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Abstract: In this paper, we propose a mathematical model representing immune-cancer cell interactions 
based on the principle of a mechanical system. The main assumption that leads to model formulation is that 
each cell population has a constant threshold value and the acceleration or deceleration of one cell 
population is directly proportional to the deviation of the other cell population from its threshold value. The 
closed form solution of the model is given, and it depicts almost all possible patterns of life of a cancer 
patient. This includes eradication of cancer, survival with cancer or sure-death by cancer. For a situation 
when immune system fails, a treatment schedule by immunotherapy is suggested. The model although 
devised for immune-cancer cell interactions can be applied to any disease (bacterial, viral etc.) in which 
immune cells play important role. Finally, it is proposed that clinically observed data can be directly 
related to model parameters. 
Key words: Mechanical system; Immune cells; Cancer cells; immunotherapy; Oscillations. 
 

1. INTRODUCTION 

When the equilibrium of a mechanical 
system (see [1] and [2]) is disturbed, a 
restoring force is induced automatically to 
bring the system back to equilibrium state. 
A human body is supposed to be in 
equilibrium state under pure healthy 
conditions. This equilibrium is often 
disturbed when the body is infected 
through bacteria, virus etc. or meets 
pathogens. Nature has provided in the body 
a built-in restoring force called immune 
network that acts against any primary level 
of diseases confronted by the body. Many 
times a person gets cured from disease 
without seeing a doctor for medical advice. 
It all happens due to proper functioning of 
the immune network in the body. A weak 
or malfunctioning immune system makes a 
person prone to diseases. The human 
immune response has two main 
components: the innate and the adaptive. 

The innate response can get quickly 
mounted unlike the adaptive response 
that takes longer (up to 7 days) to mount a 

defense. While the innate response 
provides a general defense mechanism, 
the adaptive response targets specific 
pathogens in a highly customized 
manner. The main players of cell types 
that belong to innate response are 
macrophages, Natural Killer (NK) cells, 
and neutrophils (a type of While Blood 
Cells (WBC)). NK cells regulate immune 
response and have the capability to kill 
bacteria and other pathogens. The main 
cells that belong to adaptive response 
include B lymphocytes, T lymphocytes 
and Dendritic cells (DCs). In fighting an 
infection, B lymphocytes secrete 
antibodies specialized to a particular 
pathogen; T lymphocytes develop into 
specialized cells such as Cytotoxic T 
lymphocytes (CTLs), T regulatory cells 
(Tregs), T helper (Th) cells and T 
memory cells; DCs initiate the adaptive 
response as antigen-presenting cells. In 
medical literature, CTLs are also known 
as CD8+ T cells and Tregs and Th cells 
as CD4+ T cells. While CTLs can 
directly kill any cell not recognized as 
belonging to the host organism, Tregs 
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and Th cells help regulate immune 
response and control adaptive immunity 
against pathogens and cancer. 

Mathematical modeling has played a 
very important complementary role in 
elucidating tumor-immune interactions 
along with the advance of knowledge of 
these interactions through experimental 
investigations. An overview of modeling 
approaches, particularly focusing on 
spatial models, incorporating one or 
more immune cell types and evaluating 
immune effects on tumor progression can 
be found in the most recent review by 
Mahlbacher et al. [3].  

Further recent comprehensive reviews 
are de Pillis et al. [4], Eftimie at al. [5], 
and Norton et al. [6]. In [4], authors 
evaluate modeling of cancer-immune 
responses to therapy. Eftimie at al. [5] 
review tumor-immune non-spatial (i.e. 
ODE) models. Norton et al. in [6] present 
an overview of multiscale agent-based 
and hybrid modeling of the tumor-
immune microenvironment and cancer-
immune response. It is clear from the 
above discussion on immune system that in 
innate immune response, NK cells and 
neutrophils are the main c e l l s  that target 
stressed or cancerous cells and in adaptive 
response, T lymphocytes particularly 
CTLs are the main killers of cancer. In [3], 
Mahlbacher et al. write in the abstract, 
“although important insight has been 
gained from a mathematical modeling 
perspective, the development of models 
incorporating patient-specific data remains 
an important goal yet to be realized for 
potential clinical benefit”. The present 
paper attempts to take a first step forward 
to address this concern and fill this gap. 
Ours is the first step in this direction in the 
sense that we assume a greatly simplified 
immune network in which all killer cells 
are bracketed into one category called 
effector cells, denoted �. We denote cancer 
cells by �. We formulate our model under 
the assumption that one cell type 
counteracts the restoring response of the 
other cell type. Based on this idea, we 
present our model in the next section. It is 
interesting to note that our simple model 
system covers all shades of life of a cancer 
patient and its parameters can be directly 
related to clinical data. 
 

