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PART II: APPROXIMATION OF REAL VIBRATION ACCELERATIONS 
 

Dorin IONITA, Mariana ARGHIR 

 
Abstract: The paper presents the approximation of the graphic representations of the measured vibrations for a truck 

platform, through 10th degree polynomial functions. The approximation by interpolating Lagrange within four distinct 

measuring points is applied, using the Vandermonde matrix at each analyzed point. Approximation leads to truthful 

results, so it can be considered valid for the application of vibration analysis of material systems. The second part of the 

work realizes the approximation of the presentation of the vibrational rations of a real system with 10-degree polynomial 

functions, for four distinct cases of graphic alms. 
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1. INTRODUCTION 
 

A mechanical system corresponding to a 
Mercedes-Benz Actros truck is considered. For 
which were made vibration measurements, that 
are presented in the first part of this paper, in the 
Chapter 3 [5].  

For this system is formulated all the theory 
(Chapter 1 of the first part of the paper), that was 
necessary to approximate the measurement of 
the real mechanical system with polynomial 
functions [1], [2], [3].  

The current work can only be considered 
together with the first part of the work, which 
gives the necessary clarifications on the 
approximation, as well as on the vibration 

measurements performed on the actual system of 
the truck. 

From the first part of the work, only the 
graphic representations of the acceleration are 
taken into account in the four measuring points, 
which are presented in succession [4]: 
1. Figure 1 for measurement point P1, 

which shall be called P1 vibrations 
measured; 

2. Figure 2 for paragraph P2, which shall be 
called P2 vibrations measured; 

3. Figure 3 for paragraph P4, which shall be 
called P4 vibrations measured; 

4. figure 4 for paragraph P6, which shall be 
called P6 vibrations measured. 

 

 
Fig. 1. P1 vibrations measurement 
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Inside blocks 8/22/2015 14:12:28.000 00:00:05.500 0.012 m/s 2̂ 0.012 m/ŝ 2 0.013 m/s 2̂
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Fig. 2. P2 vibrations measurement 

 

 
Fig. 3. P4 vibrations measurement 

 

 
Fig. 4. P6 vibrations measurement 
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 From each representation of the vibration 
acceleration measured, only the size presented 
as MAX in the measurements and which is 
represented by blue color will be considered. 
 To understand continuity in this work, the 
first part of the work resumes a little bit. 
 
1.1. Numerical Approximation of Functions 

 
A material system defined in a range of [a, b] 

is supposedly known in n+1 distinct argument 
values x0, x1, ..., xn, which are known of values 
y0, y1, …, yn. 

The Lagrange interpolation polynomial noted 
Ln(x), lower grade or equal to n, for which the 

points considered the polynomial value 
corresponds to the value of the function. So: 

������ = �� , �
 = 0, 1, 2, … , ��   (1) 
 Using the Kronecker’s symbols, the function 
(1) can be expressed as:  
�����
= � ��

�� − ��� … �� − ������� − ����� … �� − ���
��� − ��� … ��� − �������� − ����� … ��� − ���

�

���
 

(2). 
The relationship (2) contains the expression 

of polynomial interpolation with the n-degree 
Lagrange formula, in which polynomial 
coefficients were defined, as function values at 
each point in the definition range. 
 
2. CALCULATION OF POLYNOMIAL 

COEFFICIENTS 

 
In part I of this work was presented the 

general theory existing in the literature that 
calculates the polynomial coefficients [5]. 

