
7

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 63, Issue I, March, 2020

PRINCIPLES OF MOTION SIMULATION OF A 2 DOF RR PLANAR

MANIPULATOR USING JAVA SWING

Tiberiu Alexandru ANTAL

Abstract: The paper presents the main differences related to a simulation made in an imperative

programming language that uses 2D graphic primitives compared to the way of implementing a simulation

using the Java GUI called Swing. Some basic concepts related to Java, GUIs and Swing combined with

AWT are covered for a better understanding of the Java code organization for such a purpose. A 2D RR

manipulator is used for computational purposes to implement object oriented the concepts in Java and to

illustrate some of the simulators applications.

Key words: 2DOF, approximation, GUI, java, RR manipulator, simulation, swing, workspace.

1. INTRODUCTION

1.1 Some words on the concept of GUI

The father of the GUIs is considered to be

Douglas Carl Engelbart (January 30, 1925 – July

2, 2013) who was an American engineer and

inventor. As a pioneer in the field of human -

computer interaction, while working at ARS

(Augmentation Research Center) Lab in SRI

(Stanford Research Institute) International, he

created the computer mouse. Engelbart, applied

for the patent named “computer mouse – U.S.

Patent 3,541,541” for a device described as “X-

Y position indicator for a display system”, in

1967 [1] and received it in 1970. In the mid-

1970s the funding of the SRI ARC Lab started

to fall and many of the employees migrated to

newly founded companies. One of these was

Xerox PARC a part of Xerox Corporation. At the

beginning of 1973, the mouse was successfully

incorporated into the graphical user interface

(GUI) used on the Xerox Alto - the first

computer designed from the start to work with

an operating system based on a graphical user

interface (GUI) [2] - the father of what today we

call the desktop. At that time Xerox didn’t

realize the importance of the technology that had

been developed at PARC. Xerox Alto

‘commercial version’ was started to be sold in

1981, shortly before the first IBM PC was

released, but somehow too late to position the

product and the company in a leading position

on the market of personal computers. In 1979

Steve Jobs visited Xerox PARC where he was

shown the Smalltalk-80 programming

environment, networking, and the WYSIWYG

(what you see is what you get) - mouse - driven

graphical user interface provided by the Alto. He

sensed the importance of the GUI oriented

operating seen at Xerox and demanded that these

new features be integrated into their new

operating system. So, the today’s GUIs are due

to Engelbart who invented them, Xerox who

perfected the technology and Jobs who

successfully marketed the new concept.

1.2 Some words on Java and the Java GUIs

If in the first part the paternity of the GUI has

been briefly described below I will approach this

concept at the level of the Java language. It is

beyond the scope of this paper to enter into a

detailed presentation of the Java programming

language but I will mention that it is a high level

programming language that is using the object-

8

oriented paradigm to develop software based on

objects [3], [4]. When compiled, the Java source

code, is translated to an intermediate

representation (not a machine language) called

bytecode, which can be ran only on the Java

Virtual Machine (JMV). The JVM is a platform

specific interpreter that runs the bytecode by

turning it into machine language. Java, as all

modern languages, has a very well organized

CUI (Character User Interface) as well as more

libraries (called packages in Java) to create GUIs

(Graphical User Interface). Roughly speaking in

CUI the man-machine interaction is limited the

keyboard while in GUIs the mouse can be used

the substitute the keyboard. Currently Java

allows operation with three categories of GUIs:

AWT, Swing and JavaFX. Java 1.0 contained a

class library called by Sun the Abstract Window

Toolkit or AWT dedicated for basic GUI

programming. Technically speaking the

Abstract Window Toolkit is organized around

the Toolkit abstract superclass that is the base of

any graphical user interface element. GUI

oriented operating systems like Windows,

Solaris, Macintosh provide the own GUI toolkits

which are platform specific. AWT succeeded in

wrapping all these into a single GUI by

delegating the creation and behavior of the

elements to the native (platform specific) GUI

toolkit. The resulting program could run, in

theory, on any of these platforms having the

same “look and feel”. The problem was that

graphical user interface elements such as text

boxes, list boxes and menus had subtle

difference in behavior on different platforms or

they simply did not exist. These problems

limited the usage of the AWT in achieving the

“Write Once, Run Anywhere” slogan. In 1996, a

company called Netscape Corporation released

a graphical library called Internet Foundation

Classes (IFC) which was a breakthrough. The

GUI elements were painted onto windows, this

way the only functionality needed from the

native GUI toolkit was to create and open a

window and then paint it. This entirely new

design made the GUIs look and work the same

no matter which platform the program ran on.