2. FORMULATION OF THE  

    MODEL 

Let � = �(�) and � = �(�) respectively 
denote the number of effector and cancer 
cells in the body at time �. Let ��� and ��� 
respectively represent the threshold values 
of effector and cancer cells in the body. 
We assume that the acceleration or 
deceleration of one cell type in the body is 
directly proportional to the deviation of 
the other cell type from its threshold 
value. More specifically, we assume 
 
	
�
	�
 ∝ (��� − �)  
	
�
	�
 ∝ (��� − �)            

 
Considering � and � as proportionality 
constants, our main model of this paper 
with initial conditions becomes 
 
	
�
	�
 = �(��� − �)  
	
�
	�
 = �(��� − �)  

� = ��, � = ��  �� ��⁄ = ��, �� ��⁄ = �� at � = 0. (2.1) 
 
We assume that the dynamics of the model (2.1) 
remains operative till the time when either the 
effector cells become zero (representing the 
death of the biological system) or the cancer 
cells go to zero and the healthy conditions of the 
body are restored. In certain circumstances, the 
model (2.1) may remain operative for longer 
time representing coexistence of effector and 
cancer cells in an oscillatory manner. 
 
3. DIFFERENT SITUATIONS 

    REPRESENTED BY THE MODEL  
 
It can be easily checked that the general solution 
of the model (2.2) is 
 �(�) = ��� + ����� + ������ + ��� !"� +               �$!%&"�   �(�) = ��� − ("� �⁄ )(����� + ������) +  
  ("� �⁄ )(��� !"� + �$!%&"�)            
                                                                     (3.1) 
where, 
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" = (��)� $⁄  �� = (1 4⁄ )[�� − ��� − (� "�⁄ )(�� − ���)+ �� " − ��� "�⁄⁄ ] �� = (1 4⁄ )[�� − ��� − (� "�⁄ )(�� − ���)− �� " + ��� "�⁄⁄ ] �� = (1 2⁄ )[�� − ��� + (� "�⁄ )(�� − ���)] �$ = (1 2⁄ )[�� "⁄ + ��� "�]⁄                     (3.2) 
 
3.1 Survival with cancer in pure oscillatory  

      manner  

If the initial vital parameters ��, ��, ��, ��, ���, 
and ��� of the body are such that �� − ��� = (� "�⁄ )(�� − ���)  �� = (� "�⁄ )�� ,                                          (3.3) 
then the solution (3.1) represents a pure 
oscillatory (limit cycle) solution as follows �(�) = ��� + ��� !"� + �$!%&"�  �(�) = ��� + ("� �⁄ )(��� !"� + �$!%&"�)    
                                                                     (3.4) 
with, �� = �� − ���  �$ = �� "⁄   
Solution (3.4) ensures survival of the patient 
with cancer.  
Remark 1. If the vital parameters ��, ��, ���, 
and ��� of the body are such that �� − ��� − (� "�⁄ )(�� − ���) =                                                     ��� "� − �� "⁄⁄ , 
then there can be ups and downs in the life of 
the patient but in the long run (as time passes) 
he/she will survive with cancer in an oscillatory 
manner represented by �(�) ≈ ��� + ��� !"� + �$!%&"�  �(�) ≈ ��� + ("� �⁄ )(��� !"� + �$!%&"�), 
with �� = �� − ��� + (1 2⁄ )(�� "⁄ − ��� "�⁄ )  �$ = (1 2⁄ )(�� "⁄ + ��� "�⁄ )  
 
3.2 Cancer is eliminated in a finite time and  

      the patient becomes healthy 

 

If the vital parameters ��, ��, ��, ��, ���, and ��� of the body are such that  �� − ��� − (� "�⁄ )(�� − ���) >      

                      −[�� "⁄ − (� "�⁄ )��],          (3.5)             
 
then the solution (3.1) remains valid with �� >0. It thus follows that as � → ∞, �(�) →−∞. Since ��  >  0, it implies from 
intermediate value  theorem that there 

exists a time 0� >  0 such that �(0�)  =  0.  
It   can be seen that T1 has an upper bound 
as 
 

0� ≤ 1
" 2 3 4 ����"��� + |��|

�� + |��|
�� + |�$|

�� 6 

Condition (3.5) thus guarantees removal of 
cancer in a finite time. 
 
