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Abstract: We suggest a new method for the analysis of experimental time series. The order/disorder 

characteristics of the compartment fire are determined based on experimental data. From our analysis, we 

claim that the newly developed so-called PYR-algorithm is suitable to detect unusual data in full-scale fire 

experiments. 

Key words: full-scale fire experiment; compartment fire; permutation entropy; time series analysis; PYR-

algorithm; Data Driven Method of Imputation; redistributing algorithm 

  

1. INTRODUCTION  

 

We aim to develop a new algorithm adequate to 

perform a local entropic analysis of the 

evolution of the temperature during a full-scale 

fire experiment. We compare our results with 

those obtained with known algorithms dedicated 

to the extraction of the underlying probabilities 

and we check their suitability to point out 

abnormal values and structure of the 

experimental time series. We apply our methods 

on a single experimental data set, as an 

illustration. Notwithstanding such a limitation, 

our investigation contributes with a perspective 

to the overall analysis and finding of an adaptive 

direction, by observing the evolution of the fire 

through a mathematical lens that enables 

venturing in novel and testable proposals, as a 

subsequent need for sharpness and accuracy in 

contemporary analysis of experimental data. For 

other recent research on the fire phenomena 

performed using entropic tools see [16] and [20].   

The experimental data was provided from a full-

scale fire experiment conducted at Fire Officers 

Faculty in Bucharest. The experiment has been 

carried out using a container (single-room 

compartment) which had the following 

dimensions: 12 m × 2.2 m × 2.6 m. A single 

ventilation opening, the front door of the 

container, remained open during the experiment. 

The walls and the ceiling were furnished with 

oriented strand boards (OSB). The ignition 

burner has been a wooden crib, made of 36 

pieces of wood strips 2.5 cm × 2.5 cm× 30 cm, 

on which has been poured 500 ml ethanol. The 

crib was placed at 1.2 m below the ceiling. Six 

built-in K-type thermocouples, fixed at key 

locations, connected to a data acquisition logger, 

were recording the temperature values.    

A complete description of the experimental 

framework (materials and methods) and data 

analysis can be found in [15]. Other recent 

results on the analysis of this data set and a 

detailed mathematical background can be found 

in [13] and [14]. 

In Section 2 we present the notation, notions, 

algorithms needed to perform the analysis, and 

develop the new PYR-algorithm.  

Section 3 is a detailed presentation of the results 

and their interpretation.    

2. NOTATION AND TERMINOLOGY  

 

2.1 The classic entropy and statistical 

complexities 

Shannon’s entropy [19]  is defined as ���� =
− ∑ �	log �	�	�� , where � = ���, … , ��� is a 

finite probability distribution. It is nonnegative 

and its maximum is ���� = log �, where � =
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��
� , … , �

��.  The natural logarithm is used, and the 

convention 0 ∙ log 0 = 0.     
The Kullback-Leibler divergence [9] is 

defined by  

���‖�� = ∑ �	�log �	�	�� − log �	�, 

where � = ���, … , ��� and � = ���, … , ��� are 

probability distributions. It is nonnegative and it 

becomes zero only for � = �. This is a 

consequence of the known inequality log � ≤
� − 1  for all � > 0 (the equality holds only for 

� = 1). 

If the value 0 appears in probability 

distributions � = ���, … , ��� and � =
���, … , ���, it must be found in the same 

positions for significance. Otherwise one 

considers the conventions 0 log "
# = 0 for $ ≥ 0 

and � log &
" = ∞ for � > 0. These limitations are 

strong, such conditions are rarely encountered in 

practice. 

The Jeffreys divergence [8] is defined 

by �(��‖�� = ���‖�� + ���‖��. The same 

restrictions and conventions apply.   

The Jensen-Shannon divergence (see [11]  

and [17]) is 

*+��‖�� = 1
2 � -� .� + �

2 / + 1
2 � -� .� + �

2 /
= � -� + �

2 / − ���� + ����
2 . 

It holds *+��‖�� ≤ �
0 �(��‖�� (see [5] and 

[11]).  

The disequilibrium-based LMC statistical 

complexity [12] is defined as 1��� =
���� 2�3�

456 �,  where the  disequilibrium ���� is  

���� = ∑ ��	 − �
��7�	�� . 

