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VIBRATION OF AUTOMOTIVE SUSPENSIONS 
 

Ionuț GEONEA, Valeriu IONICĂ, Mihaela BOGDAN, Laurențiu RACILĂ, Lucian MATEI 
 

Abstract: In this paper we study the influence of vibrations on car suspensions, first on models with one 
degree of freedom, then on mechanical models with two degrees of freedom. We determined the dynamic 
response using two modern calculation methods. One of them is the use of the unilateral Laplace integral 
transform with respect to time, and the second is the use of systems theory. The graphical representations 
that show us the evolution in time of the suspension movements caused by vibrations were obtained with 
the Mathematica calculation software.  
Key words: Automotive, suspension, vibration, Laplace transform, system theory. 

 

1. INTRODUCTION 
 

Vibrations are dynamic phenomena 
encountered in current activity, from heartbeats, 
running and walking, swaying trees in the wind 
and the tremors of buildings to earthquakes [1, 
2, 3], to the vibrations of musical instruments, 
pneumatic perforators and oscillating conveyor 
belts [4]. Often "vibrations" are called unwanted 
movements that produce relatively high noise or 
mechanical stress. In this case, the effect of 
vibrations on humans, cars and buildings is of 
particular interest. Modeling vibrational 
phenomena involves defining the structure and 
parameters of vibrating bodies, the functions 
that describe excitation, and the levels of 
dynamic response [5, 6]. In a conservative 
system, in which there is no energy dissipation, 
the total mechanical energy is constant. In the 
position of maximum travel amplitude, the 
instantaneous speed is zero, the system has only 
potential energy. In the static equilibrium 
position, the deformation energy is zero and the 
system has only kinetic energy. The maximum 
kinetic energy is equal to the maximum 
deformation energy. By equalizing the two 
energies one can calculate the fundamental 
eigenfrequency of vibration. This is the principle 
of Rayleigh's method. Vibrating systems are 
damped due to loss of energy by dissipation or 
radiation. Damping decreases the amplitude of 

free vibrations, shifts between excitation and 
response, and limits the amplitude of the forced 
response of vibrating systems [7]. Vibration 
analysis is very important, there is research on 
vibration phenomena and in biomechanics 
applications, where accelerometer-type sensors 
are used to detect vibrations as shown in the 
articles [8, 9, 10, 11, 12, 13]. The most useful 
theoretical and experimental developments of 
life phenomena are those in the field of gearshift 
transmissions, as shown in [14]. We considered 
that the car's suspension is provided by four 
systems, first with a single degree of freedom, 
then with two degrees of freedom, identical, 
mounted between the vehicle chassis and each 
shaft of each wheel. The tires are considered to 
be completely rigid and they do not interfere 
with the study. Thanks to the tires, which have 
sufficient compressibility for the viscous friction 
to be omitted, it can be assumed that the 
damping coefficient for the tires is zero. In the 
model with two degrees of freedom, in addition 
to the excitement caused by the road, an 
excitatory force acting on the car chassis was 
also taken into account. 
  
2. THE MODEL WITH A DEGREE OF 

FREEDOM 
  

The suspension of a car is ensured by four 
identical systems, with a single degree of 
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freedom, mounted between the vehicle chassis 
and each shaft of each wheel constituted as 
below: 

• a helical metal spring of stiffness 
constant k and length in free state L0; 

• a cylindrical piston damper, with oil, 
fixed parallel to the spring, exerting a 
resistant viscous friction force of 
damping coefficient c. 

It is assumed that the mass m of the chassis is 
evenly distributed between the four systems. So, 
a suspension only supports a quarter of the total 
mass of the chassis. 
 The tires are considered to be entirely rigid 
and do not interfere with the study. 

The excitation of the system is caused by the 
movement y0 (t) due to the road on which the car 
is moving. 

In Lagrange's formalism, the mathematical 
model of motion in the form of the second order 
differential equation, with constant coefficients, 
results as follows: 
 

 ��•• + 4��• + 4�� = 	
��
. (1) 
where: 

 	
��
 = 4��
��
 + 4��•
��
. (2) 
The excitation is assumed to be cosine, i.e.: 
 

 ( ) ( )0 0 ey t Y cos t= ω . (3) 

Where, 0Y is the amplitude of the excitation, and 

eω  is the pulsation of the excitation. 