Here, in the second part of the work will 
indicate a much easier scheme for the calculation 
of the coefficients of yi  (I = 1, 2, ...,n) of 
Lagrange's formula (2), called Lagrange's 

coefficients. 
It is only made from the relationship (2) the 

coefficient of polynomial function, which is 
presented by the expression: 

��
������

= �� − �0� … �� − �
−1��� − �
+1� … �� − ���
��
 − �0� … ��
 − �
−1���
 − �
+1� … ��
 − ��� 

(3) 
Which you can write abbreviated in the form of: 

 

��
������ =  �������

������ ��������   (4) 

Where 
 

 ������ =  �� −  ��� … �� −  ���  (5) 
 

!������� =  ��� −  ��� … ��� − ����� 
��� −  ����� … ��� −  ���   (6) 

 
With the explanations (5) and (6) Lagrange's 

formula can be written as follows: 
 

����� =  ∑ ��
������������    (7) 

 
The form of Lagrange coefficients is 

invariant in relation to a linear substitution 
 

� = # $ + %     (8) 
In which a and b    are constant, and a≠0. 
For each point in the range, substitution can 

be placed, by: 
�& = # $& + % �' = 0, 1, … , ��  (9) 

Replace relationships (8) and (9) in relations 
(5) and (6), the result obtained is introduced in 
the relationship (3), in which divide the counter 
(numerator) and denominator with an and the 
relationship results: 
 

��
����$�

=  �$ −  $���$ − $�� … �$ −  $���� �$ − $���� … �$ −  $��
�$� − $���$� −  $�� … �$� −  $���� �$� −  $���� … �$� − $�� 

   (10) 
Or 

��
����$� =  �����(�

�(� (�� �����(�   (11) 

 
For the calculation of Lagrange's 

coefficients, a scheme shall be drawn up as 
follows: 
 
 x – x0  x0 – x1 x0 – x2  …  x0 – xn  
 x1 – x0 x  – x1 x1 – x2  …  x1 – xn 

 x2 – x0 x2 – x1 x  – x2  …  x2–xn     (12) 
     . . .  

 xn – x0 xn – x1 xn – x2  …  x  – xn 
 
From the system (12) of the n+1 relationships 

are made the notes: 
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1. The product of the items on the first line 
is noted with D0; 

2. From the second line with D1; 
3. And so on; 
4. And the product of the elements on the 

main diagonal will be obvious Mn+1 (x). 
 
With the notes above, the relationship (10) 

established for each point, it transforms into the 
system: 

��
������ = �������

)�
 (I = 0, 1, …, n)  (13) 

Accordingly 
����� =   ������ ∑ *�

)�
����     (14) 

 
In the case of equidistant points, Lagrange's 

coefficients can be simplified. 
Putting: 

� =  �� + $ ℎ     (15) 
They will be 

$� = 0,   $� = 1,   …,    $� = �, #�, $ =  �� �-
.

 (16) 
 
The approach to calculating Lagrange's 

coefficients by equidistant point was the 
procedure by which coefficients of polynomial 
functions of grade 10 were calculated, for the 
approximation of graphic representations of the 
accelerations of real mechanical systems. 

 
3. APPROXIMATION WITH 

POLYNOMIAL FUNCTIONS OF 

MATERIAL SYSTEMS VIBRATIONS 

 
 The material system is considered the engine 
of a truck, on which vibration measurements 
have been made with SVAN 958, which is a 
digital analyzer designed for dynamic 
monitoring, in accordance with ISO 10816, 
produced by SVANTEK. 

Vibration measurements were performed in 
eight distinct points on the metal parts of the 
truck, in sequence: 

P1 - gearbox grip screw; 
P2 - the support screw of the engine block; 
P3 - cardan– next to the gearbox; 
P4 - trager (intercooler support)- on the heat 

sink holder; 
P5- on chassis next to the engine; 

P6 – on the screw of the intake gallery; 
P7 – driver   seat;    
P8 – in the passenger seat. 

The data obtained by measuring vibrations 
were processed and completed with the SVAN 
P++ program package and were graphically 
represented. 
 In Chapter 1, the points for which vibration 
measurements were made were specified, and 
the accelerating oscillograms measured with the 
vibrometer were represented in figures 1 – 4. 
 From each figure, the representation of the 
Max value was discussed, which was restored by 
blue color. 
 The theory of approximation of polynomial 
functions is applied in the stages: 
1. Calculation of polynomial coefficients; 
2. Representation of the vibration 

measurement graph for Max value; 
3. Determination of polynomial function, 

through 10th degree of polynomials; 
4. Their graphical Representation by 

overlapping over the graphic on all 
positions of the corresponding 
measurements. 

