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Abstract: Markov chains models are widely applied in industrial engineering. In this paper, Markov chains 
are used to achieve modeling scenarios for the maintenance parameters and performance evaluation of 
production systems. The Markov chains are built with the queuing theory and are well-known for their 
power of representation by given a small computing effort. This paper is focused on reveal some random 
behaviors with the help of modeling scenarios. Our contribution consists in the development of two 
modeling scenarios. In the first scenario, the availability of a system with the setup phase and scraps is 
calculated, then the machine behavior in a period of a month is evaluated using failure and repair rates 
generated by Linear Congruential Generator. In the second scenario, the availability of a system with the 
setup phase without scraps is designed and evaluated.  
Key words: Modeling scenarios,  Markov chains, estimation, availability 

 

1. INTRODUCTION  

  

In the last years, production systems have 

been extensively studied. Most of the studies 

analyze random times with different methods of 

modeling and simulation. The basic idea is to 

analyze the behavior of production systems and, 

then, to design and implement scenarios of 

modeling in order to detect the maintenance 

parameters. A well-known method used for this 

purpose is the Markov Chains method. Several 

papers have been written in literature. 

 

1.1 Literature Review 

 

Gershwin S. et al. [1] considered a model 

with two-machine and one-buffer, and they 

calculated the transitions among up and down 

states with Markov chains. Borcsok J. et al. [2] 

proposed a method to calculate the MTTF 

(Mean Time To Failure) values with the help of 

Markov models. In [3], P. Fernandes et al.  

developed an algorithm based on a Markovian 

and Kronecker representation for production 

lines, that automatically generates the equivalent 

SAN (Stochastic Automata Networks) model for 

any K-station production line. S. M. Meerkov et 

al. [4] made an analytical and numerical 

examination of the transient matrix behavior of 

two-machine Bernoulli lines. They applied the 

Second Largest Eigenvalue (SLE) to evaluate 

the transients of the probabilities of buffer 

occupancy. For the transients of the production 

rate and WIP (Work-in-Process), they analyzed 

the problems with the Second Largest 

Eigenvalue (SLE) and Pre-Exponential Factors 

(PEF). In order to analyze the transient behavior 

of production systems, F. Ju et al. [5] studied a 

serial production line model with two Bernoulli 

reliability machines and a finite buffer. K. 

Takahashi et al. [6] used Markov chain to 

compare the performances between KCS 

(kanban control system) and the two kinds of 

DBR (drum-buffer-rope) systems. N.E. Abboud 

[7] applied a Markov production-inventory 

model to develop an algorithm for the cost 

function estimation. X. Wang et al. [8] 

investigated a manufacturing system with two 

series machines and a finite buffer. They 

proposed an algorithm using a semi-Markov 

decision process to obtain the control-limit 

maintenance. N. Nahas [9] proposed an EGD 

(Extended Great Deluge) algorithm to determine 

the optimal preventive maintenance and also, the 
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optimal buffer allocation that will maximize the 

system throughput level. M. Regard [10] 

modeled a serial manufacturing line using 

Markov chain optimization methods with the 

purpose of the machine downtime diminution 

using the targeting problem. A. Matta et al. [11] 

presented a method to calculate the steady-state 

probabilities of the manufacturing system, 

which depends only on the failures and not on 

the buffer capacity. The behavior of the system 

was modeled with a discrete-time discrete-state 

Markov chain. Y. Guoa et al. [12] developed an 

experimental model for the evaluation of 

corrective and preventive maintenance. The 

scheduling maintenance objective was to 

minimize the schedule duration. 

 

1.2 Outline and our contributions 

 
Main goal of the paper. In this article, we 

focus on the Markov chain method in order to 

analyze the random times in the production 

lines. The main goal of this paper is to develop 

modeling scenarios with the purpose of 

analyzing the behavior of the system, by 

computing the availability of the line. We 

address these studies for the availability of a 

system and, as well as, for the failure rates and 

repair rates, because they are an everyday 

occurrence in industry and are particularly 

relevant to practitioners. 

Structure of the paper. This paper is 

organized as follows: Section 1 presents the aim 

of the article and reviews the related literature. 