The Jensen-Shannon statistical complexity 

[10], [23]  is 1�(8���� = 9�(8���� 2�3�
456 �,  where 

the disequilibrium 9�(8����  is 

9�(8���� = : ∙ *+��‖��. 

Here the normalizing constant is 

: = �max3 *+��‖���-1  and � = ��
� , … , �

��.  For 

its computation, the maximum is attained for � 

such that there exists >, �	 = 1.  

Remark 1 These two statistical complexities are 

defined in different ways, that is with or without 

normalizing the disequilibrium. Throughout this 

paper we have obeyed the known definitions, but 

we stress that one could normalize ���� in the 

same way as *+��‖�� has been normalized. The 

maximum of ���� is attained for � such that 

there exists >, �	 = 1. The proof of this fact 

follows using the same recipe as in [14]. It holds 

max3 ���� = �1 − �
��7 + �?�

�@ = �?�
� < 1, hence 

���� is bounded. To normalize by a bounded 

maximum is not relevant to our current analysis.    

The possibility to use the Jeffreys statistical 

complexity 1(��� ≡ �(��‖�� 2�3�
456 � has been 

briefly mentioned in [18]  as an alternative to the 

Jensen-Shannon complexity measure. One 

encounters the following drawback: since � has 

no zero components, the probability distribution 

� must have only strictly positive components, a 

fact which depends on the algorithms used to 

determine the underlying probability 

distribution. For fire experiments, the collected 

data yields sometimes, by various algorithms, 

some underlying probability distributions which 

have zero components. An alternative is to use 

the Jeffreys-Ferreri statistical complexity, as 

discussed in our recent paper [13]. 
 

2.2 Extraction of the probability distribution 

out of experimental data 

 

The permutation entropy PE [2] is used for 

the analysis of time series based on comparisons 

of neighboring entries. For details on the PE-

algorithm applied to the present experimental 

data see [15].  

Let C = �D�, … , D�� be a time series with 

distinct values.  

Step 1.  The increasing rearranging of the 

components of each E-tuple FD	, … , D	GH?�I as 

�D	GJK?�, … , D	GJL?�� yields a unique 

permutation of order E denoted by M =
F��, … , �HI, an encoding pattern that describes the 

up-and-downs in the considered j-tuple.   

Example 1 For the 5-tuple �2.4,   1.7, 3.5,
1.2,   4.6� the corresponding permutation 

(encoding) is �4,   2, 1, 3,   5�. 
Step 2. The number of E-tuples associated to 

this permutation is  

:S ≡ #{>: > ≤ � − �E − 1�,
FD	, … , D	GH?�I is of type M}. 
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The sum of these values is equal to the total 

amount of all consecutive j-tuples, that is � −
�E − 1�.  

Step 3. The permutation entropy of order E is 

defined as �_�E� ≡ − ∑ �Slog �SS , where 

�S = `a
�?�H?�� .    

This algorithm does not handle the E-tuples 

which contain equal values. For such cases, 

common approach in the literature is to rank the 

ties according to their order of emergence (to 

rank them according to their chronological 

order). See for instance [4]  and [6]. We use this 

method to compute the permutation entropy 

�_�E�, for E =3, 4.  We consider that the 

chronological ordering is an artificial 

convention, disregarding the evolution of the 

phenomenon that originated the data on which 

we perform the analysis. 

In [2] the values of the time series are 

considered distinct. The authors propose to 

break the equalities by adding small random 

perturbations. We interpret this as mapping the 

E-tuples with ties to all suitable (compatible) 

permutation with equal probabilities. This 

method is used for what we further call the 

Bandt-Pompe entropy denoted by b��E� for E 

=3, 4. In our interpretation, this type of ranking 

equalities is coarser, so we are not surprised to 

obtain higher entropies.  

In this paper we aim to provide an 

adequate/enhanced permutation type (fire-

dynamics based) algorithm for fire and check its 

validity on our experimental raw data. 

Data-Driven Method of Imputation DDMI 

presented in [21]  and [22]  requires to map the 

E-tuples with ties to all the suitable (compatible) 

permutations according to the so-called a priori 

probabilities (i.e. the relative frequencies of 

those permutations obtained when ignoring the 

patterns with ties). Foremost, one can interpret 

this as counting each E-tuple which contains 

equalities on behalf of its compatible 

permutations, proportionally to the amount of  E-

tuples with no equalities corresponding to those 

permutations. 