3.3 Sure death of the patient is inevitable 

  

If the vital parameters ��, ��, ��, ��, ���, and ��� of the body are such that  �� − ��� − (� "�⁄ )(�� − ���) <      

                      −[�� − (� "�⁄ )��],               (3.6) 
then the solution (3.1) is valid with �� < 0 
whereas �� can be positive or negative. It 
follows from solution (3.1) that as � → ∞, �(�) → −∞. Since �� > 0, it implies that there 
exists a time (say 0�) such that �(0�) = 0 and 
this suggests death of the patient in a finite 
time.  
 
4. GRAPHICAL ILLUSTRATION OF  

DIFFERENT SITUATIONS FACED BY 

A CANCER PATIENT 

We consider some plausible values for 
constants ��, ��, ��, ��, ���, ���, �, � 
and display different situations faced by 
the cancer patient numerically. These 
situations have been discussed 
analytically in section 3. The range of 
WBC in human beings is of the order of 4000 −  11000 /9:. We take ��� =4000, the lower limit of WBC and set ��� = ��� 2⁄ = 2000. We choose �  = 0.04 (�<=)�⁄ , � = 0.0025 (�<=)�⁄  such  
that " =  0.1/�<= to ensure that cancer 
may be eliminated in approximately 60 
days. Other parameters are chosen 
accordingly. 

 
Situation 4.1: Survival of patient with cancer    

                        in a pure oscillatory manner 

 

Considering �� = 2000, �� = 1500, �� =10 �<=⁄ , and �� = 2.5/�<= ensures that conditions 
(3.3) are satisfied and the survival of the patient 
with cancer in a pure oscillatory manner is 
guaranteed, We display it in Figure 1. 
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Fig. 1. Survival of patient in a    

periodic solution 

 
Situation 4.2: Eradication of cancer in a  

                        finite time 

  

We find that condition (3.5) is satisfied if we 
choose �� = 6100, �� = 2400, �� =10 �<=⁄ , �� = 11/�<=. The solution (3.1) 
provides a decreasing trend in cancer ensuring 
that cancer cells become zero in a finite time. 
This shows that eradication of cancer is 
possible in a finite time and we depict it in Fig. 
2. 

 

 
Fig. 2. Eradication of cancer in a  

                finite time 

 
Situation 4.3: Sure, death of the patient is   

                        inevitable 

 

It can be seen that when �� = 6260, �� = 2500, �� = 10 �<=⁄ , �� = 11/�<=, condition (3.6) gives �� < 0, �� ≠ 0. The solution (3.1) provides a 

decreasing trend in effector cells bringing it to zero. 
This indicates sure death in a finite time as shown in 
Fig. 3. 

 
Fig. 3. Sure death of the patient in a                            

finite time 
 

Referring to situation 3.3, we see that 
there always remains a possibility that 
immuno-surveillance fails and cancer 
dominates. We devote next section to 
such situations and propose a treatment 
strategy by immunotherapy. 
 
5. TREATMENT BY IMMUNOTHERAPY  

 
We introduce immunotherapy treatment 
strategy in the model (2.1) by modifying it as 
	
�
	�
 = �(��� − �) + %�A���B�  

	
�
	�
 = �(��� − �)  

� = ��, � = ��  �� ��⁄ = ��, �� ��⁄ = �� at � = 0. (5.1) 

The term %�A���B� in the model (5.1) 
represents an input of effector cells from 
outside in the body and it gets consumed in 
the process in an exponential manner with        %� and A as postive constants. The solution 
of the model (5.1) is 

�(�) = ��� + C���� + C����� + C�� !"�
+ C$!%&"� + %�A$

A$ − "$ ��B� 
�(�) = ��� − �


D (C���� + C����� −
C�� !"� − C$!%&"�) − EFB
�G

BG��G ��B�    
                                                         (5.2) 

In (5.2), CE are arbitrary constants which 
can be determined by using initial 
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conditions given in (5.1). The 
expressions for CEare 

C� = �� + EFB

$�(BH�)  

C� = �� − EFB

$�(B��)  

C� = �� − EFB

�(B
H�
)  

C$ = �$ + EFBI
��(B
H�
)  

 
where �E, % = 1,2,3,4 are given in (3.2). 
The initial dose of effector cells to be 
injected is %�A$ (A$ − "$)⁄  with A > ". 
Because of the term%�A� (4"(A + "))⁄  
present in the expression for C�, it can be 
made positive in those situations when �� < 0 to eliminate cancer in finite time. 
 
