y_{2} \\
\omega_{2}
\end{array}\right\}=\left\{\begin{array}{l}
0 \\
\frac{F}{2} \\
\frac{F l}{12}
\end{array}\right\}\right.\right.
$$

which gives us a system of six equations with six unknowns, the unknowns being the six displacements, three in each nodes, 1 and 2, (22):

$$
\left\{\begin{array}{l}
-\left(\frac{12 E I}{l^{3}}+\frac{E A}{2 l}\right) x_{1}-\frac{6 E I}{l^{2}} \omega_{1}-\frac{E A}{2 l} x_{2}=0 \\
-\left(\frac{3 I}{2 l^{l}}+\frac{E A}{l}\right) y_{1}-\frac{3 E I}{2 l^{2}} \omega_{1}+\frac{3 E I}{2 l^{3}} y_{2}-\frac{3 E I}{2 l^{2}} \omega_{2}=\frac{F}{2} \\
-\frac{6 E I}{l^{2}} x_{1}-\frac{3 E I}{2 l^{2}} y_{1}-\frac{6 E I}{l} \omega_{1}+\frac{3 E I}{2 l^{2}} y_{2}-\frac{E I}{l} \omega_{2}=\frac{F l}{12} \\
-\frac{E A}{2 l} x_{1}-\left(\frac{12 E I}{l^{3}}+\frac{E A}{2 l}\right) x_{2}-\frac{6 E I}{l^{2}} \omega_{2}=0 \\
\frac{3 E I}{2 l^{3}} y_{1}-\frac{3 E I}{2 l^{2}} \omega_{1}-\left(\frac{3 E I}{2 l^{3}}+\frac{E A}{l}\right) y_{2}+\frac{3 E l}{2 l^{2}} \omega_{2}=\frac{F}{4} \\
\frac{3 E I}{2 l^{2}} y_{1}-\frac{E I}{l} \omega_{1}-\frac{6 E l}{l^{2}} x_{2}+\frac{3 E I}{2 l^{2}} y_{2}-\frac{6 E I}{l} \omega_{2}=\frac{F l}{24} \tag{22}
\end{array}\right.
$$

This is a linear system, that has following form, (23):

$$
\left\{\begin{array}{l}
a_{11} x_{1}+a_{12} y_{1}+a_{13} \omega_{1}+a_{14} x_{2}+a_{15} y_{2}+a_{16} \omega_{2}=b_{1} \tag{23}\\
a_{21} x_{1}+a_{22} y_{1}+a_{23} \omega_{1}+a_{24} x_{2}+a_{25} y_{2}+a_{26} \omega_{2}=b_{2} \\
a_{31} x_{1}+a_{32} y_{1}+a_{33} \omega_{1}+a_{34} x_{2}+a_{35} y_{2}+a_{36} \omega_{2}=b_{3} \\
a_{41} x_{1}+a_{42} y_{1}+a_{43} \omega_{1}+a_{44} x_{2}+a_{45} y_{2}+a_{46} \omega_{2}=b_{4} \\
a_{51} x_{1}+a_{52} y_{1}+a_{53} \omega_{1}+a_{54} x_{2}+a_{55} y_{2}+a_{56} \omega_{2}=b_{5} \\
a_{61} x_{1}+a_{62} y_{1}+a_{63} \omega_{1}+a_{64} x_{2}+a_{65} y_{2}+a_{66} \omega_{2}=b_{6}
\end{array}\right.
$$

with unknown's coefficients determinant (24):

$$
\left[\begin{array}{cccccc}
a_{11} & 0 & a_{13} & a_{14} & 0 & 0 \tag{24}\\
0 & a_{22} & a_{23} & 0 & a_{25} & a_{26} \\
a_{31} & a_{32} & a_{33} & 0 & a_{35} & a_{36} \\
a_{41} & 0 & 0 & a_{44} & 0 & a_{46} \\
0 & a_{52} & a_{53} & 0 & a_{55} & a_{56} \\
0 & a_{62} & a_{63} & a_{64} & a_{65} & a_{66}
\end{array}\right]
$$

and with the free terms vector (25):

$$
\left\{\begin{array}{l}
0 \tag{25}\\
b_{2} \\
b_{3} \\
0 \\
b_{5} \\
b_{6}
\end{array}\right\}
$$

The system solutions determine the displacement vectors given by the relations (18) and (19). The results will allow, in practice, the construction of dental bridges to ensure the best resistance.

4. CONCLUSION

This work exposed an analytical calculus for frame with two vertical poles embedded at inferior ends and with a vertical concentrated load in the middle of horizontal part of frame, using the Transfer-Matrix Method.

This approach can be applied for different frames, in occurrence for dental bridges with medial extension or in distal extension, with a larger body, that is, with more than one missing tooth. Original contribution is the similarity between the dental bridge and the frame, the frame being studied with TMM. Algorithm can by program, we hope that will be presented in future works and validate theoretical results with other numerical methods and by experimental tests.