 To prepare the theoretical background of our 

approach we present, for reader’s convenience, 

the modified permutation entropy (mPE) 

introduced in [3]. For distinct temperatures, one 

applies the PE-algorithm. The equal values are 

mapped onto the same symbol, that is the 

smallest time index: if   D	GJK?� = D	GJ@?�, ��< 

�7 then both temperatures are represented by �� 

in the encoding symbol sequence (not a 

permutation anymore, as for PE). Therefore, for 

every permutation M used by the PE-algorithm, 

which corresponds to the E-tuples containing 

D	 ≤ D`, we will have two encodings in the mPE-

algorithm, one for the E-tuples containing D	 <
D`, the other one for D	 = D`, and their 

probabilities have the sum ��M�.   

Example 2  �2.3,   1, 3.3, 1,   5.7� → �2,   2,
1, 3,   5� 

Based on the mPE-algorithm, we describe 

further steps aiming to redistribute the E-tuples 

from the encodings with ties to the encodings 

that are permutations of order E. 

Hereafter, the notation used is d for the set of 

permutations of order E, ℰ for the set with all 

encodings in the mPE(E) algorithm (therefore 

ℰ ∖ d contains the encodings with ties). Let g ∈
ℰ ∖ d, ��g� be the probability of g computed by 

the mPE-algorithm,   

��g� = ijklmn 5o H?pjq4mr 5o psqm t
p5pu4 ijklmn 5o H?pjq4mr . 

We call the permutation v ∈ d and the 

encoding g ∈ ℰ ∖ d compatible if each E-tuple 

FD	, … , D	GH?�I of type g satisfies the 

condition D	Gw���?� ≤ ⋯ ≤ D	Gw�H�?�. We write 

v~g.  

Remark 2 Note that if v~g, then g and v 

coincide as functions {1, … , E} → {1, … , E} , up to 

the terms involved in ties.  

Example 3 The constant encoding is 

compatible to all the permutations. 

Example 4 The encoding �1,1,3� is 

compatible to the permutations �1,2,3� and 

�2,1,3�. The encoding �1,2,2,2� is compatible to 

the permutations �1,2,3,4�, �1,2,4,3�, �1,3,2,4�, 
�1,3,4,2�, �1,4,2,3� and �1,4,3,2�. 

 The number of permutations that are 

compatible to a given encoding g ∈ ℰ ∖ d is the 

product of the factorials of the numbers of terms 

involved in each tie in g. 

We denote by g↑ (respectively g↓) the 

permutations which are compatible to g and rank 

increasingly/chronologically (respectively 

decreasingly/reversed chronologically) the 

terms corresponding to each tie.  
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Redistributing algorithms (Partial Weights 

Algorithms, PW-algorithms): 

Step 1.   

It holds ∑ �∗�g, v�w~t,w∈d = 1, where  

�∗�g, v� ≡ 
ijklmn 5o H?pjq4mr nm��rpn�ljpm� on5k t p5 w 

p5pu4 ijklmn 5o H?pjq4mr 5o t . 
It holds 0 ≤ �∗�g, v� ≤ ��g�. Several ways to 

compute �∗�g, v� correspond to known 

algorithms, as we show in our remark below. 

The numerators (which reduce the problem of 

finding adequate partial probabilities �∗�g, v�) 

should depend more on the phenomena which 

originated the data, but currently their 

determination involves general procedures as 

choices researchers make. 

Step 2. Obtaining the new probability 

distribution: 

��v� ≡ ��v� + ∑ �∗�g, v���g�,t∈ℰ∖d,w~t   

for all v ∈ d. It holds ∑ ��v� = 1w∈d . 

Remark 3 Cases of interest:  

• The PE-algorithm (with chronological 

ordering of ties) is the case �∗Fg, g↑I = 1 

(deterministic assignment).  It is counting the 

E-tuples containing an equality D	 = D	G� on 

behalf of the compatible permutation which 

has D	 < D	G�. 
• The (Bandt – Pompe) BP -algorithm has the 

partial probabilities �∗�g, v� = �
�un�{�: �~t} for 

all v~g. It is counting the E-tuples containing 

equalities on behalf of all compatible 

permutations, randomly, that is, with equal 

probabilities (otherwise said adding random 

noise to break equalities).  