A general description of the random numbers 

and Linear Congruential Generator, the 

stochastic processes and the reliability theory are 

described in Section 2. In Section 3, we propose 

different scenarios of modeling necessary to 

evaluate the performance of particular 

production systems called lines.  More precisely, 

we analyze some problems in these production 

lines and, we consider that it is useful to focus 

on random times. We describe two scenarios: 

modeling scenario for the availability of a 

machine with the setup phase and scraps and 

modeling scenario for the availability of a 

machine with the setup phase without scraps, 

and then, we propose the solutions for each 

scenario. For these scenarios, a Linear 

Congruential Generator is introduced in order to 

generate random failure and repair rates for a 

month and then, to evaluate the machines' 

behavior.  Finally, we conclude and discuss 

further development ideas in Section 4. 

 

1.3 Notations and assumptions 

 

• λ  is the failure rate  

• µ  is the repair rate 

• },...,,{ 21 rxxxX = represent the system 

states 

• ijp  represents the transition probability = 

transition rate ⋅  time interval 

• dt  represents the incremental time interval 

sufficiently small so that probability of two 

or more transitions during the interval is 

negligible 

• ijλ  represents the transition rate from the 

state ix
 
to jx  

• ])([)( ii xtXPt ==π , and the row vector: 

)),...,(),(()( 21 tttt ni ππππ =  is a probability 

distribution. 

  

2. MODELING RANDOM TIMES 

METHODOLOGY USING MARKOV 

CHAINS 

  

According to  [2,13,14,15,16,17], we 

introduce a general mathematical description of 

random numbers, stochastic processes and 

reliability theory. 

 

2.1 Pseudo-Random Number Generator  

 

In many real production systems, accidental 

events appear. The time intervals between the 

arrival of parts in a flowline (IAT - Inter Arrival 

Time), the time to repair a machine (MTTR - 

Mean Time To Repair), or the time between 

failures (MTBF - Mean Time Between Failure) 

are not often predictable and cannot be fixed in 

a model. A solution to describe accidental events 

in a model could be random numbers.  

Random Number Generator provides random 

numbers to generate independent and identically 

distributed (i.i.d.) numbers that are uniformly 

distributed in the interval (0; 1). Failure and 
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repair times are independent and identically 

distributed with an exponential distribution. 

In a Discrete Event Simulation, a common 

family of Random Number Generator 

algorithms is the class of congruential 

generators. Linear Congruential Generator is a 

well-known pseudo-random number generator 

algorithms. The algorithm of the generator starts 

with the seed value, and then the next values can 

be predicted, totally determining the sequence. 

The length of the sequence before repeating 

itself is very long, more than 2 billion in a 32-bit 

computer. For a good source of random 

numbers, it is necessary to involve a 

mathematical transformation of uniform random 

numbers. 

Definition 1. The Linear Congruential 

Generator is defined by the relation: 

                 

mcaXX nn mod)(1 +=+

               

(1) 

where, X  represents the sequence of pseudo-

random values; m  represents the modulo 

operation; a  represents the multiplier; c  

represents the increment; 0X  represents the 

seed, i.e. the start value. 

 

2.2 Basic Theory of stochastic Processes 

 

A Markov chain is a stochastic process, 

which starts in one of the states 

},...,,{ 21 rxxxX = and moves successively from 

ix  to jx  with a probability denoted by ijp . 

To compute ijτ , the average total amount of 

time, which is spent in the state jx , when the 

initial state is ix , let us consider the functions 

])0(/)([)( ijij xXxtXPtp === .  

Definition 2. The average value is defined as: 

                       
∞

=
0

)( dttp ijijπ

                  

(2) 

Definition 3. A Markov chain is defined by 

the formula: 

])(/)([

])(,...)(/)([

11

1111

−−

−−

==
====

kkkk

kkkk

xtXxtXP

xtXxtXxtXP

          

(3) 

where, .]/[.P  is the usual notation for a 

conditional probability, },...,,{ 21 kxxxX =  is the 

domain of the variable and },...,,{ 21 ktttt =
 
is a 

parameter, kttt ≤≤≤ ...21 . 

