
- 93 -

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 63, Issue Special, October, 2020

SOFTWARE ENGINEERING PERFORMANCE AND QUALITY

ASSESSMENT BY TRIZ

Kangrok LEE, Jaemin SHIM, Jinyong KIM

Abstract: This paper shows the innovative concept of how software engineering activity performance and

quality assessment can be done. To be successful in delivering the software services/products, we should

have some kind of measurements about the ongoing productivity and the current status. To achieve this, we

have used the substance-field model and 76 inventive standard of TRIZ. Also, we have described how to

visualize the activities through dashboards by KPIs (Key Performance Indexes) to be able to take some

important timely decisions that help deliver the services/products on time. All this was done gathering the

complexity of each individual activity and time information from various information sources. In this

context, we must insist that there are some specialties that impact software engineering, particularly

internet advertisement services. Therefore, we would like to clarify the necessity of having the TRIZ

approach in empowering the productivity of our engineers in software engineering for software quality

assessment.

Key words: Software Engineering, Technical Debt, Substance Field Modeling, 76 Inventive Standards,

Productivity, KPI (Key Performance Index) Dashboard.

1. INTRODUCTION

In order to provide a comprehensive snapshot
of our current engineering projects, it is required
to have an introduction of a new approach, as
well as tools to gather the time series data about
the past from various sources, which helps us to
identify the future trends in order to make
accurate decisions. For assessing performance
and quality it is mandatory to have some kind of
measurements to manage and gauge the
activities. [1] First of all, quality is everyone’s
responsibility and it should be followed through
in each activity. This means that comprehensive
plans should be devised to show the exact
responsibilities and decisions of various
services. Procedures should be defined to check
their conformance with the development plans.
Countermeasures about 3-tier problems should
be suggested in the event of discrepancies
between performance and specification, despite
already having developed several research
projects and international standards about
software quality and measurement.[2] We can
neither incorporate nor adjust them into our

software quality assurance and performance
measurement process because of their outdated
nature to the current trends. Firstly, we have a
definite need to make up a new set of guidelines
and standards for the online business for
development and maintenance of internet
advertisement services and technical
engineering. Secondly, we should also verify the
performance index, measure it, and track for
advertisement services. All the need
performance indexes should be explained in a
more detailed analytical way, having a high
degree of confidence and being able to propose
a KPI dashboard to cover all of them.

2. SOFTWARE ENGINEERING BY TRIZ

For so long, there have been many research

papers and books about software and TRIZ. Not
quite as big and impactful, but very imperative,
is the survey of concurrent relationships between
software and TRIZ. In [3] the author promised
to formulate a domain-specific matrix by re-
architecting successful architectures. Despite
finding the correspondences between software

- 94 -

architectures and TRIZ, he does not seem able to
interpret the whole contradiction matrix into
software architecture terms. Darrel Mann has
published a paper [4] in the TRIZ Journal, which
serves as a summary of his forthcoming book
“TRIZ for Software Engineers” [5]. It states that
there are 7 pillars of different levels that detail
the starting point of software engineering
concerning TRIZ. He has concluded that this
could create tools for software engineers in order
for them to do a better job with regard to TRIZ
tools for the emergence of definitions and
methodology.

3. MODEL AND ANALYSIS FOR

PERFORMANCE AND QUALITY

ASSESSMENT

In this article’s second chapter we have
discovered that it is a difficult task to perfectly
apply TRIZ in the software’s domain and
architecture. However, some have already done
the necessary research to understand the
relationship between TRIZ tools and software
knowledge and have concluded that it is better to
have the methodology and tools to track and
assess the software engineering activities. Thus,
we need to make a new model and analyze our
challenges with regards to software performance
and quality assessment. As follows, we have
tried to describe that there are new approaches
and analysis for our challenging problems with
substance field model and 76 inventive
standards. Firstly, we will analyze our system,
its functions and features, as seen below.

