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A METHOD FOR THE ANALYSIS OF VIBRATIONS OCCURRING 

WITHIN SOME MECHANICAL SYSTEMS WHICH CONTAIN SPUR 

GEARS  
 

 Marius STANESCU, Valeriu IONICA,  Dumitru BOLCU, Mihaela BOGDAN,  

Ionut GEONEA  
Abstract:  Starting from the  mathematical model created for the relative displacement of two cog wheels 

inside of a gearing (model which is expressed under the form of a second-order system of differential 

equations with parameter'shaped or possibly non-linear excitations) we will present in this work an original 

method of integrating the matrix movement equation which does make use of the procedure of rendering 

discrete the time interval during which the concerned movement is observed. The applying of the Laplace 

integrated transformations which are unilateral in respect to time should lead us towards rendering 

algebraic the concerned model. This fact could hugely simplify the problem. Furthermore, we should be as 

well able to provide the graphical representations of the relative displacements for the considered gearing 

mechanism.  
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1. INTRODUCTION  

An important part in the conception of the 
new products is represented by the estimations 
made of the vibrations'intensity level 
respectively of the noise level for the concerned 
mechanical systems as well as by their control. 
Within a system a lot of vibration'sources might 
exist such as for example frictions and shocks. 
The reducing devices endowed with gearing 
mechanisms may equally become sources of 
current vibrations because they are frequently 
made use of in industry. They do constitute the 
objects of a lot of studies aiming to define their 
respective cinematic and dynamic behaviours. In 
order to model the vibrations and noises 
generated by the gearing mechanisms various 
approaches have been tested. Therefore we 
might meet: rigid body simplified models, 
multibody flexible models or models 
exclusively made of 2D or 3D finite elements. 
The specialized literature does point out the 
necessity of integrating for the gearing 
mechanism both the elasticity of its components 
and the descriptions of its vibrations into an one 
and only tridimensional model able to reflect its 

dynamic behaviour. Should the gearing 
mechanisms suffer deformations they would 
involve the existence of some special 
deformations usually occurring nearby the 
contact points the functioning of which does 
require for a great finesse. We are consequently 
encouraged to turn our attention towards a 
model which should be simplified in respect to 
the models made of finite tridimensional 
elements but which could yet remain precise 
enough in what does concern the study of the 
elasticity of the elements involved into the 
gearing mechanism and would as well 
simultaneously allow the integration of the 
relatively complex geometries held by the 
deformable cog wheels. As we have already 
demonstrated the main source of excitation 
insofar the components which do enable the 
transmission of power are concerned is 
constituted by the gearing mechanism. The 
instantaneous movements of each wheel are 
represented through six degrees of freedom 
(three translations and three rotations). The 
fluctuations undergone by both the transmission 
error and the intrinsic rigidity of the gearing 
mechanism are the main causes of the 
excitations which are associated to them. For the 
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transmission error it is particularly indispensable 
to distinguish the effects due to elastic 
deformations from the effects due to the gearing 
of the non-conjugated profiles. There are several 
scientific schools (see [5]) which do make use of 
these size units in order to describe the interface 
created through the gearing mechanism. 
Nowadays the research activities do focus upon 
the development of some multidisciplinary 
experimental, theoretical and numerical 
competencies which would have to be relied 
upon when the structures and elements of the 
machines – or more extensively the mechanical 
systems – should be conceived. The purposes of 
actual researches are the ones of improving our 
knowledge of the behaviour shown by the 
materials and structures, of developing some 
models and instruments that could be  useful in 
the designing process concerning the structures 
and the machines as well as to take advantage 
from an already existing technical culture 
insofar the methodologies of analysis, 
conception and fabricating could be concerned. 
These researches are relying upon the domains 
of the science of materials, of the branches of 
non-linear mechanics which do respectively 
involve solid bodies, fluids and coupled systems, 
of acoustics, of the techniques made use of in 
forming and processing, of the experimental 
measurement methods and of the numerical 
modelling. 

2. MODELING OF VIBRATIONS FOR  A 

GEARING MECHANISM 

2.1 Mechanical model  
In figure 1, let us consider the mass of the 

vibrating system as being concentrated in M. 
The system's elasticity should be substituted by 
a spring owning the elastic constant k while the 
cushioning should be substituted by a damper 
which owns the cushioning constant c.  The 
origin of the Ox axis is considered to be the 
intersection point between the gearing line and 
the symmetry axis of the tooth. 

