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  Abstract: In this paper, measurements were acquired from a group of seven subjects with healthy right hips and left 

hips affected by an osteoarthritic (OA) process in first stage of evolution. The measurements consist in 126 time-series, 

where values represent the angles of the hip joint in sagittal plane, describing the flexion-extension movement of each 

hip joint, of each subject performing nine experimental tests of walking on treadmill, at three predefined speeds and 

three predefined incline angles. Using the experimental time-series, a measure of the local dynamic stability was 

estimated with Lyapunov exponents. 
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1. INTRODUCTION  

 
A very important feature of human movement 

especially of human gait, is its variability [1]. 
Classical methods of gait variability analysis no 
longer provide sufficient data. The use of 
nonlinear instruments enriches our 
understanding of variability by revealing 
additional information about its nature and its 
relation to performance and pathology [1-9], as 
well as to rehabilitation of human movements 
using orthotic systems and exoskeletons. [9-12] 
or rehabilitation robots [13-16]. 

 In the present study, we apply methods and 
instruments of “nonlinear time-series analysis”, 
in order to estimate the local dynamic stability 
of human hip joints by considering the computed 
values of short-term Lyapunov exponents 
obtained for each experimental time-series with 
measurements of the flexion-extension (fl-ex) 
angles of left and right hip joints of a sample of 
7 patients performing 9 tests. 

 
 

2. EXPERIMENTAL PROTOCOL 
  

The equipment (Fig.1) used for data 
acquisition during experimental tests is the 
“Biometrics” system [17], often used in domains 

like gait analysis, biomechanical research, 
clinical medicine and rehabilitation, [3, 7-10, 13, 
18-21].  

 

 

 

 

   Fig.1. Biometrics system mounted on a subject 
 
All walking tests were executed inside 

biomechanics laboratory of INCESA research 
Centre,  by a group of seven individuals having 
their left hip affected by osteoarthritis. A number 
of 6 electrogoniometers, one for each main joint 
of both lower limbs, were mounted on each 
subject. In this study, the time-series of fl-ex 
angles of both hips of each subject are analyzed 
in order to measure their local dynamic stability. 
Each subject performed 9 walking tests (T) 
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(Table 1) on treadmill (TM), corresponding to 3 
different speeds and 3 different inclines. 

The duration of each experimental test was 1 
minute, the biomechanical data collected 
simultaneously by 6 electrogoniometers at a 
sampling rate of 500 Hz being transferred to 
Biometrics software to be processed and 
analyzed (Fig.2). 

 

Fig. 2. The experimental angular variation of rotation 
angles in frontal and sagittal plane for ankle, knee and  

hip  

A number of 126 time-series (2 hips of the 7 
subjects for 9 tests) representing consecutives fl-
ex cycles of hip joints were collected. 

Table 1 

Speed and incline of the treadmill for each test. 

 T 1 T 2 T 3 T 4 T 5 T 6 T 7 T 8 T 9 

Speed 
[km/h] 

2.5 5 7.5 2.5 5 7.5 2.5 5 7.5 

Incline [o] 0 0 0 7 7 7 11 11 11 

 

Before performing the tests, all subjects gave 
their permission in written, regarding data 
processing. The main anthropometric data 
(means and standard deviations) of the subjects 
sample are: Age - 36.5 (2.31); Height - 182.36 
cm (1.94 cm); Mass - 78.63 kg (3.57 kg). 
 

3. DATA PREPROCESSING  
  

An important step in the “nonlinear time-
series analysis” is the reconstruction of the 
dynamics. Before doing this we need to consider 
that experimental time series often are corrupted 
by noise and non-stationarity. Therefore, we first 
must eliminate the factors that cover the 
behavior of interest and to identify the 

component that must be used to correctly 
reconstruct hip joints dynamics.  

In order to separate unstructured variation (or 
noise) from structured variation (signal of 
interest) in the experimental data, we used a 
signal processing technique named SSA 
("Singular Spectrum Analysis") [22]. SSA 
involves the construction of a trajectory matrix, 
decomposing it in a sum of component matrices 
(i.e. eigentriplets), grouping and reconstruction 
of time series components from the groups. 

