
17

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

 Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 63, Issue I, March, 2020

USING NETWORKING SERVICES FOR REMOTE ACCESS TO A JAVA

ROBOT SIMULATOR

Tiberiu Alexandru ANTAL

Abstract: The paper presents the use of Java network services for the Internet connection of a Java client

who remotely accesses a robot simulator implemented in Java, which integrates a server, implemented as

a task, to perform the communication.

Key words: client, Java, networking, sever, simulation, socket, task.

1. INTRODUCTION

Java is an object-oriented programming

language that includes all the facilities needed to

implement client-server simulation applications

[1], [2] over the Internet with the help of the

socket concept. The simulations are based on a

mathematical model that describes a studied

problem and can be purely numerical or have a

graphical part [3] - [6].

1.1 Some words on the concept of socket

The concept of socket is connected to the

4.2BSD (Berkeley Software Distribution) Unix

operating system, released in 1983. It was

conceived as an Application Programming

Interface (API) used for a virtual inter-process

communication based, among others, on Internet

sockets. Sockets can be of two types, stream (bi-

directional) or datagram (fixed length

destination-addressed messages). A socket is an

abstract representation of a process called start-

point (sometimes called endpoint if the

communication is bi-directional) that connects

over the network to a process called endpoint

using input and output data streams attached to

the socket. This simplifies socket

communication as the network is viewed as a

sequential file from which data is read or in

which data is written. As long as the connection

is on the data flows between the two remote

processes (start-point and endpoint) in

continuous streams, in both directions. A socket

is created with the help of an API function and

is assigned to a file descriptor which will be used

further to access the socket. Socket

communication takes place using a protocol. At

the time of creation the socket is associated to a

socket address, consisting of a port number

(TCP port) and a local host network address (IP

address). The port number is a logical channel

number associated to an application. The inter-

process networking is using the TCP/IP protocol

to transfer data over the Internet as this adds

reliable communication, flow-control,

multiplexing and connection-oriented

communication [7].

1.2 Java networking services

JDK (Java Developers Kit) 1.0, the first

implementation of the cross-platform language

called Java, was released by Sun Microsystems

Inc. in 1996 providing the developers Internet

and intranet application packages (libraries).

Network related programming classes were

implemented in the java.net package being

divided into two categories of abstraction [8]:

• low level APIs:

o network identifiers such as IP

addresses;

18

o sockets: for bi-directional

communication;

o interfaces: network interfaces;

• high level APIs:

o Universal Resource Identifiers

o Universal Resource Locators

o Connections.

From JDK 11 enhanced support for HTTP

clients was added in the java.net.http sub-

package. The domain of data transfer over the

network is a vast field for this reason the

following work will only cover the concepts

used to the implementation of the

communication application between the client

and the robot simulator.

2. THE JAVA CLIENT APPLICATION

The Java client application opens a socket

communication point with the following code:

Socket s = new Socket(host, port);

The host is a String containing the IP

address of the server. If the socket constructor

can’t find the host it throws an exception. Once

the socket connects to the server two streams can

be associated to it for reading (InputStream) and

writing (OutputStream) purposes. As this

application will only send data to the server an

OutputStream will do for this purpose. This

stream is using binary data organized as bytes.

In order to communicate with the server using

primitive types it must be turned into a

DataOutputStream. This contains methods for

writing standard data types including a String

using the writeUTF() method. This is using a

buffer to increase performance and must be

flushed manually when a line of text is sent as

follows:

OutputStream os=s.getOutputStream();

DataOutputStream out =

DataOutputStream(os);

out.print(line);

out.flush();

s.close();

The following class implements completely

the computations for a set of data to be sent to

the server in order to determine the workspace

of the robot thru simulation.

class SimClient {

 public static void main(String args[])

throws Exception {

 double f, f1, f2;

 String L;

 Socket s = new Socket("localhost", 3333);

 DataOutputStream out = new

DataOutputStream(s.getOutputStream());

 for (f=0.;f<= 2.*Math.PI; f+=0.1)

 for (f1=0.;f1<=2.*Math.PI;f1+=0.1)

 for (f2=0.;f2<=2.*Math.PI;f2+=0.1) {

 L=String.format("%.6f,%.6f,%.6f",f,

f1,f2);

 out.writeUTF(L);

 out.flush();

 }

 out.writeUTF("stop");

 out.flush();

 out.close();

 s.close();

 }

}

3. THE JAVA SERVER APPLICATION

The Java server application is waiting for

clients to connect on port 3333. This number is

over 1024 which is the upper limit of the so

called well-known ports or system ports. As the

server will be only reading data from the clients

a DataInputStream will be enough to get the

data. To construct a server socket the port

number must be give as follows (this also might

throw and Exception):

ServerSocket ss = new ServerSocket(port);

Socket s = ss.accept();

The accept() method will wait for the first

client to connect to the server. As long as the

method is running and no client is initiating

communication with the server the server

application is blocked. When the connection is

made it will obtain a normal socket to be used

further to carry out communication with client.

The following code implements the server that

reads the String object lines from the client and

using a StringTokenizer object breaks them

into double type primitives (as String objects

can’t be used to perform mathematical

operations).

class SimServer {

 public static void main(String args[])

throws Exception {

 long count = 1;

19

 String L = "";

 ServerSocket ss = new ServerSocket(3333);

 Socket s = ss.accept();

 DataInputStream din = new

DataInputStream(s.getInputStream());

 while (!L.equals("stop")) {

 L = din.readUTF();

 System.out.println(c++ + ": " + str);

 StringTokenizer stt = new

StringTokenizer(str,",");

 while (stt.hasMoreElements()) {

System.out.print(Double.parseDouble(stt.ne

xtElement().toString()));

 }

 System.out.println();

 }

 din.close(); s.close(); ss.close();

 }

}

In order to store the data received from the

client the server is using a Vector class (as this

can adapt its number of elements compared to a

classical array where the maxim number of

elements if fixed). The JFrame from Fig.1

contains a JPanel and three buttons. The

JPanel is showing the φ1, φ2 and φ3 angles (in

radians) the counter of the current point as well

as the total number of the received points.