Definition 4. The graph of a Markov chain 

represents the diagram that has n  vertices, with 

a corresponding state. 

Definition 5. The balance equation at state ix
 

is: 

                     
==

=
n

lk
lkl

n

ji
iji

1,1,

λπλπ

                    

(4) 

Definition 6. The normalization equation is: 

                                1
1,

=
=

n

i
iπ

                    

(5) 

 

2.3 Mathematical description of Reliability 

Theory 

 

Definition 7. The reliability function )(tR  is 

represented by the relation : 

]0

/],0[[)(

=
=

tatworkssystemThe

tonfailurenoisTherePtR

              

(6) 

Definition 9. The maintainability function is 

presented as:

  
]0

/],0[[1)(

=
−=

tatdownissystemThe

tonrepairnoisTherePtM

         

(7) 

Definition 10. The availability function is: 

     

]0[)( == tatworkssystemThePtA

            

(8) 

  

3. MODELING SCENARIOS ANALYSIS 

OF RANDOM TIMES - CASE STUDY  

  

According to [15,18], we set the numerical 

data for a case study, a manufacturing line of a 

car headrest support work-piece with the 

following operations (Figure 1): 

 

 
Fig. 1. Manufacturing line of the headrest support 

 

The production rates for each machine from 

the case study are presented in Table 1. 

 
Table 1 

Production rate for each machine (parts/minute). 

Operation Production rate τ  

Cutting  12.5 

Edge Milling  7.01 

Bending 1 & 2  4.55 

Milling A & B  5.83 
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In this section, we introduce two modeling 

scenarios that have been considered for the 

analysis of random times and availability. These 

scenarios describe the calculation steps of the 

availability for a machine with the setup phase 

and with/without scraps. Then, the availability is 

calculated for each machine of the 

manufacturing system and the availability of the 

whole line is considered as an average of these 

results. 

 

3.1 Modeling scenario for the availability of a 

system with the setup phase and scraps 

 

To achieve a work-piece on a machine, it is 

necessary to execute a setup phase and then, the 

cycle time is achieved. These times are 

exponentially distributed with the rates τ and .ν  

When the machine is working (in the state 

busy), the machine could fail with rate λ . When 

the machine is down, a repair is realized with the 

rate µ .

 

If a failure happens, we assume that the 

work-piece under processing has lost (it is a 

scrap). We also assume, there are always raw 

work-pieces available before the machine. 

For this scenario, we choose the bending 2 

operation with the production rate 55.4=τ , the 

setup rate 1=ν , failure rate 00694.0=λ  and 

repair rate 0924.0=µ  (the observation data). 

We need to represent by a Markov chain the 

behavior of the system and then to compute the 

availability of the system.  

 There are three states : 

• 1x : The Machine is in set up phase, 

• 2x : The Machine is working, 

• 3x : The Machine is down and then is being 

repaired. 

The graph of the Markov chain is designed in 

Figure 2. 

 
Fig. 2. Markov model with part loss 

 We write the balance equations (4) for states 

1x
 
and 3x : 

  

;321 µπνπτπ +=

   

      

;23 λπµπ =

 

with the normalizing equation (5):
  

,1321 =++ πππ
 

and using the numerical values of the problem, 

we will get:  

,170706.01 =π ,771359.02 =π  .0579354.03 =π  

The availability of the system is: 
.942065.0)1( 3 =−= πA  

This modeling scenario was realized only for 

one failure with the corresponding repair rate to 

show the calculus methodology of the 

maintenance parameter. 

In this article, we aim to evaluate the machine 

behavior in a period of one month using a 

random number generator, a Linear 

Congruential Generator, which produces 

random failure and repair rates. 

We used the following setting for the LCG: 

• the source: C++11's minstd_rand; 

• the Minimal Standard minstd_rand 

generator; 

• the modulus 1231 −=m ; 

• the multiplier  48271=a ; 

• the increment 0=c ; 

• the seed: for the failure rates and the repair 

rates, the seeds are considered as the 

observation data. 