Replacing the relations (2) and (3) in equation 
(1), the mathematical model results in the form: 
 

 ��•• + 4��• + 4�� = 4��
 �������
 − −4��
�� �������
. (4) 
Applying the unilateral Laplace transform 

with respect to the time of the equation with 
constant coefficients (4), results an algebraic 
equation, whose solution is the Laplace image 
%( )y s  of the displacement ( )y t : 

 

 ����
 = ����������� !"�!#� !$�%�!#���#��
. (5) 

Applying the relation (5), with the help of 
development theorems, the inverse of the 
Laplace transform, results the vertical 

displacement of the car in the form of time 
function: 

 ( ) ( )
( )

1

2

F t
y t

F t
= . (6) 

where:  
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Fig. 1. Simplified suspension model. 

 
With the numeric application: 

� = 415()*+; � = 270000 01�2 ; 
� = 1500 01�� 2 ; �
 = 0,02(�+; 
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�� = 50(��4+ 
we obtained in the Mathematica program the 
displacement graph ( )y t  from Fig. 2. This 

graphical representation shows the variation of 
the vertical displacement of the vehicle in 
relation to the time variable. 

 
Fig. 2. Graphic representation of ( )y y t= . 

 
3. THE MODEL WITH TWO DEGREES OF 

FREEDOM 

 
In the paper Damien Sammier, Sur la 

modélisation et la commande de suspension de 
véhicules automobiles, Institut National 
Polytechnique de Grenoble, Thѐse pour obtenir 
le grad de DOCTEUR, 2001 [4], the author 
shows several models of the active suspension of 
a quarter of the vehicle. 
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Fig. 3 Models of the active suspension of a quarter of a 

vehicle. 
 

The model we chose is the one from Fig. 4, 
considering that the car suspension is provided 
by four systems, with two degrees of freedom, 
identical, mounted between the vehicle chassis 
and each shaft of each wheel as it appears, taking 

into account the disturbing force ( )F t
→

 acting on 

the chassis, in Figure 4. 
In Fig. 4 he have: 

 r 1m m=  - unsprung mass (wheel mass); 

 c 2m m=  - sprung mass (vehicle mass); 

 1k k= - the stiffness coefficient represented by 
a spring of the suspension; 

 p 0k k=  - the stiffness coefficient represented 
by a spring for the wheels (tires); 

 1c c= - suspension damping coefficient; 

 p 0c c=  - the damping coefficient related to the 
tires; 

 ( ) ( )wheel 1 chasis 2z z t ; z z t= =  - the linear 
displacements of the two masses; 
 u - actuating force; 

 ( )F t
→

 - the disturbing force acting on the 
chassis; 

 ( )ground 0Z z t=  - exciting movement due to 
the road, which is the main source of vibrations; 

 ( ) ( )ground 0 0 eZ z t z sin t= = ω ; 

 ( )F t F constant
→

= = . 
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Fig. 4. Active suspension with two degrees of freedom of 

a quarter of a car. 
 

Thanks to the tires, which have sufficient 
compressibility for the viscous friction to be 
omitted, it can be assumed that p 0c c 0.= =   

 Using, for the writing of the mathematical 
model of the forced and damped vibrations of 
the automobile, to Lagrange's formalism, we 
obtained the following system of two linear 
differential equations with constant coefficients: 

 (5+67••8 + (9+67•8 + ()+:7; = :<���
;. (8) 
where:  

(5+ = 0�4 00 �=2 ; (9+ = >�4 + �
 −�4−�4 �4 ? ; 
()+ = 0�4 + �
 −�4−�4 �4 2 ; 67••8 = @7••47••=A ; 
67•8 = @7•47•=A ; :7; = B747=C ; 
:<���
; = D E7
 �������
F ; 
In the case of forced and non-damped 

vibrations, the system (8) becomes: 

 (5+67••8 + ()+:7; = :<���
;. (9) 
where:  

Applying the unilateral Laplace transform in 
relation to the time of the system of differential 
equations (8), considering the homogeneous 
initial conditions, we obtain the algebraic system 
below, which has as unknown the Laplace 
images 7̃4��
, 7̃=��
of the displacements

( ) ( )
1 2

z t , z t . 

 

⎩⎨
⎧�(�4�= + ��4 + �

� + �4 + �
+7̃4��
 −−���4� + �4
7̃=��
 = E−��4� + �4
��= + ��=
7̃4��
 ++��=�= + �4� + �4
��= + ��=
7̃=��
 = 7
��
 (10) 
With 0c 0=  the algebraic system (10) become: 

⎩⎨
⎧���4�= + �4� + �4 + �

7̃4��
 −−���4� + �4
7̃=��
 = E−��4� + �4
��= + ��=
7̃4��
 ++��=�= + �4� + �4
��= + ��=
7̃=��
 = 7
��
 (11) 
 

Applying the unilateral Laplace transform 
with respect to the time of the system of 
differential equations (9), considering the 
homogeneous initial conditions, we obtain the 
algebraic system below, which has as unknown 
the Laplace images 7̃4��
, 7̃=��
of the 
displacements ( ) ( )

1 2
z t , z t . 