• We note that the DDMI-algorithm uses, as the 

above described redistributing algorithms, 

the weights �∗�g, v� = ��w�
∑ �����~�

 for all v~g. 

We stress that the DDMI-algorithm fails if 

there exist encodings g such that ��g� ≠
0 and ∑ �����~t = 0. The DDMI-algorithm 

appears as a quite natural way to redistribute 

the patterns with ties, however one has to 

interpret it carefully: if all �∗�g, v� are 

established based only on a small number of 

E-tuples with distinct elements and if the 

number of E-tuples of type g is significantly 

greater, this proportional redistributing 

method might exhibit some issues (as hiding 

the rare patterns which could characterize the 

phenomenon) and prove itself less relevant as 

expected. 

When the number of the ties is small in 

comparison to the amount of measurements, all 

these algorithms yield similar results, as it will 

be visible in the analysis of our experimental 

data. 

Obviously, these algorithms do not consider 

the nature of the phenomenon which originates 

the time series, a fact which would provide more 

insight for the researcher and would indicate in 

the most intuitive way how to deal with the E-

tuples which contain equal values.   

Remark 4 The coarsest redistributing 

algorithm we can think of is to randomly 

redistribute all the E-tuples with ties to all the 

existing E! permutations (that is, to ignore the 

non-compatibilities). Another approach is to 

redistribute all the E-tuples with ties to all the 

existing E! permutations, according to their a 

priori probabilities (as in the DDMI-algorithm). 

This is quite trivial, since it is equivalent to 

simply ignore all the E-tuples with ties (that is, 

one does not redistribute, but removes all the E-

tuples with ties). Both methods provide only 

simplified and rough information on the data, 

with much information loss. 

Remark One obtains the same results from 

the BP- and DDMI- algorithms in case when the 

permutations are � − equiprobable (that would 

be an interesting time series, if obtained from 

some real-life measurements), since by both 

algorithms they become � −equiprobable. More 

mathematical conditions to get similar/same 

results from different algorithms can be inferred 

by the interested reader, but this goes well 

beyond our purpose here to discuss in detail, 

since such assumptions are unlikely to hold in 

the fire framework. 

The class of PW-algorithms was inspired to 

us by these particular cases. However, according 

to the phenomenon under consideration (case 

when additional constraints and requirements 

may arise), researchers might need to review the 

definition of the partial probabilities �∗�g, v� to 

fit a specific framework, to interpret the 

distinguishability of phases of the process and 

thus reveal the salient structural properties of the 

time series.  
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Since our further approach is based on the 

widely known evolution of the fire events, we 

will call it the PYR-algorithm (in Greek 

language, πῦρ means fire). We describe its 

encoding step below. Figure 1 shows the 

idealized time-temperature curve of the stages of 

a compartment fire. The lower curve shows a 

quasi-steady low-intensity fire. See [7]. 

 
Fig. 1 Idealized time-temperature curve 

  

Step 1. Let : = min{�: D� = max�D�, … , D��}.  
Each E-tuple FD	, … , D	GH?�I of type g ∈ ℰ ∖ d, is 

counted as a  E-tuple of type g↑ if > < :, 

otherwise it is considered on behalf of the 

permutation g↓. So, we redistribute the E-tuples 

with ties to the two compatible permutations 

with either chronological or reversed 

chronological ranking of the terms involved in 

the ties. This step is a fine tuning of the previous 

encoding procedures, an adjustment made to fit 

specific types of data, inspired by the generally 

known evolution of the fire: the E-tuple is 

considered on the ascending trend before the 

maximum value of the temperature is reached, 

respectively on the descending trend afterwards. 

The basic idea behind our approach is to avoid 

generating unintended new fluctuations which 

would increase the erraticism of the time series. 

Remark 5 Note that the tie D� = D�, � < �, 

in the E-tuple FD	 , … , D	GH?�I is considered as 

D� < D� if > < :, and D� > D� if > ≥ :, that is the 

same tie could have a different look in different 

E-tuples by applying the PYR-algorithm, a 

negligible issue of our method (it can happen at 

most E − 2 times). However, one could 

additionally check if � < :, if yes then order the 

tie chronologically, and if � ≥ : reverse the 

order. Still the case � < : < � would remain not 

settled. We did not encounter this issue with our 

experimental data (therefore this remark is 

purely theoretical, for the interested reader), 

however we prefer the simplifying Step 1 (to 

check only if > < :, instead of scanning for the 

ties of each E-tuple containing D`). 