Figure 1. – The GUI of the server-side robot

simulator.

The server simulator is built around the

following classes: GrFrame3V1 which extends

javax.swing.JFrame, GrPanel3 which

extends javax.swing.JPanel,

SwingWorkerTask for the data transfer and

Swing object update during processing, GrRobot

to represent a pivot-link pair, GroundLink to

represent the ground link, EndEffector the

represent the end effector of the robot. The Start

Server button is starting the server side

application to carry out the communication with

the client. As long as the communication takes

place the Swing GUI is not any more responsive.

As given in [2] a separate thread can be used to

manipulate the GUI objects if the thread is using

EventQueue.invokeLater() method to update

the GUI. The SwingWorkerTask abstract class

was made to implement easy this task; the class

must be extended and init(), work(),

update() and finish() methods should be

overridden as follows:

public void ServerMode() throws Exception,

InterruptedException {

 GrFrame3V1 topFrame = (GrFrame3V1)

SwingUtilities.getWindowAncestor(this);

 Runnable task = new SwingWorkerTask() {

 public void init() {

 count = 1;

 topFrame.setLabel("Started ...");

 }

 public void update() {

 topFrame.setLabel(String.format("%-

10d", count));

 }

 public void finish() {

 try {

 topFrame.setLabel("Start Server");

 din.close(); s.close(); ss.close();

 workerThread = null;

 } catch (IOException e) { }

 topFrame.setLabel("Start Server");

 }

 public void work() {

 try {

 ss = new ServerSocket(3333);

 s = ss.accept();

 din = new

DataInputStream(s.getInputStream());

 String str = "";

 while

(!Thread.currentThread().isInterrupted()&&

!str.equals("stop")) {

 str = din.readUTF();count++;

 vfi.add(str);doUpdate();

 }

 } catch (IOException e) {

 doFinish(); workerThread.stop();

 workerThread = null;

 }

 doFinish(); workerThread.stop();

 workerThread = null;

 }

 };

 workerThread = new Thread(task);

 workerThread.start();

}

20

To simplify running the code in the event

dispatch tread doUpdate() and doFinish()

convenience methods are provided to run

update() and finish() methods when

necessary. In Fig. 2 and Fig. 3 the GUI of the

simulator is shown for two different cases. In

Fig. 2 the communication task is running at the

same time with the simulation. The Strat Server

button is updated in real time to the current

count of the read positions from the client. In

Fig. 3 the communication task has been

terminated and only the simulation task is

running as long as all the read positions are

processed. If the simulation is to fast the Stop

button can stop the process which can be

resumed later. In the simulation takes too long

the Reset button can be used to clear all received

data and the state of the simulator.

Figure 2. – The GUI of

the server-side robot

simulator during client

communication.

Figure 3. – The GUI of

the server-side robot

simulator after client

communication while the

simulation is running.

4. REFERENCES

[1] ANTAL, T. A., Elemente de Java cu JDeveloper

- îndrumător de laborator, Editura UTPRES,

2013, p.150, ISBN: 978-973-662-827-6.

[2] ANTAL, T. A., Java - Iniţiere - îndrumător de

laborator, Editura UTPRES, 2013, p. 246, ISBN:

978-973-662-832-0.

[3] DETESAN, Ovidiu-Aurelian et al. THE

GRAPHICAL SIMULATION OF TRR SMALL-

SIZED ROBOT. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, v. 59, n. 3, sep. 2016. ISSN

1221-5872.

[4] DETESAN, Ovidiu-Aurelian. THE

NUMERICAL SIMULATION OF TRR

SMALL-SIZED ROBOT. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, v. 58, n. 4, nov. 2015. ISSN

1221-5872.

[5] DETESAN, Ovidiu Aurelian. WORKSPACE

DETERMINATION FOR THE RTTRR

MODULAR SMALL-SIZED SERIAL ROBOT.

ACTA TECHNICA NAPOCENSIS - Series:

APPLIED MATHEMATICS, MECHANICS,

and ENGINEERING, v. 60, n. 1, mar. 2017. ISSN

1221-5872.

[6] CRIŞAN, Adina - Veronica; ŞERDEAN, Florina

- Maria; MORARIU - GLIGOR, Radu. THE

ANALYSIS OF GEOMETRICAL ERRORS

BASED ON POLYNOMIAL

INTERPOLATION FUNCTIONS FOR A 5

D.O.F. SERIAL ROBOT. ACTA TECHNICA

NAPOCENSIS - Series: APPLIED

MATHEMATICS, MECHANICS, and

ENGINEERING, [S.l.], v. 60, n. 4, dec. 2017.

ISSN 1221-5872.

[7] SCHILD, H. Java: The Complete Reference,

Eleventh Edition, McGraw-Hill Education,

2019, p. 1208, 978-1-260-44023-2.

[8] HORSTMANN, C. S., CORNELL, Core Java 2:

Volume II – Advances Features, Seventh Edition,

Prentice Hall, 2005, ISBN13: 9780131118263.

Utilizarea serviciilor de rețea pentru accesul de la distanţă la un simulator de robot

implementat în Java

Lucrarea prezintă modul de utilizare a serviciilor de reţea Java pentru conectarea prin Internet a unui client Java la un

simulator de robot implementat în Java care integrează un server pentru derularea comunicaţiei sub forma unui task.

ANTAL Tiberiu Alexandru, Professor, Dr. Eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