Table 1

Example Description of System,

Functions and Features

System Function Feature
(Parameter)

Campaign
Management

Manage Accuracy

Data Pipeline Process Speed

Advertisement
Delivery

Deliver Time

Tracking Track Precision

Aggregation Aggregate Accuracy

In Table 1, it is stated that advertisement
systems are generally operating, functions are

being executed and features will be changed
from the current status to the desired one.

3.1 Substance Field Model and 76 inventive

standards

In this chapter, we will explain that we have

used the substance field model and 76 inventive
standards to decide the strict rule of checking our
software quality and performance. In general,
competency is highly likely to be related to
effectiveness and can result in better
performance, but not always, because all the
works cannot always be assigned to the right
competency with consistency. So, when it comes
to fair and meaningful performance, we need to
clarify three things – competency, works, and
performance. Besides, there always have been
misconceptions about activities such as “simple
problems like software bug”, technical debts,
etc., a non-typical problem like a too complex
root cause, misunderstandings that take place
due to human interactions. That is why we need
to make more abstractions for the definitions of
our problems with the substance field model, in
order to simplify our typical problems.
Separately, it is possible to make our problem
model typical and simple with the substance
field model and 76 inventive standards. We do
this so that we can understand their cause and
effect the right way in order to improve it
further. In the Fig. 1, we can assume that
substances 1, 2 are our advertisement system and
software. Fields in our domain are considered to
be: development, implementation, test, etc. All
fields can affect our software. There may be
several types of work and tools, but there may be
invisible and impractical things that are affected
by our engineers.

Fig. 1. Substance Field Model

In addition, 76 inventive standards are

composed of the following 5 classes. We
consider we should have a strategic direction
regarding our substance field model.

- 95 -

• Class 1: Synthesis and decomposition of
substance fields. These solutions improve the
useful interaction effect or eliminate a
harmful function. Basic and initial scheme for
using 76 inventive standards (13 standards)

• Class 2: Evolution of the substance field
model. These solutions push the system
further towards ideality by suggesting other
controlled fields or advanced technology and
software such as AI, deep learning, etc. (23
standards)

• Class 3: Transitions towards supersystem or
microlevel. These standards will guide us
towards multi-systems and miniaturization.
(6 standards)

• Class 4: Measurement and detection. These
patterns improve the measurement and
detection issues in the system. Most
important is to define our performance and
quality assessment for our system and
software. (17 standards)

• Class 5: Guidance and Helpers. The last set
of standards will introduce fields and
substances in order to obtain better results.
(17 standards)

3.2 76 Inventive Standards and Analysis for

Software Performance and Quality

Assessment

When using all 76 inventive standards, we

could not apply the measurements, nor could we
detect problems in a particular class, such as
class 3, class 5. We should focus on class 4,
especially in chapter 3.1, in order to dive deeper
into more statements and rules in our problems
and situations. Group 4-1 explained the detour.
Instead of measuring and detecting problems, it
states we should change the system without the
need for measurement and detection. Only one
alternative is copied when it is impossible to
change the system without measurement and
detection. Finally, we apply for the modification
of the measurement problem in successive
detection. All detections must be made only with
a certain degree of correctness. Therefore, it is
possible to detect them with the method of two
consecutive detections, although some problems
should be detected with continuous values.
Therefore, it is necessary to introduce MTBF

(average failure time) and MTTR (average
repair time) to check the quality and
performance of the software. Group 4-2 is
represented as a synthesis of a measurement
system. This is described in Figure 2 and we
have realized that the problem situations are
similar to our problems for software
performance and quality assessment. Although
the substance and the field are slightly different
from the system and software in the software
field, it has been found that there are many
interactions and new flows of technology and
development between many systems and
software. In Figure 2, it is better to introduce
other substances that are easy to measure and
detect in our system because it is difficult to
measure and detect for the existing system.
Therefore, we created the KPI (Key
Performance Index) dashboard to facilitate the
detection and measurement of our systems or
software for operating the advertising service.
To check our productivity, we introduce the
productivity and transparency of our systems
and software, as seen in figure 3.