 
Fig. 1. The mechanical model of the mechanism 

2.2.  Mathematical model of the movement 

 In order to determine the relative 
displacements in the sense of the gearing line for 
the two respective cog wheels while the teeth do 
make contact either upon the active or inactive 
side of the tooth as well as the relative 
displacements of the cog wheels during the lost 
touch intervals  (gearing discontinuities) let us 
consider the mechanical model bearing one 
freedom degree which is illustrated in figure 2.1. 
In the formalisms of Newton or respectively 
Lagrange we do have the respective 
mathematical models of the vibrations sustained 
by a cog wheels gearing mechanism for the cases 
of: a contact held upon the active side of the 
tooth (see (2.1)); a contact held upon the 
unactive side of the tooth (see (2.2)) and the one 
corresponding to some gearing discontinuities 
(see (2.3)): 

( ) ( )2
n 0 1 0 2 0q 2n q q a a cos t a sin t

•• •
+ + ω = + ω + ω  

                                                                (2.1) 

( ) ( )2
n 0 1 0 2 0q 2n q q a a cos t a sin t

•• •
+ + ω = − ω − ω

 
                                                               (2.2)

 

0q 2n q a
•• •

+ =                                       (2.3) 

where: 

c
2n

M
= ;

2
n

k

M
ω = ; n

0

F
a

M
= ;

p0,f

1

KE
a sin

M
= α ; 

p0,f

2

KE
a cos

M
= α ; 
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p0,fE
 
- the amplitude of the shaping error 

pfE  

held by the tooth profile (the reduced shaping 

error) the variation of which is supposed to be a 

sinusoidal one; 

0ω  - the pulse of the shaping error held by the 

tooth profile; 

α  - the initial phase; 

nF  - the static force which does act normally 

upon the tooth; 

M  - the reduced mass I II

I II

M M
M

M M
=

+
; 

IM  - the mass of the pinion reduced to its 

basis circle 
1

1
I 2

b

4I
M

D
= ; 

IIM  - the mass of the cog wheel reduced to its 

basis circle 
2

2
II 2

b

4I
M

D
= ; 

1I  - the inertial moment of the pinion in 

respect to its rotation axis; 

2I  - the inertial moment of the cog wheel in 

respect to its rotation axis; 

1bD
 

- diameter of the basis circle for the 

pinion; 

2bD
 
- diameter of the basis circle for the cog 

wheel. 

2.3. Dinamic response  

Should we apply the Laplace transformation to 

the equations (2.1), (2.2), (2.3) under the initial 

conditions: 

( ) ( )0 0q 0 q , q 0 v
•

= = , 

the result would consist in the algebraic 

equations: ������� − ��� − 	� + 2������� − 2��� + 
������� = 

0
0 1 22 2 2 2

0 0

1 s
a a a

s s s

ω= + +
+ ω + ω

 

������� − ��� − 	� + 2������� − 2��� + 
������� = 

= �� �� − �� ������� − �� ��������
 (2.1(1))

 

������� − ��� − 	� + 2������� − 2��� + 
������� = = 1� �� − �� ��� + 
�� − �� 
��� + 
�� 
(2.2(1)) ������� − ��� − 	� + 2������� − 2��� = �� ��,  (2.3(1)) 

bearing the solutions: 

����� = ���������������������������������������������������������������� �
 

(2.1(2))

 

����� = �������������������������� .                         (2.3(2)) 

����� = ���������� ���� ������������������������������������������������ � .  
(2.2(2)) 

Should we apply the reversed Laplace 
transformation in respect to time to the 

relationships (2.1(2)), (2.2(2)) respectively (2.3(2)) 

the result would consist in the dynamic response 

provided by the vibrating system under the 
forms of the time functions: 

( ) ( )
( ) ( )

( ) ( )
( )

( )} ( )
( )

2 2
2 0 1 0 nnt 2 20 0

0 n22 2 2 2 2 2
n n 0 n 0

2 2 2 2 2
2 0 0 n 1 0 n0

0 0 222 2 2 2 2 2
nn 0 n 0

2 2 2 2
n 2 0 1 n 022 2 2 2

0 n 0

2na aa a
q t e q cosh n t

4n

a 2n nana1
nq v

n 4n

1
sinh n t 2na a

4n

−
 ω + ω −ω = + − + −ω +
 ω ω ω −ω + ω 

 ω +ω −ω − ω +ω
 + + − + ⋅
 ω−ω ω −ω + ω 

 ⋅ −ω + ⋅ − ω + ω −ωω −ω + ω
{ ( )