We applied the Toeplitz method of singular 
spectrum analysis (Toeplitz-SSA) for each 
acquired time-series of consecutives fl-ex angles 
of hip joint using the R package RSSA [23]. We 
illustrate the use of SSA for preprocessing of the 
fl-ex time-series acquired from the right hip joint 
of Subject 3 in Test 3. The following visual 
diagnostics generated by RSSA, are derived 
from each component of the eigentriplets 
defining each decomposed matrix. The plot in 
Fig.3 is the eigenspectrum and shows the square 
roots of the eigenvalues of the decomposed 
matrices in descending magnitude. Components 
of which associated values  are along the steep 
portion of the plot form the basis of the 
deterministic signal.  

 
Fig. 3. Eigenspectrum of the fl-ex angles left hip joint of 

Subject 3 in Test 3 

Equal and successive values represent pairs, 
forming the core of potential harmonic 
oscillations, while values along the flat portion 
of the plot are associated with noise. The 
eigenspectrum of the flexion-extension angles 
left hip joint of Subject 3 in Test 3, has the 
expected hockey-stick shape, with steps at 
paired singular values (2; 3), (4; 5) and (6; 7) 
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along the steep portion of the plot. The visual 
diagnostic presented in Fig.4. shows the 
eigenvectors corresponding to singular values 
along the eigenspectrum.  The following pairs of 
eigenvectors (2; 3), (4; 5) and (6; 7), oscillate at 
a similar frequency in phase quadrature, 
providing further evidence for the harmonics. 
The percentages of each component represents 
the portion of total variance from the mean. 

 
Fig. 4. Eigenvector plots of the fl-ex angles right hip 

joint of Subject 3 in Test 3. 
 
In Fig.5. are presented the weighted correlations 
between the reconstructed time series from 
decomposed matrices (by diagonal averaging).  

 
Fig. 5. Weighted correlation matrix of the flexion-

extension angles left hip joint of Subject 3 in Test 3. 

Black shading indicates high correlation while 
white shading indicates statistical independence. 
Fig.4. indicates that paired groups (2; 3), (4; 5) 
and (6; 7), are highly correlated to each other and 
insignificantly correlated with the others and 
thus can be grouped independently. Although we 
can choose groups just by visual inspection of 
the w-correlation plot, we grouped component 
series using hierarchical clustering and weighted 
correlation as a proximity matrix [23].  

In Fig.6. we present the original time series, 
isolated signal and the residual noise.  

In order to be confident that the residual 
signal represents uncorrelated noise, we used 
surrogate data testing method. Based on this 
method we can test against uncorrelated noise by 
generating 99 surrogates with similar Fourier 
power spectrum (or linear correlations between 
data points) and distribution of probabilities, as 
the residual, using IAAFT algorithm [22-24] and 
maximum likelihood estimation of correlation 
dimension (Takens-Theiler estimator) as 
statistical discriminant indicator. In Fig.7 can be 
observed that there is no significant difference 
between the residual and the generated 
surrogates. 

 
Fig. 6. The fl-ex angles right hip joint of Subject 3 in 

Test 3, reconstructed isolated signal and noise 
(unstructured variation) removed 

from the original time-series.  

The value obtained for the statistical 
discriminant indicator for the original series, 
falls within the distribution of the values of the 
discriminant indicators estimated for the 
surrogates, which means that the residual is 
likely generated by linear stochastic dynamics 
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and does not present interest for nonlinear 
dynamics analysis [25].  

 

Fig. 7. Distribution of Correlation Dimension of residual 
eliminated in preprocessing phase and 99 surrogates 

generated using IAAFT.  

4. NONSTATIONARITY  
 

After preprocessing the data, and mitigating 
the impact of noise in obstructing the dynamic 
of interest, before calculating maximum 
Lyapunov exponents, it is necessary to make 
sure that the isolated signal is stationary. 

The stationarity requirement for nonlinear 
analysis implies that the qualitative structure of 
system dynamics does not change (e.g. the 
transition from a chaotic behavior to a limit 
cycle behavior or vice versa), otherwise the 
application of any of the nonlinear analysis 
algorithms would be problematic [26].  

