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Abstract: The paper aims to study a finite element in the case of plane motion of a plane mechanical system. 
The problem of using two-dimensional finite elements in the dynamic analysis of membranes has been little 
studied in the literature, which is mainly due to the formalism involved, which requires a special calculation 
effort. The evolution equations are established and the matrix coefficients are calculated. An example of 
calculating the eigenvalues for a rectangular shell is presented, which uses the formalism developed in the 
paper. 
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1. INTRODUCTION   

 

The last decades have been characterized by 

the development of multi-body systems (MBS) 

with deformable elements mostly in industrial 

applications. The first researches in the field 

were made for one-dimensional finite elements 

using third and fifth degree polynomial shape 

functions. Then the interest moved on to more 

complex, two-dimensional or three-dimensional 

finite elements. 

The most common method to obtain the 

dynamic response of such a system is 

represented by Lagrange's equations [8-13]. 

Determining the evolution equations of a single 

element is the most important step in an analysis 

of an MBS system. The other procedures that 

follow in such an analysis are the classic ones, 

well known from the finite element commercial 

software. After all these steps, the evolution 

equations for this problem are obtained. The 

final shape of the matrix coefficients will 

ultimately depend on the interpolation functions 

chosen, for each individual case, for the finite 

element used. In the present work we aim to 

determine the evolution equations of an element, 

used in the study of plane mechanisms with 

elastic elements[6],[7],[14],[15]. 

 
2. EQUATION OF MOTIONS 

 

Consider the plate used for stress analysis in 

plane elasticity. Let us consider a single finite 

element referred to the local Oxy coordinate 

system, in solidarity with the finite element. This 

reference system is mobile and participates in 

the parallel plane motion of the plate. It is noted 

with v �(���, ���) the speed and a �(�	�, �	�) 
acceleration of the origin of the mobile reference 

system in relation to the fixed reference system 

O'XY. The mobile reference system will have 

angular velocity 
 = ��  and angular acceleration 


 = �	  (the angle θ  defines the angular position 

of the local coordinate frame system with respect 

to the fixed reference system)[1],[2],[16]. The 

orthonormal rotation matrix:  
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where is denoted θθ θθ sin,cos == sc , makes 

the transformation from the local to the global 

reference frame. A vector ),( yx vvv  expressed in 

the mobile reference system becomes, in the 

global reference system [3],[4]: 
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Fig.1. A rectangular finite element 

 

{ }GMr  is the position vector of point M: 
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where the index G expresses a size in the fix 

reference frame and the index L shows that the 

size is written in the mobile reference frame. If 

M becomes M', undergoing a small 

displacement{ }Lf , one can write: 
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The continuous field of displacements is 

approximated, in the method of the finite 

elements, by the relation: 
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where [ ]),( yxΦ  is the matrix of the shape 

function. The vector { }Lt)(δ  represents the 

vector of the independent coordinates, expressed 

in the mobile coordinate frame. We consider the 

displacements u and v of some point as 

completely defined by the nodal displacements. 

For this triangular finite element, with the nodes 

at the ends, the shape functions are chosen: 
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where it was noted: 
 

b
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 ( )( ) ( ) ;1;11 21 ηξΦηξΦ −=−−=  

 ( )ξηΦξηΦ −== 1; 43      (9) 

The velocity of point M 'can be expressed by: 

 

���′�� = ����′�� = �������� + ��� � �
��� +     

+��� �� !�"�# + ��!� !$"�%#                  (10) 

 

The expression of kinetic energy for a single 

finite element is: 
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The concentrated and distributed loads  gives us 

the work: 
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The Lagrangian for the finite element considered 

is: 

 

   c
pc WWEEL ++−=   .     (13) 

 

and the evolution equations were obtained with 

Lagrange method [14]. 

If you consider that: 
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It was noted:  
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It was noted:  
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where it was noted: 
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It is also noted: 
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The stiffness matrix is found in [5]. The 

evolution equations can be written: 
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Now it is possible to determine the matrix 

coefficients accordingly. 

 

3. EXAMPLE 

 

Consider a plate with the dimension length = 0.2 

m and width =  0.16 m. The thickness = 0.001 m 

and the Young’s modulus = 210 GPa. The  mass 

density is  7800 kg/m3 (Fig.2). 

 

 
Fig. 2. Rectangular plane plate in rotation 

 

Using FEA, meshing the plate and written the 

motion eqautions for the entire shell is possible 

to obtain eigenvalues. In Fig.3 we present the 

first 15 eigenvalues. The angular speed is varied 

between 5,000 and 15.000 rad/s. 

 

 
 

Fig.3. First 15 eigenvalues for different angular 

speed 

 

In Figure 4 are presented the first 15 

eigenvalues for an angular speed of 14,000 rad/s. 
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Fig.4. First 15 eigenvalues for angular speed 

14,000 rad/s 

 

4. CONCLUSIONS 

 

In the paper are obtained the evolution equations 

for a rectangular element used for the study of 

multi-body mechanical systems with elastic 

elements. Lagrange method were used to obtain 

these. Specific shape functions were used for 

this type of finite element, known from the static 

or steady state analysis. It is presented, for 

example, the calculation for a plate in rotation. 

The main problem for such an analysis is the 

volume of calculation required to obtain the 

matrix coefficients of the equations of motion. 
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Element finit dreptunghiular în stare de membrană pentru analiza dinamică a unui sistem 

multicorp cu o mișcare plană 

 
Rezumat Lucrarea își propune dezvoltarea unui element finit dreptunghiular pentru studiul 
mișcărilor plane ale unei plăci în stare de membrană. Problema utilizării elementelor finite 
bidimensionale în analiza dinamică a membranelor este puțin aboordată în literatură, lucru datorat 
mai ales formalismului implicat, care necesită un efor de calcul deosebit. În lucrare sunt stabilite 
ecuațiile de mișcare pentru elementul finit studiat și sunt calculați coeficienții matriceali. Un exemplu 
de calcul al valorilor proprii pentru o placă dreptunghiulară este prezentat, care utilizează 
formalismul dezvoltat în lucrare. 
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