( ) ( )}
0

2 2
1 0 2 n 0 0

cos t

2na a sin t

ω +

 + ω + ω −ω ω   
(2.1(3)) 

( ) ( )
( ) ( )

( ) ( )
( )

( )} ( )
( )

2 2
2 0 1 n 0nt 2 20 0

0 n22 2 2 2 2 2
n n 0 n 0

2 2 2 2 2
2 0 0 n 1 0 n0

0 0 222 2 2 2 2 2
nn 0 n 0

2 2 2 2
n 2 0 1 n 022 2 2 2

0 n 0

2na aa a
q t e q cosh n t

4n

a 2n nana1
nq v .

n 4n

1
sinh n t 2na a

4n

−
 − ω + ω −ω = + − + −ω +
 ω ω ω −ω + ω 

 − ω +ω −ω + ω +ω
 + + − +
 ω−ω ω −ω + ω 

⋅ −ω + ⋅ ω − ω −ωω −ω + ω
{ ( )0cos t ω −

 

( ) ( )}2 2
1 0 2 n 0 02na a sin t − ω + ω −ω ω    (2.2(3))

 

( )
2

2nt0 0 0 0 0 0
2 2

a 2nv a 4n q 2nv a
q t t e .

2n 4n 4n
− − + −= − +

(2.3(3)) 

 Should it be: 
2 2 2 2

n nn i n− ω = ω −  

then with: 
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( ) ( ) ( )
( ) ( ) ( )

2 2 2 2 2 2
n n n

2 2 2 2 2 2
n n n

cosh n t cosh i n t cos n t

sinh n t sinh i n t i sin n t ,

− ω = ω − = ω −

− ω = ω − = ω −
 

the time functions (2.1(3)) and (2.2(3)) would 

become: 

( ) ( )
( ) ( )

( ) ( )
( )

( )} ( )
( ){

2 2
2 0 1 0 nnt 2 20 0

0 n22 2 2 2 2 2
n n 0 n 0

2 2 2 2 2
2 0 0 n 1 0 n0

0 0 222 2 2 2 2 2
nn 0 n 0

2 2 2 2
n 2 0 1 n 022 2 2 2

0 n 0

2na aa a
q t e q cos n t

4n

a 2n nana1
nq v

n 4n

1
sin n t 2na a c

4n

−
 ω + ω −ω = + − + ω − +
 ω ω ω −ω + ω 

 ω +ω −ω − ω +ω
 + + − + ⋅
 ωω − ω −ω + ω 

 ⋅ ω − + ⋅ − ω + ω −ω ω −ω + ω
( )

( ) ( )}
0

2 2
1 0 2 n 0 0

os t

2na a sin t

ω +

 + ω + ω −ω ω 

( ) ( )
( ) ( )

( ) ( )
( )

( )} ( )
( )

2 2
2 0 1 n 0nt 2 20 0

0 n22 2 2 2 2 2
n n 0 n 0

2 2 2 2 2
2 0 0 n 1 0 n0

0 0 222 2 2 2 2 2
nn 0 n 0

2 2 2 2
n 2 0 1 n 022 2 2 2

0 n 0

2na aa a
q t e q cos n t

4n

a 2n nana1
nq v

n 4n

1
sin n t 2na a

4n

−
 − ω + ω −ω = + − + ω − +
 ω ω ω −ω + ω 

 − ω + ω −ω + ω + ω
 + ⋅ + − + ⋅
 ωω − ω −ω + ω 

⋅ ω − + + ⋅ ω − ω −ωω −ω + ω
{ ( )

( ) ( )}
0

2 2
1 0 2 n 0 0

cos t

2na a sin t .

 ω −

 − ω + ω −ω ω   
(2.2(4)) 

2.4 Graphical representation of relative 

displacements 

In the case of the gearing mechanism chosen for 
our study for which the provided parameters are: 

a0=40142,857, a1=40142.844, a2=31,966, 

n=2007,142, 1
n 28334,733 s− ω =   ,

1
0 10 s− ω =    under initial homogeneous 

conditions the time functions (2.1(4)), (2.2(4)) 

respectively (2.3(3)) do have the representations 
illustrated in figures 2, 3, 4. 

