
73

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering
 Vol. 63, Issue I, March, 2020

IMPROVING DESIGN OF A TRIANGLE GEOMETRY
COMPUTER APPLICATION USING A CREATIONAL PATTERN

Anca-Elena IORDAN, Florin COVACIU

Abstract: In the process of developing a computer application, design represents probably the most

important factor that can affect its quality. Propitiously, there are currently several design patterns whose

use can provide a solution of a general problem. Design solutions of competent architects are represented

through the design models. Thereby, any design model aims to solve a specific design issue in case of object

oriented programming paradigm. This paper presents an interactive computer application that can be used

in the study of triangle geometry. The design of the computer application is improved by using of the

"Factory" creational pattern, and the implementation is accomplished through the Java programming

language.

Key words: Triangle Geometry, Design Patterns, Factory, UML, Java.
c

1. INTRODUCTION

Due to the increasing demand for software
lately, we are pursuing a development of
software paradigms so that they improve the
quality and productivity of computer application
development. The design pattern [1] is a
universal answer to an issue that frequently
occurs in computer application design, but not a
final design that can be transformed directly into
code. The use of patterns guarantees the creation
of transparent structures that allow easy
understanding, extension and reuse of software.
The description of the design patterns [2]
provides information about the structure, the
roles of the participant, the interaction between
the participants and, in particular, the intention
for which they should be used.
 In this paper, we present the stages of
developing to an interactive software in the field
of triangle geometry. During the design stage,
the variant without the use of patterns will be
presented, as well as the variant that uses the
"Factory" creational pattern [3]. This type of
model instantiates objects which does not
present outside the creative reasoning and will
report to the new object instantiated using the
interface. In order to show the improvement of
the design by using this patterns it was chosen as

the subject the triangle geometry because this
domain has multiple applications in the
engineering field, such as electrical [4-5],
electronics [6], mechanical [7] and robotics [8-
9].

2. TRIANGLE GEOMETRY COMPUTER
APPLICATION

The triangle geometry was implemented
using Java programming language [10]. The
graphical user interface was structured in two
parts: a theoretical presentation part and a
simulation part. Moving figures on the screen
help users to grasp the meaning of mathematical
ideas intuitively. From the main application
window it can be selected by a main menu the
following options:
• Important points in a triangle [11]: incenter,
circumcenter, orthocenter, centroid, Lemoine
point, Nagel point, Gergonne point, Vecten
point.
• Important lines in a triangle [12]: medians,
altitudes, midlines, symmedians, Euler line,
Nagel line.
• Circles associated with a triangle: incircle,
circumcircle, nine-point circle, Lemoine circle.

74

The computer application design shown in
figure 1 is difficult to decipher. The diagram
which showing the structure of the classes
instantiates many duplicates as manifold object
of “Point2D” class. Hence, creational design
model will represent the optimal answer in the
efficient management of the code.

Fig. 1. UML class diagram

3. IMPROVING THE PROPOSED DESIGN
USING FACTORY PATTERN

Factory template [13] is part of the most used
models in computer systems design, being
classified as a creational template, therefore a
template that involves the creation of class
instances. Factory template instantiates variable
which does not present outside the logic
reasoning.

“GeometricElement2D” class implements
factory template and, when various classes, like
“Point2D”, “Segment2D”, “Triangle2D”,
“Line2D” or “Circle2D”, must be instantiated, it
will preclude the source code in these derived
classes from being rewritten all over the various
classes. The UML diagram corresponding to the
classes with factory template is presented in
figure 2.

The “GeometricElement2D” was introduced
as an abstract class. A “draw” method was
introduced in this abstract class. Afterwards,
some derived classes like “Point2D”, “Line2D”,
“Polygon2D” and “Circle2D” will acquiring to
it. Forwards, “Geometric-Element2DFactory”
class was designed on the principle of the factory
template and the function
“getGeometricElement” was created.

Fig. 2. Factory design pattern

Therefore, whenever an object of

“Surface2D” type claims to get data from
“GeometricElement2D” class, it is necessary to
require firstly from the factory type. Factory
template hides implementation details of an
object by “GeometricElement2D” type from
object of “Surface2D” type. Consequently,
factory template is an elaborate pattern and very
used in objectoriented programming concepts
[14] for the computer application development.