 
3.1. Approximation of Polynomial Function 

for P1 Measurement Point 

 
The values of the polynomial coefficients 

calculated for point P1 for vibration 
measurement are given in Table 1. 

The graphical representation of the Max 
value of the acceleration measured for point P1, 
as well as the graphic representation of the 
polynomial interpolation function can be found 
in Figure 5. 

Table 1. 
Polynomial coefficients for approximating the 

graph point P1 measurement 
Polynomial 
Coefficient 

Value 

p1 -3.62e-10 
p2 2.74e-08 
p3 -8.92e-07 
p4 1.63e-05 
p5 -0.00018 
p6 0.001329 
p7 -0.00616 
p8 0.017868 
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p9 -0.03075 
p10 0.028528 

p11 9.68e-05 
 

Fig. 5. The Interpolation with 10THDegree Polynomial Function for the Measurement Accelerations in the 
Point P1 

3.2. Approximation of Polynomial Function 

for P2 Measurement Point 

 
The values of the polynomial coefficients 

calculated for point P2 for vibration 
measurement are given in Table 2. 

The graphical representation of the Max 
value of the acceleration measured for point P2, 
as well as the graphic representation of the 
polynomial interpolation function can be found 
in Figure 6. 

Table 2. 
Polynomial coefficients for approximating the 

graph point P2 measurement 

Polynomial 
Coefficient 

Value 

p1 3.41e-10 
p2 -3.02e-08 
p3 1.14e-06 
p4 -2.41e-05 
p5 0.000314 
p6 -0.00261 
p7 0.013841 
p8 -0.0458 
p9 0.088938 

p10 -0.08957 
p11 4.54e-02 

 

 
Fig. 6. The Interpolation with 10THDegree Polynomial Function for the Accelerations in the Point P2 
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3.3. Approximation of Polynomial Function 

for P4 Measurement Point 

 
The values of the polynomial coefficients 

calculated for point P4 for vibration 
measurement are given in Table 3. 

The graphical representation of the Max 
value of the acceleration measured for point P4, 
as well as the graphic representation of the 
polynomial interpolation function can be found 
in Figure 7. 

Table 3. 
Polynomial coefficients for approximating the 

graph point P4 measurement 
 

Polynomial 
Coefficient 

Value 

p1 -9.84e-10 
p2 7.17e-08 
p3 -2.25e-06 
p4 4.00e-05 
p5 -0.00044 
p6 0.003155 
p7 -0.01465 
p8 0.043393 
p9 -0.0776 

p10 0.074683 
p11 -1.79e-02 

 

 
Fig. 7. The Interpolation with 10THDegree Polynomial Function for the Measurement Accelerations in the 

Point P4 
3.4. Approximation of Polynomial Function 

for P6 Measurement Point 

 
The values of the polynomial coefficients 

calculated for point P6 for vibration 
measurement are given in Table 4. 

The graphical representation of the Max 
value of the acceleration measured for point P6, 
as well as the graphic representation of the 
polynomial interpolation function can be found 
in Figure 8. 

Table 4. 
Polynomial coefficients for approximating the 

graph point P6 measurement 
 

 
Polynomial 
Coefficient 

Value 

p1 1.48719663019921e-10 
p2 -1.28322325836032e-08 
p3 4.63117652036476e-07 
p4 -9.16674291481943e-06 
p5 0.000109321303376113 
p6 -0.000811464613656745 
p7 0.00374367163716864 
p8 -0.0104531712171015 
p9 0.0167837399099930 
p10 -0.0141076698095056 
p11 0.0174936813212134 

 



225 
 

 

 
Fig. 8. The Interpolation with 10THDegree Polynomial Function for the Measurement Accelerations in the 

Point P6 
 
4. CONCLUSIONS 

 

1. In the experimental study are used only 4 
measurement points, that are 
considered usable for the theory of 
approximation of graphic functions. 