 

Fig.2. Variation of the relative displacement q=q(t) of the 

two cog wheels onto the direction of the gearing line while 

the teeth are making contact upon the active side 

 
 Fig. 3. Variation of the relative displacement q=q(t) of the 
two cog wheels onto the direction of the gearing line while 
the teeth are making contact upon the unactive side 

 
Fig. 4. Variation of the relative displacement q=q(t) of the 
two cog wheels during the lost touch intervals (gearing 
discontinuities) 

Let us remark the fact that for the same time 

interval the relative displacements of the two cog 
wheels which do occur during the contact upon 

the unactive side of the tooth are much smaller 

in respect to the ones which do occur during the 

contact upon the active side of the tooth. In the 
case of a contact upon the active side of the tooth 
its upmost deformation should come to be 

stabilized at the value of 0,1[mm].  

3. PRESENTATION OF MOVEMENT 

EQUASIONS AND OF THE MODALITY 

THROUGH WHICH THEY COULD BE 

SOLVED NUMERICALLY 
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Let us present below another modality of 

approaching the study of vibrations for a gearing 

mechanism. 

3.1.Mathematical model of the movement  

As a prime hypothesis the kinetics energy of 

the teeth does come to be neglected in respect to 
the one of the body of the gearing mechanism. 

Therefore we will take into consideration the 

static contributions brought in by the elastic 

basis of Pasternak only. Yet this hypothesis 
which is a classical one for the dynamics of a 

gearing mechanism does overlook the respective 

influences held by the vibration modalities 

exerted by each of the teeth (which do usually 
present high frequencies) but instead does 

favour the more extended modalities which do 

involve the shaft, the bearings and the body of 
the gearing mechanism which are submitted to 

smaller frequencies. Let us denote by jq , j 1,n=  

the Lagrange coordinates while n is the number 

of freedom degrees. Then let us denote by N the 

number of modalities which have been selected 
for the modalities'analysis of the concerned sub-

structure and – finally – by N1, N2 the number of 

discretizing segments which do exist for the 

elastic basis of the pinion respectively for the 
one of the driven cog wheel at a given moment 

in time t. The applying of the Lagrange 

equations to the various elements of the above 
defined modellings does lead us towards the 

movement equations which do rule over the 

whole aggregate of the concerned mechanical 

system. They could be expressed under the form: 

[ ] [ ]
[ ]

[ ] [ ]
[ ]

1 1

2 2

xq xq

0 0 0 0

0 M 0 C
x x

q q

•• •

•• •

•• •

•• •

        
        
                                   +     

                                 
    

       
               

ω ω

ω ω

{ }
{ }
{ }
{ }

{ }
{ }

1 2 1 2 1 2

2 1

1

xq 2

qx xq xq

K K F

xK K F

q

ω ω ω ω ω ω

ω ω






+


 
 
 
 



 ω  
         ω         + =   

                  
   

g

  

(3.1) 

where: 

xqM  - the global matrix of the masses - the 

dimension of which is [ ]n,n  and which is 

defined through: 

[ ] [ ]
[ ] [ ]

x
xq

red

M 0
M

0 M

 
=  
 

,                          (3.2) 

with: 

[ ]xM  - the matrix of the masses for the 

propelling part which does correspond to the 

respective pinion and to the concerned 

conditions of leaning (shaft and engine with the 

dimension [ ]24,24 ); 

[ ]redM  - the matrix of the modal mass reduced 

in the case of the respective transmission  which 
does represent the whole of its receiving part 

(with the dimension [ ]N, N ); 

  
1 2 1 2

2 1

xq

qx xq

K K

K K

ω ω ω ω

ω ω

        
       

- the matrix of global 

rigidity which is dependent upon time while the 

displacements are considered )to be generated 
by the teeth and through the general coordinates 

of the system (with the dimension 

[ ]1 2 1 2N N n, N N n+ + + + ); 
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{ }xqF - the vector of the exterior generalized 

forces which do depend upon time and which do 

regroup the terms of the static efforts as well as 
the ones of the excitations which are introduced 

through the setting errors (with the dimension 

[ ]n,1 ); 

{ }
1 2

Fω ω - the vector depending upon time 

which does introduce the effect of the 

geometrical deviations (with the dimension

[ ]1 2N N , 1+ ); 