Step 2 and Step 3 coincide with Step 1 and 

Step 2 in the PE-algorithm in the beginning of 

this section. 

The resulting probability distribution may 

roughly but less arguably analyze the evolution 

of the temperature, and it turns our attention 

towards the features of the phenomenon 

originating the time series. 

By the redistribution of the patterns with ties, 

in all four algorithms we have used, the resulting 

probability distribution is associated to E! 
permutations. Note that the BP-, DDMI- and 

PYR-algorithms give the same result as the PE- 

algorithm for time series with distinct values or 

characterized by the sparsity of ties, that is by a 

small number of E-tuples with ties (a fact which 

we note at the thermocouple T5). The PYR- and 

PE- algorithms yield closer results when the ties 

are more frequent during the growing period of 

the fire.  

Remark 6 An important difference between 

the DDMI- and the other discussed algorithms is 

that the permutations with 0 associated E-tuples 

in the mPE-algorithm remain with 0 associated 

E-tuples as a result of the DDMI-algorithm (with 

proportional redistribution), while this might 

(and usually does) change after the BP-, PE-, or 

PYR- algorithms (we encounter this case in 

Figure 9). 

Remark 7 In case that the permutations v =
�1,2, … , E� and � = �E, E − 1, … ,1� have 0 

associated E-tuples after the mPE-algorithm, that 

is if there is no strictly increasing/decreasing E-

tuple, we stress that a bigger embedding 

dimension E cannot solve this issue, while a 

coarser time scale might lose valuable 

information. For fire experiments, the DDMI-

algorithm would never be relevant in this case, 

since one always anticipates the greatest 

numbers of associated E-tuples to the 

permutations v and �, therefore having 0 

associated E-tuples would not agree to the real 

evolution of the temperature. However, in this 

case we intuitively claim that the PYR-algorithm 

would remain the most realistic approach, the 



408 
 

 

BP-algorithm would randomly redistribute the E-

tuples with ties to v and � and probably also to 

other permutations, while the PE-algorithm 

would maintain 0 associated E-tuples to the 

permutation �, another unrealistic approach 

from our perspective.  

Remark 8 In case that all the permutations 

have at most 1 associated E-tuple after the mPE-

algorithm, except eventually v and �, we 

consider that, if only a small number of 

encodings have ties, then a finer time scale could 

have been performing a better scanning of the 

evolution of the temperature.   

Note that applying these algorithms to 

experimental fire data, the statistical 

complexities cannot be zero. The number of the 

encoding patterns which occur is > 1 and these 

patterns are not equiprobable: some patterns 

may be rare or locally forbidden (that is, one 

encounters such patterns at some thermocouples, 

but not in all time series), as discussed in [15].    

 In the next section we apply the above 

techniques and observe some meaningful 

aspects concerning the experimental data.  

 

3.  EXPERIMENTAL DATA ANALYSIS 

The raw data set consists of six time-series 

having 3047 entries each. We are modeling the 

time series using information theory, and to 

assess the performance of the discussed 

statistical complexities and the PYR-algorithm.    

 
Fig. 2 The entropy for the embedding dimension E = 3 

  
Fig. 3 The entropy for the embedding dimension E = 4 

 

The most relevant aspect both for the entropies 

(Fig. 2 and Fig. 3) and for the statistical 

complexities (Fig. 4-9) is that we get similar 

plots regardless the embedding dimension and 

the encoding type algorithms, hence the analysis 

is reliable.   

The results at T5 lie very close together, due 

to the small number of E-tuples with ties (E=3 and 

E=4), for all the discussed algorithms.  (Table 1). 
Table 1 - Number of j-tuples with ties  

T1 T2 T3 T4 T5 T6 

E=4 513 1031 1371 1463 191 1172 

E=3 319 756 1032 1135 109 903 

 

As a measure of uncertainty, we see in Fig. 2 

and Fig. 3 bigger entropy for the random 

redistributing (using equal weights) BP-

algorithm, and smaller when the redistribution is 

proportional, with the DDMI-algorithm, which 

agrees with our intuition.  