To verify the stationarity of the isolated 
signal from hip flexion-extension angles we 
used an effective method proposed by [24]. The 
test is called "nonlinear cross-prediction" and it 
checks if there is a similar nonlinear behavior 
across time series segments by dividing it into 
several non-overlapping segments and applying 
nonlinear prediction methods to measure the 
ability of each segment to predict the others. If 
ability to cross-predict does not decrease 
significantly when segments are further apart in 
time, the time series is considered stationary for 
nonlinear analysis purpose. The efficiency 
coefficient Nash-Sutcliffe (nse) was used in 
order to measure the prediction skill: 
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��

����
���

∑ �
��
̅���
���

= 1 − �����
� �

�
  (1) 

where i, represents the points in the segment, xi 
is the corresponding value in the test segment, 
xpi is the predicted value.  

In Fig.8. the Nash-Sutcliffe efficiencies of 5 
segments of the isolated signal from right hip 
joint of Subject 3 in Test 3 are shown. The values 
for each learning segment are close to 1, which 
means nonlinear prediction works very well on 
this data. In addition, the values do not 
deteriorate for more distant segments, so we can 
consider the signal stationary for the purpose of 
nonlinear analysis. 

 

Fig. 8. Nash-Sutcliffe efficiencies (NSE) of 5 segments 
of the isolated signal from right hip joint of Subject 3 in 

Test 3. 
 

 5. NONLINEARIY TEST 
 
 It is very important to distinguish between the 
nonlinear structure of a time series (or the 
observed dynamics) and the dynamics 
underlying this structure. The nonlinear 
structure is characterized by the observed 
irregular behavior of the time series. But this 
irregular behavior can be as well generated by a  
regular linear dynamic, corrupted by noise or 
non-stationarity.  Although at this point we 
already preprocessed the data, significantly 
mitigating the impact of noise and subjected the 
isolated signal to a nonlinear stationary test to 
exclude the possible change in dynamic 
structure, we do not expect that SSA has 
completely eliminated all the noise. Therefore, 
in order to be confident that our results 
characterize the underlying dynamics of the 
system, we first need to establish evidence of its 
existence. In this way we will exclude the 
possibility that the observed behavior is a 
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product of a linear stochastic process affected by 
noise, resulting in a nonlinear structure.  
 To do this, we used surrogate data testing 
method (Fig.9). Because flexion-extension 
angles of the hip joint have a periodic behavior, 
they are incompatible with the null hypothesis of 
a linearly filtered noise consequently IAAFT 
[27] surrogates are not applicable in this case.  

 
Fig. 9. The flexion-extension angle  right hip of Subject 3, 
Test 3 (solid line) and one of the surrogate time-series 
generated with PPS (dashed line) 

 A more appropriate null hypothesis (which 
we want to reject), is that of a periodic orbit 
disturbed by uncorrelated noise. More precisely, 
this states that besides the periodic behavior 
there is no other deterministic behavior.  
 In order to generate surrogates in accordance 
with this null hypothesis, we used PPS algorithm 
introduced by Small et al. [28], which takes a 
random walk over the reconstructed attractor of 
the original time series. PPS algorithm generates 
surrogates preserving the most obvious 
deterministic traits (as, for example, cyclic 
trends), and destroying any detailed structure 
(for example, deterministic chaos). Fig.10., 
Fig.11. and Fig.12. show that the generated PPS 
surrogates have similar linear correlations 
between data points and similar distribution of 
probabilities as the original. We set the 
probability of false rejection α = 0.02  and the 
rank-order test parameter k = 1. Consequently, 
we generated  99 surrogates  for the two-tailed 
test (S = (2k/α) – 1). We chose the maximum 
likelihood estimation of correlation dimension 
(Takens-Theiler estimator) as statistical 
discriminant and we reject the null hypothesis 
when the computed value for the original is 
either the lowest or the highest value.   

 
Fig. 10. The power spectrum of the fl-ex angles right hip 
joint-  Subject 3 in Test 3 and one of the surrogate time-

series generated with PPS. 

  
Fig. 11. The autocorrelation function of the fl-ex angles 

right hip joint of Subject 3 in Test 3 and one of the 
surrogate time-series generated with PPS. 

  
Fig. 12. The distribution of the fl-ex angles right hip joint 

of Subject 3 in Test 3 and one of the surrogate time-
series generated with PPS. 