Finally, from the beginning of 1997, Sun and

Netscape joined their efforts and combined IFC

with other technologies to form what today are

called Swing and Java2D. The GUI version to

replace Swing is called JavaFX. This is intended

to run on Java SE and may be used for creating

and delivering desktop applications, as well as

Rich Internet applications or RIA that can run

across a wide variety of devices and platforms as

Web, Mobile and Desktops.

1.3 Some concepts about animation and

graphical simulation

 Both digital animation and graphical

simulation are about moving some kind of entity

on the screen. Animation is related to graphics

as it is a sequence of images (drawings) while a

simulation can be strictly numerical or it can

have also graphical parts [5] – [7]. Conceptually,

the animation aims to illustrate a principle

without having the intention to accurately

respect the reality, while the simulation is based

on some kind of mathematical model (which can

describe the reality correctly and completely or

only partially).

Fig. 1. – Entity types in a mechanical graphical simulation.

The graphical simulation of the mechanical

systems commonly contains entities that move

on the basis of some laws as well as entities that

require some form of persistence. Consider the

simulation from Figure 1. Here O and A are

revolute joints (pivots) and point E is the end

effector of this 2 DOF planar manipulator. The

mathematical model for the forward kinematic

problem is described by the following equations

(origin is considered in O):

��� = ��� cos��� + ��� cos����
�� = ��� sin��� + ��� sin���� (1)

9

If ��� and ��� lengths of the links are known,

for a given set of {�, ��} the coordinates (xE,

yE) of the E end-effector are computed directly

from (1). From the simulation’s point of view

(see Fig. 1) the ground link (in blue) will not

move as it is fixed together with the O (green)

pivot. The OA and AE (in green) links move as

well as the A pivot. The E point describes a

trajectory (the red curve) that must be preserved

on the screen as long as the arm moves and

extended based on the (1) equations each time

the mechanism takes a new step (as the φ1 and φ2

angles are variated based on some law). A

typical algorithm used for this would have the

following pseudocode:

bg = getBackgroundColor()

fg = getPenColor();

draw all still entities

for φ1 = φ1start to φ1stop step φ1step

 //f has some law of variation

φ2=f(φ1)

compute coord. for O, A and E

if (φ1 = φ1start) then

 //save the first point

 Eprevious = E

else

 //draw a line from Eprevious

 //to E current to obtain

 //trajectory of E point

 setPenColor(fg1)

 drawline(Eprevious,E)

 //make E = E previous

Eprevious=E

endif

//draw moving entities in

//fg color

setPenColor(fg)

drawline(OA)

drawline(AE)

//wait for tms milisconds

wait(tms);

//erase moving entities

//by redrawing them in

//bg color

setPenColor(bg)

drawline(OA)

drawline(AE)

endfor

The graphical simulation of the RR planar

manipulator movement has a numerical part

based on (1) as well as a portion of drawing that

is still and one that moves on the screen. Once

the still entities are drawn a for loop is used to

compute the positions of the moving entities

(lines). The feeling of motion is obtained by

drawing the entities in the foreground color (fg)

waiting for a while and redrawing them in the

background color (bg) to make them disappear.

This general principle cannot be used under the

Java GUI.

2. THE SWING GUI CONCEPT IN JAVA

Swing is a rich set of packages for creating a

GUI in a platform independent way in Java. The

coordinate system allows the identifications of

drawn entities on the screen. By default the

upper-left corner has the (0, 0) coordinates. The

x coordinate is the horizontal distance moving to

the right from the upper-left corner and the y

coordinate is the vertical distance moving down

from the upper-left corner. All graphical entities

are displayed on the screen by specifying (x, y)

coordinates with respect of the upper-left corner.

Coordinates are measured in pixels (the

monitor’s smallest unit of resolution). Pixels are

positive numbers, any negative pixel values will

lead the entities that will not be shown on the

GUI (although these are not visible they are

stored and the GUI will not give errors).

Interaction with the graphical screen is handled

in Java by the graphics context. The term

“context” is a generic name used by the Java

developers for classes that carry state

information. For 2D graphics the graphics

context is managed by the java.awt.Graphics

abstract class that stores data about the drawing

properties like colors, graphical primitives,

clipping regions, etc. and it provides methods for

the proper handling of the graphical capabilities.