 

 

⎩⎨
⎧�(�4�= + ��4 + �

+7̃4��
 −−��47̃=��
 = E−�4��= + ��=
7̃4��
 ++��=�= + �4
��= + ��=
7̃=��
 = 7
��

.

 (12) 
 

Solving the algebraic system elementary (11) 
results in Laplace images 7̃4��
, 7̃=��
 of 
displacements ( ) ( )

1 2
z t , z t , as below:  

 

 
( ) ( )

( )

( ) ( )
( )

1
1

2
2

P s
z t

P s

P s
z t ,

P s


=



 =



. (13) 

where:  

( ) ( )( )
( )

2 2 2
1 2 1 1 e

0 e 1 1

P s F m s c s k s

z s c s k

= + + + ω +

+ ω +
; 

( ) ( ) ( )
( )( )

2
2 0 e 1 1 0 1 0

2 2
1 1 e

P s z s m s c c s k k

F c s k s ;

 = ω + + + + + 

+ + + ω

( ) ( )

( ) ( )
2

1 1 0 1 0

2 2 2
2 1 1 e

P s s m s c c s k k

m s c s k s

 = + + + + 

+ + + ω
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Applying the development theorems, we 
inverted the Laplace transforms from relations 
(13), where we did not take into account the 

force ( )F t
→

, resulting in displacements

( ) ( )
1 2

z t , z t , in the case of forced and damped 

vibrations produced by exciting displacement 
due to the road, as below: 
 

 

( ) ( )
( )

( )
( )

( )
( )

( ) ( )
( )

1 3 5
1

2 4 6

7
2

8

F t F t F t
z t

F t F t F t

F t
z t ,

F t


= + +



 =



. (14) 

where:  

( )

2 3 2 2 2 2 2
0 0 e 1 e 1 e 11 1 1 1

2 2 2 2 4 2 4
1 0 0 1 e 2 e 2 1 e 2 e1 1 1

2
1 e 1 2
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F t z k k m k m c m c m

k m m

 + + ω + ω − ω −
 
 = ω − ω − ω − ω
 
  + ω 

g
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1 e e1 1
e e3 5

1 0 2 e 1 1 2 e
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
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 
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( ) ( ){ ( )
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( )8 2 nF t m= Ω ; 

( )2
1 0 1 1 1 1 1 n

n n
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1 n n
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Based on the numerical application, the 

functions ( ) ( )
1 2

z t , z t  in the relations (14), 

resulting from the inversion of the formulas (13), 
where we did not take into account the force

( )F t
→

, have the graphical representations from 

Fig. 5 and Fig. 6. 
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Fig. 5. Representation of ( )1 1

z z t=  

 
Fig. 6. Representation of ( )

2 2
z z t=  

 
Based on the numerical application, the 

functions ( ) ( )1 2
z t , z t , resulting from the 

inversion of the formulas (13), where we also 

considered the force ( )F t
→

, have the graphical 

representations from Fig. 7 and Fig. 8, with the 
observation that we considered this force to be 
constant. 

 
Fig. 7. Representation of ( )1 1

z z t=  

 
Fig. 8. Representation of ( )

2 2
z z t=  

Applying the development theorems, we 
inverted the Laplace transforms from relations 
(13), where we did not take into account the 

force ( )F t
→

, resulting in displacements 

( ) ( )
1 2

z t , z t , in the case of forced and non-

damped vibrations produced by exciting 
displacement due to the road, as below: 
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ω − ω

g

g

g

.(15) 

Based on the numerical application, the 
functions ( ) ( )

1 2
z t , z t  in the relations (15), 

resulting from the inversion of the formulas (13), 
where we did not take into account the force

( )F t
→

, have the graphical representations from 

Fig. 9 and Fig. 10. 

 
Fig. 9 Representation of ( )

1
z t  
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Fig. 10 Representation of ( )2

z t  

 

Applying the development theorems, we 
inverted the Laplace transforms from relations 

(13), where we took into account the force ( )F t
→

, 

considered constant, resulting in displacements 

( ) ( )
1 2

z t , z t , in the case of forced and 

unamortized vibrations produced by exciting 
displacement due to the road, as below: 
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− ω ω +
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2
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3

3
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Based on the numerical application, the 

functions ( ) ( )1 2
z t , z t in the relations (16), 

resulting from the inversion of the formulas (13), 

where we took into account the force ( )F t
→

, have 
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the graphical representations from Fig. 11 and 
Fig. 12. 