5.1 Sure Death avoided by  
      immunotherapy: a graphical  
      illustration 
 

We refer to situation 3.3 in section 4. We 
notice that when�� = 6260, �� = 2500,  �� = 10/�<=, �� = 11/�<=, the 
solution (3.1) suggests sure death of the 
patient in a finite time as shown in Fig. 3. 
Here we show in Fig. 4 that by injecting 
immune cells with %� = 180 andA = 2", C� > 0 even though �� < 0 and this 
ensures decreasing trend in cancer with 
its number tending to zero in a finite 
time. 

 

 
Fig. 4. Removal of cancer by 

immunotherapy 
 

6. DISCUSSION AND  
    CONCLUSIONS 
 

The model of this paper has been 
developed as a mechanical system. This 

helps include double roles of each cell 
type. In this formulation, effector immune 
cells � can have both negative effect on 
cancer cells when they rightly kill them 
and positive effect when they fail. 
Similarly cancer cells � can play both a 
dominant and a subservient role against 
immune surveillance. The model 
represents all shades of life of a cancer 
patient.  It is generally observed that some 
patients complete normal age with cancer,   
a few are cured in finite time without any 
medical intervention and many die if not 
treated. All these features are present in our 
study (section 3) for different sets of values 
of model parameters ��, ��, ��, ��, ���, ���, � and �. 
 
The importance of this study lies in the 
fact that one can predict by careful 
clinical evaluation of parameters specific 
to a patient whether he/she is going to 
survive without medical intervention or 
not. In case, one comes to the conclusion 
that medical intervention is inevitable one 
can opt for treatment by immunotherapy 
(section 5.) with treatment schedule 
based on injecting suitable initial dose of 
effector cells and the rate of their 
consumption. The time for complete 
elimination of cancer can be predicted in 
advance.  
 

It is interesting to note that although 
numerical values considered for ��, ��, ��, ��, ���, ���, � and �, %� and A in this paper 
have not been taken from any clinical 
studies, still they explain all possible 
features of immune-cancer interactions. 
Thus it is left to clinicians and medical 
researchers to have intelligent guess and 
observations about the relevant parameters 
and start treatment trials for patients who 
volunteer themselves for this purpose. 
 
The model has two significant 
parameters " and A. The time of cancer 
elimination relates to 1 "⁄  and half-life 
of injected immune cell consumption to 1 A⁄ . Naturally 1 A⁄  should be less than 1 "⁄ . We have taken A = 2". The ratio A "⁄  should be decided by clinical 
observations. 
 
In the end we emphasize that this model 
can be applied to any disease (bacterial, 
viral etc.) including cancer in which 
immune cells play important role. 
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TOATE NUANȚELE VIEȚII CU CANCER PRINTR-UN MODEL BAZAT PE 

PRINCIPIUL MECANICII 
 

Rezumat: În această lucrare, propunem un model matematic care reprezintă interacțiunile celulelor 
cancerului imun pe baza principiului unui sistem mecanic. Principala ipoteză care duce la formularea 
modelului este că fiecare populație celulară are o valoare constantă a pragului, iar accelerarea sau 
decelerația unei populații celulare este direct proporțională cu abaterea celeilalte populații celulare de 
la pragul său Valoarea. Soluția formă închisă a modelului este data și descrie aproape toate modelele 
posibile de viață a unui pacient cu cancer. Aceasta include eradicarea cancerului, supraviețuirea cu 
cancer sau sigur-moarte de cancer. Pentru o situație în care sistemul imunitar eșuează, se sugerează o 
schemă de tratament prin imunoterapie. Modelul, deși conceput pentru interacțiunile celulelor de 
cancer imun poate fi aplicat la orice boală (bacteriene, virale, etc), în care celulele imune joacă un rol 
important. În cele din urmă, se propune ca datele observate clinic să fie direct legate de parametrii 
modelului. 
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