2. The approximation was made for the 
polynomial functions with 10th degrees. 

3. The general theory was realized using the 
demonstration as in first part of this 
paper [5]. 

4. For an easy in this part of the paper was 
apply a new owner method named 
calculation of coefficient by scheme of 
Lagrange’s, as in chapter 1. 

 
5.VIBRATION APPROXIMATION WITH  

10TH DEGREES OF POLYNOMIAL 

FUNCTIONS BY LAGRANGE’S 

COEFFICIENTS 

 

From the experimental study presented the 
independent variable is time, and the variable 
dependence is the acceleration. 

According to the measurements performed 
the measurement step is 10-3s, and the 
representations were made according to the 
indications in each table. 

It adopts n=10 to solve the problem, and the 
determination of polynomial coefficients 
represents the second part of the work, through 

which a technical problem is solved, through 
analytical practices. 
 

6. DISCUTIONS  

 
The theory shown in chapter 1 is universally 

valid for any material system, whether 
measurements are made or not different if 
measurements are followed by graphic 
representations or not. 

This work is tried and proves that the 
approximation with polynomial functions of the 
results of the measurements of a real mechanical 
system is possible and in this way, it is 
established that mathematics is not a sterile 
science, but it applies to activities in all possible 
circumstances. 
 
7. REFERENCES 

 
[1] Gheorghe MARINESCU, Analiză numerică, 

Editura Academiei, R.S. Romania, 
Bucuresti, 1974ș 

[2] Octavian AGRATINI, Ioana CHIOREAN, 
Gheorghe Coman, Radu TRÂMBIȚAȘ, 
Analizță numerică și teoria aproximării, 
vol. I, Presa Universitară Clujeană, 2002, 
coordonatori D.D. STANCIU, Gh. 
COMAN; 

[3] Radu TRÂMBIȚAȘ, NUMARICAL 
Analysis, Presa Universitară Clujeană, 
2006; 



226 
 

 

[4] Andrei Octavian TRITEAN, Contribuții la 
studiul experimental asupra poluării 
sonore în transporturi, Raport de cercetare 
III, Sept. 2014.  

[5] Dorin IONIȚĂ, Mariana ARGHIR, 
Contributions to the Approximation with 
Polynomial Functions of Material Systems 

Vibrations. Part I: Theoretical 
Considerations of Real Material Systems, 
ACTA TECHNICA NAPOCENSIS, 
Series: Applied Mathematics, Mechanics, 
and Engineering, Vol. 63, Issue II, June, 
2020, UTPress, UTCN, Cluj-Napoca 

 
 
 
 

Contributii la aproximarea vibratiilor sistemelor materiale cu functii polinomiale.  

Partea II: Aproximarea acceleratiilor vibratiilor reale 
 

 

Rezumat: Lucrarea prezinta aproximarea reprezentarilor grafice ale vibratiilor masurate ale unei 
platforme de camion, prin functii polinomiale de gardul 10. Se aplica aproximarea prin interpolarea 
Lagrange in patru puncte distincte de masurare, cu utilizarea matricei Vandermonde in fiecare punct 
analizat. Aproximarea duce la rezultate veridice, deci poate fi considerata valida pentru aplicarea 
analizei vibratiilor sistemelor materiale. Cea de a doua parte a lucrarii realizeaza punerea in evidenta 
a aproximarii prezentarii aceleratiilor vibrationale ale unui sistem real cu functii polinomiale de 
gradul 10, pentru patru cazuri distincte de reprentari grafice. 
 
Dorin IONITA, PhD Student, Technical University of Cluj-Napoca, Department of Mathematics, 

Tel: 0745.974.933, e-mail: Ionitadorin@gmail.com  
Mariana ARGHIR, Prof. Dr. Technical University of Cluj-Napoca, Department of Mechanical 

Engineering Systems, B-dul Muncii, No. 103-105, Tel: 0729.108.327; E-mail: 
marianaarghir@yahoo.com, Marghir@mep.utcluj.ro  