5. REFERENCES

[1] Botean, A.-I., Takacs, I. A., Hardau, M., Photoelasticimetry applications in biomechanics, Acta Technica Napocensis, Series: Applied

Mathematics and Mechanics, Vol. 54, Issue I, 2011.
[2] Botean, A.-I., Mândru, D. S., Hardau, M., Plan model to analize the state of stresses and strains of the human proximal femoral bone, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, Vol. 58, Issue II, June, 2015.
[3] Botean, A.-I., Study of changing geometric characteristics in proximal femoral bone affected by osteoporosis in compliance with Singh index, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, Vol. 60, Issue III, Septembre, 2016.
[4] Burke, F. J. T., Lucarotti, P. S. K., Ten year survival of bridges placed in the General Dental Services in England and Wales, Journal of Dentistry, vol. 40, Issue 11, https://doi.org/10.1016/j.jdent.2012.07.002, 2012.
[5] Cretu, A., Strength of Materials, Ed. Mediamira, Cluj-Napoca, 2005.
[6] Dikova, T., Vasilev, T., Bending fracture of CoCr dental bridges, produced by additive technologies: Simulation analysis and test, Engineering Fracture Mechanics 218/2019, https://doi.org/10.1016/j.engfracmech.2019.1065 83, 2019.
[7] Dikova, T., Bending fracture of $\mathrm{Co}-\mathrm{Cr}$ dental bridges, produced by additive technologies: experimental investigation, Procedia Structural Integrity 13 (2018), 461-468, Elsevier B.V. Peerreview under responsibility of the ECF22 organizers, 10.1016/j.prostr.2018.12.077, 2018.
[8] Gaspar, M., Weichert, F., Integrated construction and simulation of tool paths for milling dental crowns and bridges, Computer-Aided Design 45/2013, 1170-1181, 2013.
[9] Gery, M., Calgaro, J.-A., Les Matrices-Transfert dans le calcul des structures, Editions Eyrolles, Paris, 1987.
[10] Schonstein, C., Considerations about matrix exponentials in geometrical modeling of the robots, Acta Technica Napocensis, Series: Applied Mathematics and Mechanics, Vol. 62, Issue II, June, 2019.
[11] Studart, A. R., Filser, F., Kocher, P., Gauckler, L. J., Fatigue of zirconia under cyclic loading in water and its implications for the design of dental bridges, Dental Materials 23/2007,106-114, doi: 10.1016/j.dental.2005.12.008, 2007.
[12] Suciu, M., About the Study of Bending Beam on Elastic Environment by Transfer-Matrix Method, Applied Mechanics and Materials, vol. 186, pp.149-155, 2012.

Asupra studiului cadrelor prin Metoda Matricelor de Transfer (MMT) similitudinea între punțile dentare şi cadre

Rezumat: Similitudinea cu problemele ortodontice face ca studiul cadrelor să fie o problemă foarte importantă, cu aplicații practice în domeniile vieții, în domeniul sănătății, în special în stomatologie. Acest articol prezintă un calcul analitic pentru un cadru, utilizând Metoda Matricelor de Transfer (MMT). Cadrul are doi stâlpi verticali, încastraţi la extremităţile inferioare și solicitaţi cu o forță verticală concentrată, în mijlocul părții orizontale a cadrului. Cei doi dinți stâlpi pot fi asimilați cu cele două porţiuni verticale ale cadrului, iar elementele de agregare, împreună cu corpul podului dentar, pot fi asimilate cu partea orizontală a cadrului. Se pot determina deplasările elementelor de agregare. Rezultatele vor permite, în practică, construcția unor punți dentare ce vor asigura cea mai bună rezistență. Putem rezolva această problemă foarte ușor pe un soft adecvat.

Mihai TRIPA, Conf. Dr. Eng., Technical University of Cluj-Napoca, Design Engineering and Robotics Department, Mihai.Tripa@muri.utcluj.ro, Phone: 0720723012
Dorina SORCOI, Doctoral Student, Technical University of Cluj-Napoca, Mechanical Engineering Department, dorina sorcoi@yahoo.com, Phone: 0749102682
Iulia FLORESCU, Doctoral Student, Technical University of Cluj-Napoca, Mechanical Engineering Department, crenguta florescu@yahoo.com, Phone: 0747071799
Lidia SORCOI, Researcher, Technical University of Cluj-Napoca, Science and Material Engineering Department, Adriana.Sorcoi@stm.utcluj.ro, Phone: 0744492813
Daniela PAUNESCU, Conf. Dr. Eng., Technical University of Cluj-Napoca, Manufacturing Engineering Department, Daniela.Paunescu@tcm.utcluj.ro, Phone: 0756075503
Mihaela SUCIU, Prof. Dr. Eng., Technical University of Cluj-Napoca, Mechanical Engineering Department, Mihaela.Suciu@rezi.utcluj.ro, Phone: 0722878112