As Fig.13 and Fig.14 shows, we strongly 
reject the null hypothesis, since the MLE 
computed for the isolated signal is the lowest 
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value. Similar values were obtained for all time 
series of all subjects corresponding to the nine 
experimental tests. 

 

 
Fig. 13. The Correlation sum of the fl-ex angles right hip 

joint of Subject 3 in Test 3 and the 99 surrogate time-
series generated with PPS. 

 
Fig. 14. Correlation Dimension of the flexion-extension 
angles right hip joint of Subject 3 in Test 3 and the 99 

surrogate time-series generated with PPS. 

Consequently, we have reasons to believe that 
the time series of angles of hip joint is not just a 
periodic orbit disturbed by uncorrelated noise. 
 

 

6. STATE SPACE RECONSTRUCTION  

 
After isolating a strong stationary signal for 

each of the time-series of fl-ex angles of hip 
joints. And with evidence of the presence of a 
nonlinear aperiodic determinism in the 

underlying dynamics. We can justifiably go 
further to reconstruct the dynamics from each 
isolated signal in order to estimate maximum 
Lyapunov exponents as a measure of local 
dynamic stability. 

Applying the “Method of delays” [29] we 
reconstructed the state space for 126 time series 
of all subjects on all tests. In the original state 
space of the human hip joint, the coordinates 
represent all the state variables characterizing 
the hip joint and a trajectory in this space is 
defined by a sequence of values of these state 
variables. Each reconstructed state space is 
topologically identical to its original and was 
used to estimate Lyapunov exponents, which 
were preserved from the original state space.  

In Fig.15 it can be observed that the m 
coordinates in each of the delayed vectors, are 
not strongly correlated (which would have 
caused the embedded dynamics to lie close to the 
main diagonal of the reconstructed space) and 
are not too independent (which would have 
caused the reconstruction to unfold off the 
subspace). This means that the selected time 
delay was neither too small nor to long, which is 
very important for obtaining a topologically 
correct reconstruction of the state space. Even 
though the embedding theorems require that the 
time-delay T to be any value bigger than zero 
and not a multiple of one of the orbit’s periods, 
in practice we do not have real-valued arithmetic 
on infinite amount of noise free data and we are 
dealing with a limited number of noisy 
observations. 

 
Fig. 15. Reconstructed State Space of Subject 3 in Test 3 

The “Method of delays” and “TISEAN” 
software [30] were used in order to reconstruct 
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the state space from the available data for each 
collected time-series. Using vectors containing 
time-delayed values of a time-series, a trajectory 
in the new space can be drawn as follows: 

�� = 	��, ��!", ��!�", … , ��!�$�%�"�   (2)  

where m is an integer called “embedding 
dimension”; t - the sampling time; d - an 
appropriately chosen time delay.  

The value of “d” is chosen as the first minima 
of “the average mutual information” (AMI) [31]. 
Another method used in practice is the value 
where autocorrelation function first reaches 
zero, but unlike AMI this does not take into 
account nonlinear correlations. The AMI plot for 
Test 3 performed by Subject 3 is shown in 
Fig.16. 

 
Fig. 16. AMI function of the flexion-extension angles 

right hip joint of Subject 3 in Test 3. 

The embedding dimension, “m”, means the 
required number of values necessary to construct 
a valid point (or state) in the trajectory in the new 
space, which unfolds the structure of the 
dynamical system [32]. To estimate a valid value 
of m, for each time-series, we used the method 
called “False Nearest Neighbor” (FNN) method 
[33].   
In Fig.17 the fraction of FNN is plotted against 
consecutive values of dimensions used for 
embedding the time-series of left hip fl-ext 
angles on Test 3 performed by Subject 3. The 
value of “m” should not be higher than the value 
where the fraction of FNN is zero, or is very 
small. For this paper a threshold of 0.1 was used. 
Embedding dimensions and time delays 

calculated for the 126 time-series were estimated 
in a similar manner. 

 
Fig. 17. FNN of the flexion-extension angles right hip 

joint of Subject 3 in Test 3. 