The top level window (sometimes also called the

main window - the window that contains all the

other windows of the application) is called in

Java frame (in AWT the corresponding class is

called Frame and in Swing it is called JFrame).

Drawing directly onto the main windows is not

considered a safe programming practice. One

reason would be that frames are designed to

10

contain other user interface components

(reusable software code that has a graphical

representation like labels, text field, buttons,

menus etc.) and not to be drawn directly by our

code. Another reason would be that the drawing

can overlap other user interface components of

the window that can be partially or totally

covered. Normally a drawing is made inside a

component called panel that is added to the

frame. To draw a panel the following steps

should be followed:

• define a class that extends the JPanel

class and add this new class to the main

window;

• override the paintComponent() method

of the new class with methods that draw

graphical entities (lines, rectangles,

ellipses and so on).

A typical code for drawing a panel is:

class NewClass extends JPanel

{

 public void paintComponent(Graphics g)

 {

 super.paintComponent(g);

 //methods to draw the content

//of the panel

 . . .

 }

}

The Graphics class contains the methods to

manage and draw the panel with primitive

graphical entities like (2D Shapes):

• g.setColor(pen) - to set the color of

the pen;

• g.drawLine(x1,y1,x2,y2) - to draw a

line;

• g.fillOval(x,y,w,h) - to draw a circle

(if w and h are equal);

• g.drawPolyline(x[], y[], n) - to

draw a polyline stored in x[] and y[]

vectors of n elements each.

Based on the given pseudocode the

simulation process in Swing seems to be simple.

The appropriate drawing methods are replaced

in the pseudocode and we make sure that all of

them are written inside the paintComponent()

method of a class derived from a JPanel that

respects those already exposed. This would

work if all the entities in the panel were static or

motionless. However, as some of the entities are

moving, they should be redrawn on new

positions based on (1). When motion is involved

in Swing the redrawing of the panel can only be

achieved by using the concept of event. Event

handling is the mechanism implemented by the

Swing creators to control events and to decide

what should happen if an event occurs. This

mechanism is based on the Delegation Event

Model which defines how to generate and

handle the events. Inside this model there is a

separate code - known as the event handler -

which is executed when an event happens.

Different event sources can produce different

type of events which are transmitted to event

listeners that will carry out the response to the

event (or handle the event). The event sources

are associated to the event listeners by a process

call registration. The registration is obtained by

the following line of code:

eventSourceObj.addEventListener(eventSourceObj);

As Java is an object oriented language all event

objects derive from the

java.util.EventObject class. To implement

an ActionListener interface the listener class

must have a method called actionPerformed()

that receives an ActionEvent object as a

parameter. To successfully implement a

simulation in Java using Swing and AWT we

must use the javax.swing package that contains

a Timer class which can be used to update our

panel contents. Java has more general-purpose

timer packages however Swing timers and GUI

events share the same event-dispatch thread.

This means that while the Swing timer

ActionEvent is executed it can manipulate GUI

components and that the task is executed

quickly. The timer has set an interval and what

it should do by a class that implements the

ActionListner interface as follows:

public interface ActionListener {

 void actionPerformed(ActionEvent

event);

}

The Timer generates the ActionEvents at a

fixed inteval (10 ms in the following example)

11

and notifies the ActionListener that the event

occurred. The actionPerformed() computes

based on (1) the coordinates of the A and E

points and the orientation of the end-effector

(positioned 7 pixels inside the AE link). The

objects are then updated to the new coordinates

and the AE link is stored in a Vector.

new Timer(10, new ActionListener() {

public void

actionPerformed(ActionEvent e)

 {

 //A point

 xa=x0 + rob.l * Math.cos(fi1);

 ya=y0 - rob.l * Math.sin(fi1);

 //E point

 xe=xa + rob1.l * Math.cos(fi2);

 ye=ya - rob1.l * Math.sin(fi2);

 //E point 7 pixel back to A

 xe1=xa + (rob1.l-7) * Math.cos(fi2);

 ye1=ya - (rob1.l-7) * Math.sin(fi2);

 //Store in the objects the new

 // positions of A and E

 rob.setXY(x0, y0, xa, ya);

 rob1.setXY(xa, ya, xe,ye);

 ef.setPosOr(-fi1, xe1, ye1);

 //Store in a Vector the A, E

 //updated coordinates

 v.addElement(new GrRobot(xa, ya,

xe,ye, getBackground(), Color.RED));

 //modify the fi1 and fi2 angles

 fi1 += 0.002;

 fi2 =

fi1*Math.sin(fi1*8.)*Math.cos(fi1/9.);

..//if fi1 exceeds the limit of 10xpi

 // start from the beggining

 if (fi1 > 10. * Math.PI) {

 fi1 = 0.;

 v.removeAllElements();

 }

 //the call of the repaint() method

 // it will force the call of the

 // paintComponent() method

 repaint();

 }

}).start();

The Vector class implements a one-

dimensional array with variable number of

object elements. Elements can be added or

removed using dedicated methods of the class.