 
Fig. 4  Jensen-Shannon complexity for E = 3  

 
Fig. 5  Jensen-Shannon complexity for E = 4  

  
Fig. 6  LMC complexity for E = 3  

  
Fig. 7  LMC complexity for E = 4  

  
Fig. 8  Jeffreys complexity for E = 3  
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Fig. 9  Jeffreys complexity for E = 4  

 

In Figure 9 we note the absence of the dotted 

line for DDMI(4), plotted only at T1 and T5, a 

fact due to the infinite values of the Jeffreys 

complexity at the thermocouples T2, T3, T4, T6. 

The DDMI-algorithm returned some 0 

components in the new probability distribution. 

This is explained by the fact that the 

permutations with 0 associated E-tuples always 

remain, by the DDMI-algorithm, with 0 

associated E-tuples. Note that the Jeffreys 

statistical complexity failed for an algorithm and 

worked for others, so the choice of the algorithm 

should not be underestimated.  

The PYR-algorithm is not meant to change 

(and in our case it does not, but theoretically it 

could change it) the hierarchy established by 

other algorithms, we consider that it has the great 

advantage that one can trust more such 

procedures developed having as a starting point 

the phenomenon which originated the data. To 

ignore how the data has been produced is what 

all the future research should avoid.   

Remark 9 Our analysis is based on several 

known statistical complexities: LMC, Jensen-

Shannon and Jeffreys. It might be relevant 

sometimes to exploit only their corresponding 

disequilibrium formulae, which are interpreted 

in the recent literature as (roughly speaking) 

distances from the white noise. See for instance 

[1], where the author uses the LMC 

disequilibrium ����, with the probability 

distribution � obtained via the PE-algorithm. 

To understand the cause of the tied values, we 

note that most of the E-tuples with ties appear in 

the decay period, however the corresponding 

percentages are quite different and we cannot 

conclude if this characterizes the fire dynamics 

or it should/could be explained as an artifact, an 

effect of confounding factors or by some inertia 

of the measuring devices. See Table 2. We let 

this as an open question for the interested reader. 

 

Table 2 - Percentages of j-tuples with ties during the 

growth period, calculated from the total number of j-

tuples with ties encountered at each thermocouple (see 

Table 1)  

T1 T2 T3 T4 T5 T6 

E=4 20.47% 17.07% 36.76% 38.28% 56.02% 44.88% 

E=3 24.14% 17.46% 39.83% 41.41% 55.96% 49.94% 

 

4. CONCLUSIONS 

 

The keys to evaluate experimental results is 

the appropriate selection of statistical data 

analysis techniques. Our main concern here are 

the experimental time series which contain ties, 

therefore we present particular cases of interest 

among the redistributing algorithms. In our 

framework, the PYR-algorithm provides the 

most suitable method and we use experimental 

data collected from a full-scale experiment to 

illustrate its enhanced fitness.  

It is also noteworthy that our results indicate 

unusual data or an improperly calibrated at the 

thermocouple T5. 
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PYR-algoritm pentru seriile de timp care modelează valorile temperaturii și  aplicaţii ale lor pe 

date obţinute din incendiu de compartiment la scară reală 

 
Dezvoltăm o nouă metodă pentru analiza seriilor de timp experimentale. Caracteristicile de ordine/dezordine ale unui 

incendiu de compartiment sunt investigate pe baza datelor experimentale.  Din analiza noastră, concluzionăm că noul 

algoritm dezvoltat, numit PYR-algoritm, este adaptat să detecteze date neobișnuite în experimentele la foc.   

 

Flavia-Corina MITROI-SYMEONIDIS, Research Assistant, Police Academy "Alexandru Ioan Cuza", 

Fire Officers Faculty, Str. Morarilor 3, Sector 2, Bucharest RO-022451, Romania. E-mail address: 

fcmitroi@yahoo.com, Academy of Economic Studies, Department of Applied Mathematics, Calea 

Dorobanţi 15-17, Sector 1, Bucharest RO-010552, Romania. 

Ion ANGHEL, Assistant Professor, Police Academy "Alexandru Ioan Cuza", Fire Officers Faculty, Str. 

Morarilor 3, Sector 2, Bucharest RO-022451, Romania. E-mail address: 

ion.anghel@academiadepolitie.ro  

 