75

4. SPECIAL POINTS IN A TRIANGLE

One of the software options allows the
drawing of the most important points specific to
a triangle. To determine the centroid [15] of a
triangle, it were instantiated 11 objects which
interact as can be seen in figure 3. Amongst the
eleven objects that collaborate to determine the
coordinates of the centroid four objects are of
“Point2D” type, one object is of “Surface2D”
type, one object is of “Triangle2D” type, three
objects of “Segment2D” type and two objects of
“Line2D” type. In figure 4 the centroid (denoted
G) is represented along with three other points
specific to a triangle: orthocenter (denoted H),
incenter (denoted I) and circumcenter (denoted
O).

Fig. 3. UML collaboration diagram for drawing of the

centroid
Another software option allows Lemoine

point [16] representation as shown in figure 5.
For the instantiation of an object of “Point2D”
type obtained from the intersection of the
triangle symmedians, thirteen objects interact as
can be seen in UML collaboration diagram
shown in figure 6.

Amongst the thirteen objects that collaborate
to determine the coordinates of the Lemoine
point (denoted K) seven objects are of
“Point2D” type, one object is of “Surface2D”
type, one object is of “Triangle2D” type, two
objects of “Segment2D” type and two objects of
“HalfLine2D” type. This point is also known as
Grebe point.

Fig. 4. Four important points in a triangle

Fig. 5. Lemoine point

Fig. 6. UML collaboration diagram for drawing of the

Lemoine point

76

The representation of Nagel point [15] is
shown in Figure 7. For the instantiation of an
object of “Point2D” type nine objects interact as
can be seen in UML collaboration diagram
shown in figure 8. Amongst the nine objects that
collaborate to determine the coordinates of the
Nagel point (denoted N) three objects are of
“Point2D” type, one object is of “Surface2D”
type, one object is of “Triangle2D” type, two
objects of “Circle2D” type and two objects of
“Line2D” type.

Fig. 7. Nagel point

Fig. 8. UML collaboration diagram for drawing of the

Nagel point

By selecting the option that allows to draw
Gergonne point [16], a representation like the
one shown in figure 9 is obtained. For the
instantiation of an object of “Point2D” type
eight objects interact as can be seen in UML
collaboration diagram shown in figure 10.
Amongst the eight objects that collaborate to
determine the coordinates of the Gergonne point
(denoted Ge) three objects are of “Point2D”
type, one object is of “Surface2D” type, one
object is of “Triangle2D” type, one object of
“Circle2D” type and two objects of “Line2D”
type.

Fig. 9. Gergonne point

Fig. 10. UML collaboration diagram for drawing of the

Gergonne point

77

By selecting the option that allows to draw
outer Vecten point [15], a representation like the
one shown in figure 11 is obtained. For the
instantiation of an object of “Point2D” type nine
objects interact as can be seen in UML
collaboration diagram shown in figure 12.
Amongst the nine objects that collaborate to
determine the coordinates of the outer Vecten
point (denoted V) three objects are of “Point2D”
type, one object is of “Surface2D” type, one
object is of “Triangle2D” type, two object of
“Square2D” type and two objects of
“Segment2D” type.

Fig. 11. Outer Vecten point

Fig. 12. UML collaboration diagram for drawing of the

Vecten point

5. CONCLUSION

In this paper, the purpose was to design a
triangle geometry computer application with and
without using design templates. There were
presented some issues that arise in the case of not
using templates. This inefficient design has been
optimized through creational template factory.
To improve the software development, the
factory template mandates the responsibility to
the geometric element “Geometric-
Element2DFactory”.

ACKNOWLEDGMENT

The paper presents results from the research
activities of the project ”Entrepreneurial
competences and excellence research in doctoral
and postdoctoral studies programs -
ANTREDOC”, code: POCU/380/6/13/123927,
co-financed by the European Social Fund
through the Human Capital Operational
Program 2014-2020, Priority Axis 6: Education
and skills, "Support for post-doctoral students
and researchers". Beneficiary: Technical
University of Cluj-Napoca / Partner: ROBERT
BOSCH SRL.

8. REFERENCES

 [1] Gorton, I., Essential Software Architecture,

Springer, Heidelberg, Germany, ISBN 978-
3642191756, 2011

 [2] Pfleeger, S.L., Atlee, J., Software

Engineering: Theory and Practice, Pearson,
ISBN 978-0136061694, 2009

 [3] Fowler, M., Patterns of Enterprise

Application Architecture, Addison-Wesley
Professional, Boston, United States, ISBN
978-0321127426, 2002

[4] Ghiormez, L., Panoiu, M., Panoiu, C., Rob,
R., Electric arc model in PSCAD — EMTDC

as embedded component and the dependency

of the desired active power, IEEE 14th
International Conference on Industrial
Informatics, pp. 351-356, ISSN 2378-363X,
Poitiers, France, July 2016