The Vector class in this application is declared

as:

Vector<GrRobot> v = new

Vector<GrRobot>(1);

This means that the v object is able to store one

GrRobot element from the beginning. The

addElement() method is used to add element

to the Vector object. If the number of elements

added is over the initial number of elements (1

in this case) the v Vector object will be re-sized

automatically to fit the new required capacity.

The removeAllElements() method is used to

remove all elements from the Vector object. In

the previous code this method is used to reset the

simulation. By clearing v the simulation loses all

trajectory points being reset to the initial (void)

state. The line in the actionPerformed() code

is the call of the repaint method of the JPanel.

This is called when we want to repaint the screen

and will cause the call of the

paintComponent() method for all component

of the object. The javax.swing.Timer has the

following constructor:

Timer(int time_in_ms, ActionListener

listener);

The start() method is used start the timer

which calls the actionPerformed() method

repeatedly each time the time_in_ms passes as

long as the timer is not stopped calling the

stop() method.

3. THE OBJECT ORIENTED

REPRESENTATION OF THE

MANIPULATOR

Five classes are used to achieve the graphical

simulation of the manipulator: EndEffector,

GroundLink, GrRobot, GrPanel which inherits

from the javax.swing.JPanel class and GrFrame

which inherits from the javax.swing.JFrame

class. The EndEffector class stores the state of

the end effector and draws the entity depending

on its position an orientation as follows:
public class EndEffector {

 Color bck, pen;

 int xpoints[]={ 40, 30, 10, 0, 10, 30,

40 };

12

 int ypoints[]={ 5, 15, 15, 0, -15, -

15, -5 };

 int xpoints1[], ypoints1[];

 int npoints;

 public EndEffector() {

 npoints = xpoints.length;

 xpoints1 = new int[npoints];

 ypoints1 = new int[npoints];

 }

 public void setPosOr(double fi, int

tx, int ty) {

//this a pseudocode to describe the

// operations on the xpoints and

// ypoints arrays – the result is

// stored in xpoints1 and ypoints1

 Rotate(fi)

 Translate(tx,ty)

 }

 public void draw(Graphics g) {

 g.drawPolyline(xpoints1, ypoints1,

npoints);

 }

}

The GrRobot class stores the state and draws

a pivot-link pair as follows:

public class GrRobot {

 int x1,y1,x2,y2;

 double l;

 Color bck, pen;

 public GrRobot(int x1, int y1, int x2,

int y2, Color bck, Color pen) {

 this.x1=x1; this.y1=y1;

 this.x2=x2; this.y2=y2;

 this.bck=bck; this.pen=pen;

 l=Math.sqrt((x1-x2)*(x1-x2)+(y1-

y2)*(y1-y2));

 }

 public void draw(Graphics g) {

 //draw the link

 g.setColor(pen);

 g.drawLine(x1,y1,x2,y2);

 //draw a white circle to cover

 // the line

 g.setColor(Color.WHITE);

 g.fillOval(x1 - 5, y1 - 5, 10, 10);

 //draw a black circle to show the

 //pivot contour

 g.setColor(Color.BLACK);

 g.drawOval(x1 - 5, y1 - 5, 10, 10);

 }

 public void setXY(int x1, int y1, int

x2, int y2) {

 this.x1=x1;

 this.y1=y1;

 this.x2=x2;

 this.y2=y2;

 }

}

The GrPanel class contains the assembly of

pivots and links assembled in the manipulator.