The “short-term Lyapunov exponent” (λs), 
quantifies the average rate of divergence of the 
embedded trajectory constructed from delayed 
values of the hip joint fl-ex angles, over a period 
of 0.5 or 1 stride  [29]. The smaller is λs the more 
stable the movement is. The “lyap_r” routine of 
“TISEAN” package, which implements the 
“Rosenstein algorithm” [34], was used to 
compute the results. Plots of the average 
logarithmic divergence of reconstructed 
trajectories of the left hip of Subject 3 for each 
test are shown in Fig.18.  

 
Fig. 18. Average logarithmic divergence for left hip of 

Subject 3 on all 9 tests. 
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Similar plots for left hip of all subjects on 
Test 6 are presented in Fig.19. 

 
Fig. 19.  Average logarithmic divergence for left hip of 

all  subjects, Test 6. 
7. RESULTS  

 
Averaged λs over all 7 subjects grouped by 

test and hip are presented in (Table 2) and 
(Fig.120). The positive values of computed λs  
suggest that a chaotic structure is inherent to 
human hip motion.  

Table 2 

Average values of λs by test and hip. 

Incline Test Speed Left Hip Right 
Hip 

0 Test 1 2.5km/h 0.17816 0.16931 

Test 2 5km/h 0.16921 0.16525 

Test 3 7.5km/h 0.19127 0.17918 

7 Test 4 2.5km/h 0.25124 0.22055 

Test 5 5km/h 0.15624 0.16381 

Test 6 7.5km/h 0.16914 0.15459 

11 Test 7 2.5km/h 0.31464 0.28784 

Test 8 5km/h 0.17751 0.13764 

Test 9 7.5km/h 0.23482 0.22733 

 
Fig. 20. Plots of averaged values of the “short Lyapunov 

exponents” for both hips of the group on each test. 

8. DISCUSSION  
  

 In this paper we calculate a deterministic 
nonlinear measure (“finite-time Lyapunov 
exponents”) as an estimate of the local dynamic 
stability of the hip joint. In order to make a 
compelling case that the time-series of fl-ex 
angles of hip joint contain a deterministic 
nonlinear component, we first eliminated noise 
and nonstationary as drivers of the observed 
complexity. Next using surrogate data testing we 
eliminated linear stochastic dynamics as a 
possible cause, and prepared the ground for 
estimating finite-time Lyapunov exponents.  
Analyzing obtained λs values, we observe that 
for each test the values were positive, which 
indicates that human hips motions show chaotic 
characteristics. For the same test, under identical 
experimental conditions, the λs corresponding to 
the affected joints are larger than the λs 
corresponding to healthy joints, which suggests 
that the motion of affected hips is more sensitive 
to local perturbations. So, the movement of the 
affected hips presents a more unstable dynamic 
comparing with the movement of healthy hips. 
This decrease in local stability can be caused by 
pain or instabilities determined by various 
injuries. These results confirm previous results 
which suggest an increased stability during 
treadmill locomotion  [2, 4, 6, 31–33]. 
 

9. CONCLUSIONS  
 
Traditional measures of variability are 

limited in describing the way the locomotor 
behavior responds to change. Recent studies has 
shown that some components of the measured 
signal produce by a variable of a dynamic 
system, which can attributed to a random 
behavior have in fact deterministic origins and 
are produced by some nonlinear interactions. In 
this study we investigate the temporal structure 
of variability by analyzing time-series of the hip 
joint movement to obtain new information about 
the sensitivity of the locomotor system to local 
perturbations. Larger values of λs obtained for 
affected hips suggest a higher instability and 
increased sensitivity while smaller values reflect 
a local stability.  
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ANALIZA MIȘCĂRII ȘOLDULUI UMAN PRIN METODE DE ANALIZA A SERIILOR 

DE TIMP NELINIAR 

Rezumat: În această lucrare, serii de timp experimentale ale unghiurilor de flexie-extensie ale articulațiilor șoldului 
uman au fost colectate de la un grup de șapte subiecți cu șoldul drept normal iar cel stâng afectat de un proces de 
osteoartritita în prima etapă a evoluției. S-au efectuat nouă teste experimentale, pe banda de alergat, la trei viteze diferite  
și trei unghiuri de înclinare diferite. Pe baza seriilor de timp experimentale, exponenții Lyapunov au fost estimați ca o 
măsură a stabilității dinamice locale. 
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