{ }x  - the vector of the state variables which 

do consist in the generalized coordinates held by 
the propelling part of our transmission which is 

modelled through four knots, each of which 

disposing of six degrees of freedom (with the 

dimension [ ]24,1 ); 

{ }q - the vector  constituted of the modal 

degrees of freedom of our sub-structure which 

does constitute the receiving part of our 

transmission (with the dimension [ ]N,1 ); 

{ }1ω  and { }2ω - are respectively the 

displacements which are seen to be respectively 

generated by the elastic bases of the pinion (with 

the dimension [ ]1N ,1 ) and by the ones of the 

guided wheel (with the dimension [ ]2N ,1 ); 

xqC   - the matrix of the global cushioning 

(with the dimension [ ]n,n ). 

 Let us suppose the fact that for a system of a 

mean rigidity the global cushioning matrix is 

orthogonal in respect to its own vibrating 

modalities. We could therefore write: 

j k j j k j kc 2 k mφ φ φ= ξ
 ,                                  (3.3)

 

where: 

j kc 0, j kφ = ≠                                             (3.4) 

j kcφ  - are the components of the matrix Cφ   ; 

j kkφ  - are the diagonal components of the rigidity 

modal matrix: 

[ ] [ ]T

qqK Kφ    = φ φ   g g ; 

j kmφ - are the diagonal components of the mass 

modal matrix: 

[ ] [ ]T

qqM mφ    = φ φ   g g ; 

[ ]φ - is the matrix of its own vibrating modalities 

for a system of a mean rigidity; 

jξ - is the relative modal cushioning factor for 

the module j. 
As we have to take into consideration the 
diversity and the large number of the modes 

involved by this model our goal is to estimate the 

modal cushioning indices of the teeth through a 

ponderated mean which would rely upon the 
percentages of the deforming energy attributed 

to the teeth on one side and the ones of the rest 

of the structure on the other side. Let then be: 

             
( )j angrenaj j j structură1ξ = ξ ρ + − ρ ξ  

where: 

jρ - is the modal relative deformation percentage 

of the teeth for the mode j; 

angrenajξ  - does hold a value which is typical 

for the cushioning indices of the teeth and does 
rely upon the experimental works of 

d’Umezawa. 

                    angrenaj0,03 0,07< ξ <  

structurăξ  - is in a similar way representing the 

cushioning upon the parts of the structure for 

which a value of the order 0,01 would be pretty 

reasonable. 

 The matrix of the cushioning is expressed 
through the reversed transformation: 

[ ] [ ]T 1

qqC C .
− −

ϕ   = φ φ   g g                        (3.5) 

 In order to reduce the number of unknown 
sizes the movement equation (3.1) could be 
decomposed under the following form: 
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{ }
{ }

{ }
{ } { }

{ }
{ }

{ }
{ } { }

1 2 1 2 1 2

1 2

1
xq

2

1
xq xq xq xq xq

2

x
K K F

q

.
x

M C K K F
q

x x

q q

ω ω ω ω ω ω

•• •

ω ω•• •

 ω      
   + =       ω       


       

        ω                    + + + =              ω                           

(3.6) 
The first equation of the system (3.6) does lead 
us to the equation: 
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which, once introduced into the second equation 

of this system of differential equations should 

finally lead us to the equation: 
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to the equation: 
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4. NUMERICAL SOLVING OF 

MOVEMENT  EQUATIONS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Fig.5. Resolving scheme created by Pasternak 
coupled with a contact algorithm 

The obtained result has been a system of 
differential equations of the second order with 

parametrical excitations which might as well be 

non-linear ones. The numerical resolution of the 

second order system of differential equations 
(3.9) could be done with the help of the implicit 

scheme of Newark coupled with a normal 

unilateral contact algorithm (see figure 5). In 
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order to integrate the mathematical models of a 
linear type we have made use of among others of 

the method that does consist in applying the 

integrated Laplace transformation. Through an 

original procedure this method has been as well 
extended to some non-linear mathematical 

models. We did not neglect as well the newest 

trend of the systems'theory. In what does follow 

we will present an original method able to 
integrate the previously presented matrix 

equation (3.9) which does call for the rendering 

discrete the time interval during which the 
movement is watched upon.  