Fig. 2. Class 4: Measurement and Detection Diagrams

Fig. 3. KPI (Key Performance Index) Dashboard

- 96 -

4. CONCLUSION

Checking software performance and

evaluating quality are basic issues in software
engineering. This task depends very much on the
experience and knowledge of the engineer. The
use of TRIZ substance field model and 76
inventive standards can help direct the
measurement and detection of problems in a
promising heuristic direction. Therefore, these
tools can be seen as an extension of software
performance and quality evaluations. This paper
insists on the approach of finding the
correspondences between the substance field
model and software engineering. In addition, we
emphasize that it is important to check the
quality and measurement of software
performance against some rules of 76 inventive
standards when we effectively improve our
software and systems and estimate the
accounting solution at the top of all possible
improvements. Although not all 76 inventive
standards are useful in software engineering, the
remaining models and rules can be useful and
understandable in decision making. In fact, some
of the inventive standards for the field model
found in other fields can also be applied to
software engineering. Despite the founding
correspondences, it does not seem possible to
translate 76 inventive standards into
performance and quality assessments of

software engineering. In essence, it is very
important to use these tools with the level of
abstraction required by software engineers. [6]
In addition, it is quite promising to find relevant
and meaningful measurements and
measurements of software performance and
quality with these tools.

5. REFERENCES

[1] Robert S. Kaplan: Conceptual Foundations

of the Balanced Scorecard. Handbooks of
Management Accounting Research, volume
3, 1253–1269 (2009).

[2] Consortium for IT Software Quality, 2020.
CISQ Specifications for Automated

SoftwareMeasurement. Available from:
https://www.it-
cisq.org/standards/index.htm

[3] Daniel Kluender: TRIZ for software

architecture, TRIZ future conference 2006,
Volume 9, 2011, 708 – 713 (2011)

[4] Darell Mann: TRIZ For Software, TRIZ
Journal, Oct. 2004

[5] Darell Mann: TRIZ for software engineers,
IFR Press, 2008

[6] Usharani Hareesh Govindarajan, D. Daniel
Sheu, Darell Mann: Review of Systematic

Software Innovation Using TRIZ, Int. J.
Systematic Innovation, 5(3), 72-90 (2019)

Performanța ingineriei software și evaluarea calității cu TRIZ

Rezumat: Această lucrare prezintă conceptul inovator al modului în care se poate face performanța activității de inginerie
software și evaluarea calității. Pentru a avea succes în furnizarea serviciilor / produselor software, ar trebui să avem un
fel de măsurători despre productivitatea continuă și starea actuală. Pentru a realiza acest lucru, am folosit modelul
substanță-câmp și 76 standarde inventive ale TRIZ. De asemenea, am descris cum să vizualizăm activitățile prin tablouri
de bord, prin KPI (indexuri de performanță cheie) pentru a putea lua unele decizii importante în timp util, care ajută la
furnizarea serviciilor / produselor la timp. Toate acestea au fost realizate adunând complexitatea fiecărei activități
individuale și informații despre timp din diverse surse de informare. În acest context, trebuie să insistăm că există anumite
domenii care afectează ingineria software, în special serviciile de publicitate pe internet. Prin urmare, am dori să
clarificăm necesitatea unei abordări TRIZ pentru încurajarea productivității inginerilor noștri din ingineria software pentru
evaluarea calității.

Kangrok LEE, Global Ad Technology Supervisory Department of Rakuten Inc., Japan,

kangrok.lee@rakuten.com
Jaemin SHIM, Rakuten Asia Pte. Ltd. of Rakuten Inc., Singapore, jaemin.shim@rakuten.com
Jinyong KIM, Global Ad Technology Supervisory Department of Rakuten Inc., Japan,

jinyong.kim@rakuten.com