 

 
Fig. 11. Representation of ( )

1 1
z z t=  

 

 
Fig.12. Representation of ( )2 2

z z t=  

 

Numerical application: 

[ ]
[ ]

[ ]
[ ]

1

2

0

1

0

1

0

1
e

m 52 Kg ;

m 415 Kg ;

N
k 270000 ;

m

N
k 22000 ;

m

Ns
c 7500 ;

m

Ns
c 1500 ;

m

z 0,02 m ;

F 100 N ;

50 s−

=

=

 =   

 =   

 =   

 =   

=

=

 ω =  

 

 From the analysis of these graphs it is clearly 
observed the effect of damping on the 
displacements caused by vibrations, these being 
much smaller in the case of damped vibrations. 

Also, ignoring the disturbing force, which 
acts on the chassis, leads to much smaller 
displacements of the chassis, compared to the 
situation in which this force is not neglected. 

Next, we used another modern method, such 
as systems theory. We will resume the 
mathematical model of forced and damped 
vibrations (7). This mathematical model places 
vibrations with n> 1 degrees of freedom in the 
category of open multivariable linear systems. 
The input vector is: 

{ }ei Q
→

= , 

and the output one 

{ }e q
→

= . 

From the matrix form (9) is deduced the 

canonical form of this mathematical model: 

 

 ( ) [ ] [ ]
{ } [ ]

00 0

0

x t A x B i

q C x

•
→ → →

→


 = +

 =

. (17) 

where: 

 x
→

 is the state vector; 

 

 
{ }

{ }
q

x
q

→

•

 
 

=  
 
  

. (18) 

 

 [ ]
[ ]

[ ] [ ]
[ ]

[ ] [ ]
n x n n x n

0 1 12n x 2n

0 I
A

A K A C
− −

 
 =
 − − 

.(19) 

 

 [ ]
[ ]
[ ]

[ ]
[ ]

n x n n x n
0 2n x 2n

n x n n x n

0 0
B

I 0

 
 =
  

. (20) 

 

 [ ] [ ] [ ]0 n x 2n n x n n x n
C I 0 =

  . (21) 
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[ ] ( ){ }

[ ]

1

e
0

n x1

A P t
i

0

−
→  

 =
  

. (22) 

 

 [ ]n x n

1 0 ... 0

0 1 ... 0
I .

... ... ... ...

0 0 0 1

 
 
 =
 
 
 

 (23) 

The dynamic answer, the solution of the 
canonical system, is given by: 

( ) [ ]
[ ]( )

[ ] ( )

{ } [ ] ( )

0

0

A tt
A t

0 00

0

0

x t e x e B i d

q C x t

−τ
→ → →

→


 = + τ τ



=

 g g
. (24) 

The canonical form of the system (9), which 
represents the mathematical model of forced and 
non-damped vibrations, is given by the system 
(17) in which, this time, 
 

 [ ]
[ ]

[ ] [ ]
[ ]
[ ]

n x n n x n
0 12n x 2n

n x n

0 I
A

0A K
−

 
 =
 − 

. (25) 

 
After determining the matrix function and 

solving the integral in relation (24), we found the 
time functions (13), obtained by the first 
method. 
 
 
4. CONCLUSIONS 

 

We considered that the car's suspension is 
provided by four systems, first with a single 
degree of freedom, then with two degrees of 
freedom, identical, mounted between the vehicle 
chassis and each shaft of each wheel. From the 
analysis of the graphs of variation in time of the 
movements of the suspension, as a result of the 
vibrations to which it is subjected, it is clearly 
observed the effect of the damping on the 
movements, these being much smaller in the 
case of the damped vibrations. Also, ignoring 
the perturbing force, which acts on the chassis, 
leads to much smaller displacements of the 
chassis, compared to the situation in which this 
force is not neglected. It is imperative that the 
movements caused by vibrations be taken into 
account when dimensioning the suspension. The 

use of two methods for determining the dynamic 
response, one being the use of the unilateral 
Laplace transform with respect to time and the 
other the application of modern systems theory, 
allowed the comparison of results, which are the 
same in both situations. 
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Vibraţiile supensiilor automobilelor  

 
Rezumat: În această lucrare se studiază influența vibrațiilor asupra suspensiilor automobilelor, mai 

întâi, pe modele cu un grad de libertate, apoi pe modele mecanice cu două grade de libertate. 
 Răspunsul dinamic l-am determinat folosind două metode moderne de calcul. Una ditre ele este 

aceea a folosirii transformatei integrale Laplace unilaterală în raport cu timpul, iar cea de a doua 
este aceea a folosirii teoriei sistemelor.  

 Reprezentările grafice care ne arată evoluția în timp a deplasărilor suspensiei provocate de vibrații 
au fost obținute cu programul de calcul Mathematica. 
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