[5] Morariu, R., Lupea, I., Anderson, C., Noise

analysis inside an electric vehicle during a

run up on the road and on the chassis

78

dynamometer, Acta Tehnica Napocensis,
Series: Applied Mathematics and Mechanics,
vol. 56, Issue III, ISSN 1221-5872, pp. 523-
529, Cluj-Napoca, Romania, 2013

[6] Cuntan, C.D., Baciu, I., Verifying the

Functionality of a Parallel-Series Convertor

using Nexis 4 Development Board, Annals of
Faculty Engineering Hunedoara, vol. XVI
(4), ISSN 2601-2332, pp. 119-122,
Hunedoara, Romania, 2018

[7] Deteşan, O., The dynamic modelling of the

robot mechanical structure using the

symbolic computation in Matlab, Acta
Tehnica Napocensis, Series: Applied
Mathematics and Mechanics, vol. 56, Issue
IV, ISSN 1221-5872, pp. 659-664, Cluj-
Napoca, Romania, 2013

[8] Timoftei, S., Brad, E., Sarb, A., Stan, O.,
Open-source software in robotics, Acta
Tehnica Napocensis, Series: Applied
Mathematics and Mechanics, vol. 61, Issue
III, ISSN 1221-5872, pp. 519-626, Cluj-
Napoca, Romania, 2018

[9] Schonstein, C., Kinematic control functions

for a serial robot structure based on the time

derivative jacobian matrix, Acta Tehnica
Napocensis, Series: Applied Mathematics
and Mechanics, vol. 61, Issue II, ISSN 1221-
5872, pp. 253-660, Cluj-Napoca, Romania,
2018

[10] Deitel, H., Java 9 for Programmers,
Pearson Education, USA, ISBN 978-
0134777566, 2017

[11] Altshiller, N., College Geometry: An

Introduction to the Modern Geometry of the

Triangle and the Circle, Dover Publications,
USA, ISBN 978-0486458052, 2007

[12] Gallatly, W., Modern Geometry of the

Triangle, Forgotten Books, ISBN 978-
1440088636, 2015

[13] Sarcar, V., Java Design Patterns: A Hands-

On Experience with Real-World Examples,
Apress, Berkeley, CA, USA, ISBN 978-
1484240779, 2018

[14] Bruegge, B., Dutoit, A., Object Oriented

Software Engineering Using UML, Prentice-
Hall, Inc. Upper Saddle River, ISBN 978-0-
13-606125-0, NJ, USA, 2013

[15] Arbain, N.A., Azmi, M.S., Muda, A.K.,
Radzid, A.R., Tahir, A., A Review of

Triangle Geometry Features in Object

Recognition, IEEE 9th Symposium on
Computer Applications & Industrial
Electronics, pp. 254-258, ISBN 978-1-5386-
8546-4, Malaysia, April 2019

[16] Zhao, J., Liu, W., Xia, R., A method of

feature line extraction of triangle mesh

surface model, IEEE International
Conference on Information and Automation,
pp. 602-605, ISBN 978-1467322386,
Shenyang, China, June 2012

Îmbunătățirea proiectării unui soft pentru geometria triunghiului utilizând un șablon
creațional

Rezumat: Proiectarea unui sistem reprezintă, probabil, factorul cel mai critic ce poate afecta calitatea acestuia. Din

fericire, în prezent există mai multe șabloane de proiectare a căror utilizare pot oferi o soluție de rezolvare a unei
probleme generale. Deciziile de proiectare ale proiectanților experimentați sunt înregistrate sub formă de modele de
proiectare. Astfel, fiecare șablon de proiectare se concentrează pe o anumită problemă de proiectare orientată obiect.
În această lucrare este prezentat un soft interactiv care poate fi utilizat în studiul geometriei triunghilui. Proiectarea
sistemului este îmbunătățită prin utilizarea șablonului creational “Fabrica”, iar implementarea este realizată prin
intermediul limbajului de programare Java.

Anca-Elena IORDAN, PhD, Lecturer, Polytechnic University Timisoara, Department of Electrical

Engineering and Industrial Informatics, anca.iordan@fih.upt.ro, Revolutiei 5 Street, Hunedoara,
331128, ROMANIA, +40724578986

Florin COVACIU, PhD Eng., Lecturer, Technical University of Cluj-Napoca, Department of Design
Engineering and Robotics, florin.covaciu@muri.utcluj.ro, Blvd. Muncii 103-105, Cluj-Napoca,
400641, ROMANIA, +40755566491

