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Abstract: The well known second order partial differential equation called telegrapher equation has been considered. 

The telegrapher formula is an expression of current and voltage for a segment of a transmission media and it has many 

applications in numerous branches such as random walk, signal analysis and wave propagation. In this paper, we first 

derived the telegrapher equation. As a second step we solved the boundary value problem of telegrapher equation 

analytically, were we have make use of Fourier series. Finally, the numerical solution for the telegrapher equation for 

different cases of initial and boundary condition is studied and obtained. 
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1. INTRODUCTION  
 
 Differential equations play a significant role 
in several fields in Science such as physics [1- 
3], Engineering [4- 6], and other branches. They 
are used widely to describe systems, and as a 
result seeking a solution for these systems is a 
target. The solution we seek is analytical, 
numerical, or both. 

 The voltage (current) on an electrical 
transmission line with both time and distance is 
described by a linear partial differential equation 
that is known as telegraph equation. This 
equation is used to describe and study many 
physical and biological phenomena, such as the 
study of pulsed blood flow in the arteries, the 
random movement of insects along an edge, the 
propagation of scattering waves, the electrical 
signal in a transmission line, and many others. 
For more details about these phenomena and 
others, one can refer to [7- 10]. The 
transmission line model was developed by 
Oliver Heaviside [11], where in this a model the 
telegraph equations were introduced. This 
model showed that electromagnetic waves can 
be reflected on the cable and that they show 
wave patterns along the transmission line. The 

telegraph equations are an expression of current 
(voltage) for a segment of a transmission media 
and that have applications in a number of fields 
such as random walk theory [12], wave 
propagation [13], signal analysis [14]. 

 Nowadays communication system has 
significant and potential applications in the 
civilization. They use transmission media for 
moving the data between different points [15]. 
Among the devices used in communication 
systems telegraph, and telephone in addition to 
too many other devices. 

 On the other hand, scientists always are 
seeking for an analytical solution for differential 
equations. In undergraduate level, students 
always are studying many useful courses that 
enable them to solve differential equations 
analytically. Unfortunately, many differential 
equations cannot be solved analytically; 
therefore, numerical techniques have to be used. 
In literature, one can find many useful 
numerical techniques that can be used for this 
purpose such as Differential Transformation 
Method (DTM) [16], Reduced Differential 
Transformation Method (RDTM) [17- 19], 
Adomian Decomposition Method (ADM) [20], 
and many other methods. 
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 In this paper, we aimed to solve analytically 
and numerically the so- called telegraph 
equation. The present study is organized as 
follows: In section 2, the theoretical formalism 
of the telegraph equations are presented. In sec. 
3, analytical solution is obtained. In Sec. 4 we 
present the numerical solution of the system. 
Finally, we close our paper with a conclusion 
section.  

 
2. TELEGRAPH EQUATION 
  
    In this section, a detailed formalism for the 
telegraph formula in expressions of current for a 
segment of a broadcast line has been given. The 
circuit in Fig. 1 shows a tiny portion of the 
considered telegraph line. 

    Furthermore, the line is assumed to be 
partially non- conducting. In this case there is a 
leakage in the current and capacitance to earth. 
Let x  be the separation from transferring ends 
of the wire; on the wire, the current ( , )i x t  is 
considered for a specific position at any time; 
on the cable, the voltage ( , )v x t is considered at 
a specific position at any time. 

  

Fig 1: Design of the leaking telegraphic 
transmission line. 

 

    The voltage across both the resistor (R), the 
inductor (L), and the capacitor (C) respectively 
read:  

iRv = .                                                            (1)   
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From Fig. 1 above we have )( LRAB vvvv +−= . 
So, combining Eqs. (1-3) together one can 
write:  
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Now taking 0→dx  and talk the partial 
derivative of Eq. (4) with respect to x  then, we 
have  
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In a similar way, the current Bi  can be written 
as:  
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Again differentiating Eq. (4) with relevant to t  

and Ci  with relevant to x  one got the following 
telegraph equation:  
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    There is an easy solution in the case where 
the resistance per unit length of the wire, and 
the conductance of the insulation separating the 
outgoing and returning wires, are small. So let's 

say R  is little in comparison with CL/  , and 

G  is little in comparison with LC/ . One has 

to note that CL/  has the same dimensions as 
resistance, and is known as the characteristic 
impedance of the line. If we put R  and G  equal 
to zero in Eq. (7), so that we have an ideal 
lossless cable, and the transmission of the 
potential is governed by its inductance and 
capacitance per unit length alone, the equation 
becomes simply  
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3. ANALYTIC SOLUTION OF THE 

SYSTEM 
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In order to obtain a solution for the Eq. (8), we 
consider the following initial conditions  

)(=,0)(),(=,0)( xx
t

i
xxi βα
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and the boundary conditions  

)(=)(1,);(=)(0, tgtitfti .                   (10) 

In our following computations, we will 
consider 0=)(=)( tgtf . We will search for a 
solution for Eq. (8) having the separable form:  
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Therefore Eq. (8) reads:  
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Thus we have −x  dependent differential 
equation of second order:  

0=)()( 2
xApxA +′′ .                                 (14) 

with the conditions:  

0=(1)=(0) AA .                                          (15) 

According to the rules used in solving DE's [21- 
23], the characteristic equation has the complex 
roots: pi±=1,2λ  and as a result, the solution 

will be:  
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Using the considered initial conditions, we 
have:  
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Therefore, we have the solution:  
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The second differential equation ( −t dependent) 
is:  
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Again referring to the rules used in solving DE's 