Here, we store the states of the entities that make

up the manipulator; we implement the

computations used in the graphical simulation

and draw on the panel the updated state of the

objects forming our final scope - the motion of

the manipulator. The constructor of the class is

based on the following piece of code:

public GrPanel() {

 initComponents();

//ground link ‘center’

 x0=300;

 y0=250;

 grlk = new GroundLink(x0,y0,70, 60);

//pivot O and OA link

 rob = new GrRobot(x0, y0, x0+50, y0…);

//pivot A and AE link

 rob1 = new GrRobot(rob.x1, y0,

rob.x1+150, y0…);

//end effector (-7 pixel on AE)

 ef = new EndEffector();

//method call to start the timer

// containing the actionEvenet()

 startTimer();

}

The paintComponent() method has the

following code:

public void paintComponent(Graphics g)

{

 super.paintComponent(g);

 //draw the robot

 grlk.draw(g);

 rob.draw(g);

 rob1.draw(g);

 ef.draw(g);

 if (v.size() >= 2) {

 for (int i = 1; i < v.size() - 1; i++)

{

 p1 = v.get(i);

13

 p2 = v.get(i + 1);

 g.setColor(p1.pen);

 g.drawLine(p1.x2, p1.y2, p2.x2,

p2.y2);

 }

 }

}

The get() method extracts the current

position (i+1) of the end effector and the

previous one (i) in order to draw a line between

these two points. For each new position of the

manipulator a new element is added to v and the

for loop is redrawn from the beginning.

4. SOME APPLICATION OF THE

SIMULATOR

The applications of the simulator are related

to the determination of the working space of the

manipulator, of some subspaces that relate to the

limitations applied to the generalized

coordinates, to the obtaining of functions that

approximate the working space as quickly as

possible and about extending the current

structures to new ones by reusing code.

4.1 Workspace determination in Swing

A typical pseudocode for determining the

manipulator workspace would be:

for φ1 = φ1start to φ1stop step φ1step

 for φ2 = φ2start to φ2stop step φ2step

 solve direct kinematics(xe,ye,φ1,φ2)

 drawpoint(xe, ye)

 endfor

 endfor

However such a code will not run in Swing

for two reasons:

• the computational part here is timer driven

(the embedded for loops that generate the set

of the all possible variations of the φ1 and φ2

with a given step will run repeatedly from

the beginning without advancing to the stop

values);

• there is no point graphical primitive (this

must be simulated using some other

primitive entities from Swing).

The embedded for loops will be written as:

if (φ2 <= φ2stop)

 φ2 += φ2stepp

else {

 φ1 += φ1step

 φ2 = φ2start

}

if (φ1 > φ1stop) {

 φ1 = φ1start

 v.removeAllElements();

}

The following figures (Figure 2 to Figure 4)

are showing the results of the simulations

replacing the point with its equivalents available

in Swing. In Figure 2 the drawLine(p1.x2,

p1.y2, p1.x2, p1.y2); line of code was used

in the paintComponent() method to simulate

the point. This draws a line of length 1.

In Figure 3 the fillOval(p1.x2-2, p1.y2-

2, 4,4); creates circle of radius two and, as

seen, gives a better visual grasp of the

simulation.

Fig. 2. – The simulation results using a line of length one

instead of a point.

In Figure 4 the drawLine(p1.x2, p1.y2,

p2.x2, p2.y2); draws a line between the last

two points of the trajectory of the end effector to

obtain the simulation.

14

Fig. 3. – The simulation results using a circle of radius two

instead of a point.

Fig. 4. – The simulation results using a line that connects

the previous point with the current one of the end effector.

Of the three representations of the workspace

through points, raised points (circles) and lines,

the lines also provide movement information

(traces) compared to the first two in which only

position data persists.

4.2 Subworkspace determination in Swing

Determination of subworkspaces is made by

applying limitation to the pivots rotations. These

limitations are defined by the start values and

ending values for the rotations. In the following

examples (Figure 5 to Figure 8) the initial values

of the start angles are modified as follows:
double fi1 = 0.5, fi2 = 0.2;

Fig. 5. – The subworkspace simulation results using a line

of length one.

Fig. 6. – The subworkspace simulation results using a

circle of radius two.

 while the actionPerformed() code must be

updated to:

if (fi2 <= Math.PI/1.5)

 fi2+=0.1;

else {

 fi1+=0.1;fi2=0.2;

}

if (fi1 > Math.PI)

 return;

in order the limit the final value to Math.PI

for fi1 and to Math.PI/1.5 for fi2.

Fig.5 and Fig. 6 differ only by the size of the

‘point’ and it just shows that a more visible point

15

cloud can be obtained by increasing the point

size.

Fig. 7. – The subworkspace simulation results using a

circle of radius five.

Fig. 8. – The subworkspace simulation results using a line

that connects the previous point with the current one of the

end effector.