We applied the following seeds (the failure 

and repair rates observed): for cutting operation 

0.00307 and 0.147, for edge milling operation 

0.00892 and 0.0509, for bending 1 & 2 

operations 0.00694 and 0.0924 and for milling A 

& B operations 0.00107 and 0.127. 

The data for bending 1 & 2 operation are 

generated in Appendix 1. 

The average availability produced in a month 

for the bending machine is: 

              

.921227.0
30

)(
30

1 ==


=i
bending

iA
A

             

 

Using C++ programming with modeling 

methodology and failure and repair rates 

generated by LCG, we show the availabilities of 

each machine produced in a month described in 

Figure 3. 
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Fig. 3. The availabilities for modeling scenario with 

scraps 
 

So, the availability for each machine and the 

results are showed in Table 2. 
 

Table 2 
Availability for each machine. 

Operation Availability 

Cutting  0.910840 

Edge Milling  0.890617 

Bending 1 & 2  0.921227 

Milling A & B  0.915206 

 

The availability of the production line is 

calculated as an average of the availability for 

each machine, taking into account the set-up 

phase, the production rate, the failure rate and 

the repair rate: 

              

.912387.0
6

)(
6

1 ==


=i

iA
A

             

 

 

3.2 Modeling scenario for the availability of a 

system with the setup phase without scraps 

 

How is the Markov chain modified, if after a 

repair we presume that the operation on the 

work-piece was processed before the failure? 

 

 The new Markov chain graph is designed in 

Figure 4. 

 
Fig. 4. Markov model with part machining 

 

 We write the balance equations (4) for states 

x1 and x3:  

;21 νπτπ =

 

;23 λπµπ =  

with the normalizing equation (5):  

.1321 =++ πππ  

For this modeling scenario, we choose the 

milling A operation, using the numerical values 

of the problem, the production rate 83.5=τ , the 

setup rate 1=ν , failure rate 00107.0=λ and 

repair rate 127.0=µ .  

 

We will get :  

,145367.01 =π ,847492.02 =π .00714029.03 =π  

The availability of the system is: 
.99286.0)1( 3 =−= πA  

Using the methodology described above, we 

calculated the availability for each machine in a 

period of one month and the result are described 

in Table 3. 
Table 3 

Availability for each machine without scraps. 

Operation Availability 

Cutting  0.913330 

Edge Milling  0.910627 

Bending 1 & 2  0.940382 

Milling A & B  0.909652 

 

The seeds chosen for the generator are: for 

cutting operation 0.00688 and 0.0627, for edge 

milling operation 0.00889 and 0.0295, for 

bending operation  0.00469 and 0.0773 and for 

milling A operation 0.00107 and 0.127. 

We described in Appendix B the failure rates 

and the repair rates generated by Linear 

Congruential Generator for the Milling A & B 

operation. 
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The machine behavior in a period of one 

month is presented in Figure 5. 

 
Fig. 5. The availabilities for modeling scenario without 

scraps 

 

The availability of the production line will be:  

.920671.0
6

)(
6

1 ==


=i

iA
A

 

 

Therefore, the availabilities of the two 

experiments are predicted based on random 

failure and repair rates generated by Linear 

Congruential Generator. For that, a maintenance 

plan can be generated considering the 

production schedule for production-

maintenance synchronizing purposes. 

 

4. CONCLUSION  

 

In this study, Markov chains have been 

analyzed in order to model the random times 

necessary to evaluate the availability of a 

production line. For that, we proposed two 

modeling scenarios and the calculation steps of 

the availability has been presented, detailed and 

examined using random values for failure and 

repair rates generated by the Linear 

Congruential Generator. The main aim of this 

article was to consider different scenarios in 

order to test a lot of ideas and alternatives using 

the concept: What-if?... We wanted to reveal the 

machines behavior and how much can be 

influenced the availability of the system 

depending on the random failure and repair 

rates. The two scenarios presented in this article 

evaluated the machines' behavior in a period of 

one month, and predicted the availability of the 

production line; 0.912387 for the modeling 

scenario with the setup phase and scraps and 

0.920671 for the modeling scenario with the set 

up phase without scraps.  