[21- 23], the characteristic equation has the 

complex roots: ickcpi πλ ±± ==1,2 , and as a 

result the its solution takes the form:  
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Thus the solution of Eq. (8) is:  
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and the form of the general solution will be:  
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Finally, in order to obtain ka , and kb  we use the 

initial conditions defined in Eq. (9) and taking 
into account the Fourier series [24- 26] we have:  
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Now in order to obtain a solution for the Eq. (7), 
with the initial and boundary conditions (9), 
(10), we have the form:  
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with the solution:  

)(sin=)( xkxAk π .                                         (27) 

and the second differential equation:  
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with the discriminant of characteristic equation: 
2222 =4)(= akmn −−−∆ π  and the complex 

roots 
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mn ±+−λ  . Thus the solution 

will be:  
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and the general solution for telegrapher's 
equation (7) is:  
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4. NUMERICAL METHOD  

 

This section approaches the evolution in time of 
the intensity of the current that passes through 
the transmission line of the telegrapher. For a 
better accuracy, we realized a parallel using the 
numerical analysis between equation (7) and 
equation (8). In our study, we have considered 
six cases that are encountered in the real life for 
the boundary conditions. The evolution of the 
current's intensity is considered for different 
values of time: 

0.8=0.6;=0.4;=0.2;= tttt and 1=t . With 
star symbol is represented the variation of 

),( txi from equation (7) and with continuous 
line is represented the variation of ),( txi  from 
equation (8). 

Typical order-or-magnitude values for a 
telephone cable might be about 

111105= −−× FmC  and 17105= −−× HmL  , and, 

giving a speed of about 
18102 −× ms  or about 

3

2
 

of the speed of light in vacuum . If we require to 
solve the general case Eq. (7) we have to choose 
R  so that it is comparable in size to CL/  , 

and G  so that it comparable in size to LC/  . 

We can consider the following boundary 
conditions enumerated below in five cases. 

 Case One: 

0=)(and0=)(
,)sin(=)(,)sin(=)(

tgtf
xxxx −βα

 

 

 

Fig. 2: Comparison between (7) and (8) for the 
first considered case. 

Case Two: 

0=)(and0=)(
,)cosh(=)(,)sinh(=)(

tgtf
xxxx −βα  

 

Fig. 3: Comparison between (7) and (8) for the 
second considered case. 

Case Three: 
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Fig. 4: Comparison between (7) and (8) for he 
third considered case. 

Case Four: 

(1)sinh=)(and0=))(
,)sinh(2=)(,)sinh(=)(

2t
etgtf
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−

−βα
  

 

 
Fig. 5: Comparison between (7) and (8) for the 
fourth considered case. 

 
5. RESULTS AND DISCUSSION 

 

The evolution in time of the intensity of the 
current that passes through the transmission line 
of the telegrapher has been plotted against time 
for the five cases considered in Sec. 5, as shown 
in Figs. 2- 5, respectively. In first case, we can 
observe (Fig. 2) that the intensity of the current 
varies asymmetric for equation (7) and for the 

equation (8), we can observe that the behavior 
of amplitude is symmetric. The intensity in case 
of equation (7) is dissipating. While for the 
second case, we observe (Fig. 3) that the signal 
given by the equation (8) is amplified and for 
the equation (7) the signal is dissipating. 

For the third case, we observe (Fig. 4) that the 
signal as a similar behavior as the second case, 
but the values of current intensity is 
considerable bigger than in previous case. The 
current's intensity in the fourth case has a 
sharper growth for (8) in contrast to (7). After 
x=1 the ratio is changed as it is clear from Fig. 
5. 

Figure 2 shows that the current intensity 
behaves in nearly sinusoidal way for equation 
(8) while it is not behaving sinusoidal for 
equation (7). Figures 3, and 4 show that the 
current intensity for equation (7) is higher than 
that of equation (8) for the same time and there 
is no similarity between the behaviors of them. 
Finally, it is clear from Fig. 5 that the current 
intensity for equation (8) is always higher than 
that of equation (7) and the two behaviours are 
nearly similar to each other. 
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ABORDARE MATEMATICĂ ȘI NUMERICĂ PENTRU ECUAȚIA TELEGRAFULUI 

  
Rezumat: În acest studiu, considerăm ecuația diferențială parțială de ordinul doi cunoscută numită ecuație telegrafică. 
Această ecuație este scrisă în termeni de tensiune și curent pentru o secțiune a unui suport de transmisie și are multe 
aplicații în mai multe câmpuri, cum ar fi propagarea undelor, teoria deplasării aleatorii și analiza semnalului. În această 
lucrare, am derivat mai întâi ecuația telegrafului. Ca al doilea pas, am rezolvat problema valorii de limită a ecuației 
telegrafului în mod analitic prin utilizarea seriei Fourier. În cele din urmă, este studiată și obținută soluția numerică 
pentru ecuația telegrafistului pentru diferite cazuri de condiții inițiale și pe frontieră. 

 
Hussein SHANAK, Professor PhD, Palestine Technical University- Kadoorie, College of Applied 

Sciences, Dep. of Physics, P. O. Box 7, Tulkarm, Palestine. h.shanak@ptuk.edu.ps. 
Olivia FLOREA, Professor PhD, Faculty of Mathematics and Computer Science, Transilvania 

University of Brasov, Romania. olivia.florea@unitbv.ro. 

Noorhan ALSHAIKH, Lecturer MSc, Palestine Technical University- Kadoorie, College of 
Applied Sciences, Dep. of Physics, P. O. Box 7, Tulkarm, Palestine. n.ibraheem@ptuk.edu.ps.  

Jihad ASAD, Professor PhD, Palestine Technical University- Kadoorie, College of Applied 
Sciences, Dep. of Physics, P. O. Box 7, Tulkarm, Palestine. J.asad@ptuk.edu.ps.  

 
 