4.3 Approximate workspace computation by

using a connection function between the

generalized coordinates

Instead of using overlapped for loops to explore

systematic and compute the workspace of the

manipulator or robot with a given precision we

might try to approximate the exploration

procedure. The term of approximation refers to

a limited number of points of the workspace

computed in order to get the grasp of the entire

workspace. In Fig. 10 such a workspace is

obtained by using the following code:

fi1 += 0.05;

fi2 = fi1*fi1*sin(fi1)*cos(fi1);

if (fi1 > 20*Math.PI) return;

which is equivalent to the following equation:

�� = � ∙ � ∙ sin��� ∙ cos ��� (2)

The two for loops from 4.1 are transformed into

a single for loop as:

for φ1 = φ1start to φ1stop step φ1step

 φ2 = f(φ1)

 solve direct kinematics(xe,ye,φ1,φ2)

 drawpoint(xe, ye)

 endfor

From the computational point of view this

approach although it offers a partial coverage of

the workspace has much shorter calculation

duration. The method is important when the

computation time is polynomial resulting from a

large number of generalized coordinates leading

to an equivalent number of entangled for cycles

for obtaining the workspace.

Fig. 10. – An approximated 2D planar manipulator

workspace.

In Figure 10 the results were obtained using

1256 points while those from Figure 3 were

obtained using 4159 points (see the size value

from de figures). The shape of the workspace

can be observed well in both situations and

insofar as the shorter computation time is

16

preferable to the accuracy of the method, it can

be applied successfully.

4.4 Reusability in simulating other

manipulators (or robots)

Since the implementation is object-oriented, it

can be easily adapted to new structures as long

as these are based on the already existing

objects. Consider the simulation from Figure 11

where the 2R manipulator was extended to a 2D

3R manipulator. Figures 12 to 14 are comparing

the workspace determination using the

approximated and the systematic approach.

Fig. 11. – A 2D 3R planar

extension of the 2D 2R

manipulator.

Fig. 12. – Approximated

workspace of the 2D 3R –

size: 6203.

Fig. 13. – Intermediate

state of the systematic

workspace determination

– size: 11006.

Fig. 14. – Final state of the

systematic workspace

determination – size:

34847.

As you can see a preliminary conclusion can be

drawn from Figure 12 which used only 6203

points compared to the complete exploration

from Figure 14 which used 34847 points.

5. REFERENCES

[1] https://en.wikipedia.org/wiki/

Douglas_Engelbart

[2] https://en.wikipedia.org/wiki/ PARC_(company)

[3] ANTAL, T. A., Elemente de Java cu JDeveloper

- îndrumător de laborator, Editura UTPRES,

2013, p.150, ISBN: 978-973-662-827-6.

[4] ANTAL, T. A., Java - Iniţiere - îndrumător de

laborator, Editura UTPRES, 2013, p. 246, ISBN:

978-973-662-832-0.

[5] DETESAN, Ovidiu-Aurelian et al. THE

GRAPHICAL SIMULATION OF TRR SMALL-

SIZED ROBOT. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, [S.l.], v. 59, n. 3, sep. 2016.

ISSN 1221-5872.

[6] DETESAN, Ovidiu-Aurelian. THE

NUMERICAL SIMULATION OF TRR

SMALL-SIZED ROBOT. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, [S.l.], v. 58, n. 4, nov. 2015.

ISSN 1221-5872.

[7] CRIŞAN, Adina - Veronica; ŞERDEAN, Florina

- Maria; MORARIU - GLIGOR, Radu. THE

ANALYSIS OF GEOMETRICAL ERRORS

BASED ON POLYNOMIAL

INTERPOLATION FUNCTIONS FOR A 5

D.O.F. SERIAL ROBOT. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, [S.l.], v. 60, n. 4, dec. 2017.

ISSN 1221-5872..

Principiile simulării mişcării unui manipulator plan RR utilizând Swing Java

Lucrarea prezintă diferențele între o simulare realizată într-un limbaj de programare imperativ, care folosește primitive

grafice 2D şi modul de implementare a unei simulări folosind interfaţa grafică Java numită Swing. Unele concepte de

bază legate de Java, interfeţe grafice și Swing combinat cu AWT sunt prezentate pentru o mai bună înțelegere a organizării

codului Java. Un manipulator plan RR este utilizat a implementa orientat pe obiect conceptele specifice simulărilor în

Java și pentru a ilustra câteva dintre aplicațiile simulărilor.

ANTAL Tiberiu Alexandru, Professor, Dr. Eng., Technical University of Cluj-Napoca, Department

of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul Muncii, Nr.

103-105, Cluj-Napoca, ROMANIA.