The methodology presented to create Markov 

chains models, which may be used to determine 

solutions in revealing the production system 

behavior and maintenance parameters for flow 

lines within a reasonable time achieved the goal 

of the paper. These results led us to believe that 

the integration of the Markov chains method and 

C++ programming in order to predict the 

maintenance parameters would provide interest 

to researchers and practitioners alike.  

This paper and the modeling scenarios 

provided could be useful to practitioners where 

the machine failure and maintenance are factors 

in performance and afford a basis for further 

experimental study. 

For new research directions, the extension of 

the modeling scenarios to longer lines with 

repairmen and assembly systems is proposed. 
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Scenarii de modelare pentru disponibilitatea timpilor aleatori ai sistemelor de producție care 

utilizează metoda lanțurilor Markov  

 

Rezumat.. În această lucrare, se folosesc lanțurile Markov pentru a realiza scenarii de modelare a parametrilor de 
întreținere și evaluarea performanței sistemelor de producție. Contribuția autorilor constă în dezvoltarea a două scenarii 
de modelare. În primul scenariu, se calculează disponibilitatea unui sistem cu faza de setare configurată și cu rebuturi, 
apoi se evaluează comportamentul mașinii într-o perioadă de o lună folosind ratele de defectare și reparații generate de 
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Generatorul Liniar Congruențial. În cel de-al doilea scenariu, este proiectată și evaluată disponibilitatea unui sistem cu 
faza de setare configurată, dar  fără rebuturi. 
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Appendix A. Failure  and repair rate generated 

by Linear Congruential Generator - Modeling 

scenario 1 (Bending operation) 
Day (8 
hours) 

Failure rates  
(failures/min) 

Repair rate 
(repairs/min) 

1. 0.00806 0.0136 

2. 0.00858 0.1920 

3. 0.00458 0.0146 

4. 0.00889 0.0295 

5. 0.00637 0.0535 

6. 0.00892 0.0509 

7. 0.00227 0.0704 

8. 0.00307 0.1470 

9. 0.00335 0.0791 

10. 0.00194 0.1300 

11. 0.00164 0.0929 

12. 0.00172 0.1260 

13. 0.00816 0.0849 

14. 0.00967 0.1000 

15. 0.00840 0.1020 

16. 0.00293 0.0194 

17. 0.000908 0.1850 

18. 0.00701 0.1790 

19. 0.00426 0.1620 

20. 0.00804 0.0257 

21. 0.00309 0.0237 

22. 0.00828 0.0266 

23. 0.00121 0.1990 

24. 0.000204 0.1500 

25. 0.00494 0.0277 

26. 0.00543 0.0696 

27. 0.00845 0.0836 

28. 0.00779 0.1750 

29. 0.00606 0.1200 

30. 0.00453 0.0751 

 

 

 

 

 

 

Appendix B. Failure and repair rate generated 

by Linear Congruential Generator - Modeling 

scenario 2 (Milling A operation) 
Day (8 
hours) 

Failure rates  
(failures/min) 

Repair rate 
(repairs/min) 

1. 0.00676 0.0938 

2. 0.00680 0.0677 

3. 0.00851 0.1880 

4. 0.00156 0.0297 

5. 0.00289 0.1780 

6. 0.00835 0.0611 

7. 0.00632 0.0771 

8. 0.000797 0.0030 

9. 0.00339 0.0203 

10. 0.00464 0.1220 

11. 0.00886 0.1920 

12. 0.00645 0.1470 

13. 0.00603 0.0741 

14. 0.00440 0.0657 

15. 0.00339 0.0596 

16. 0.00376 0.1400 

17. 0.00972 0.0345 

18. 0.00101 0.0557 

19. 0.00813 0.0769 

20. 0.00537 0.0199 

21. 0.00381 0.0452 

22. 0.00308 0.1130 

23. 0.00615 0.1920 

24. 0.00646 0.0781 

25. 0.00640 0.00371 

26. 0.00415 0.0715 

27. 0.00473 0.0850 

28. 0.00643 0.0236 

29. 0.00232 0.1070 

30. 0.00776 0.0777 

 