 

 Stage 1 

 Let be 

[ ]
n 1

n j j 1
j 0

0; t t ; t
−

+
=

 =  U  

a division of the time interval during which the 

movement is watched so that for:  

j j 1t t ; t + ∀ ∈    

the elements of the global rigidity matrix may be 
considered as being constant. Therefore - 
keeping as valid the matrix writing - they have 
the values: 
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Stage 2 
 To the matrix equation (3.9) we are applying 

the unilateral Laplace transformation in respect 

to time for: 

j j 1t t ; t + ∀ ∈    

the result being the mathematical model of the 

vibrations sustained by the gearing mechanism 
expressed through the Laplace images of the 

unknowns: "#�$���%si "��$���% 
under the form: "&'���% = 

��()*�+ ,"#�$���%"��$���%- − �()*�+ ,"#�.$�%"��.$�%-
− ()*�+ /0#• �.$�2

0�• �.$�23 + 
+�(4*�+ ,"#�$���%"��$���%- − (4*�+ ,"#�.$�%"��.$�%- + (&$+ ,"#�$���%"��$���%- 

or, by grouping the terms: 

���()*�+ + �(4*�+ + (&$+� ,"#�$���%"��$���%- = 

 

= "&'���% + �()*�+ ,"#�.$�%"��.$�%- + 
(4*�+ ,"#�.$�%"��.$�%- + ()*�+ /0#• �.$�2

0�• �.$�23. 
(4.1) 

Stage 3 

 Let us solve the algebraic system (4.1) in 
order to obtain, expressed within a formal 
writing, the dynamic answer through the 
Laplace images of the unknowns as in what 
follows:  

,"#�$���%"��$���%- = 
= �56 7��()*�+ + �(4*�+ + (&$+8 
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where: 

( ) 2
xq xq jP s det s M s C K .      = + +        

 
Stage 4  

 The reversing of the Laplace transformation 
in (4.2) is done through calling for the reversing 
theorems while for the term which does contain 

the vector °( ){ }K s the convolution theorem is 
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going to be applied. The reversing does lead to 
the determining of the dynamic response for 

j j 1t t ; t + ∀ ∈    under the form of the time 

functions: 
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Stage 5 

 In the end, by making use of the Heaviside 
function: 

( ) 0; t a
H t a

1; t a,

<
− =  >

 

we are obtaining the solution of the equation 
(3.9) while the time functions which do 
represent the dynamic response of the system are 
expressed under the forms of some series as do 
illustrate the expressions below:  
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(4.4) 

5. CONCLUSION  

As a conclusion we may say that the 
developments we have presented in the present 
work have allowed us, through an original method, 
to predict the static and dynamic behaviors of the 
transmission through gearing mechanisms which 
do make use of elements chosen from some flexible 
structures. The developed models do represent a 
hybrid approach which does consist in the 
combination between the finite elements of a 
classical girder and the elastic bases for the contact 
among the teeth and for the structural flexible parts 
of the sub-structures which do pertain to the models 
with finite tri-dimensional elements. The shaft and 
the body of the pinion (excluding the teeth) have 
been modelled out of elements of a girder which 
have been submitted to the processes of bending, 
torsion and traction-compression. The contact 

between two teeth has been assimilated with two 
Pasternak elastic bases having different features 
which are connected through some independent 
contact rigidities. This fact has allowed us to 
take into consideration the elastic coupling 
among the contact points. The resolving scheme 
by Pasternak coupled with a contact algorithm 
has been presented in parallel with our own 
method of solving a system of non-linear 
differential equations, an original method able to 
integrate the above mentioned matrix equation 
which does make use of the procedure of 
rendering discrete the time interval during which 
the movement is watched upon. Let us also 
remark the fact that the applying of the unilateral 
Laplace transformations in respect to time does 
render algebraic the concerned problem which 
this way is hugely simplified. 
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O metoda de analiza a vibratiilor unor sisteme mecanice care contin roti dintate 

Rezumat. Pornind de la modelul matematic pentru deplasarea relativă a două roţi dinţate ale unui angrenaj (model dat 

sub forma unui sistem de ecuaţii diferenţiale de ordinul doi cu excitaţii parametrice, eventual neliniare), în această lucrare 

vom prezenta o metodă originală de integrare a ecuaţiei matriceale de mişcare care apelează la discretizarea intervalului 

de timp de observare a mişcării. Aplicarea transformatelor integrale Laplace, unilaterale în raport cu timpul, va conduce 

la algebrizarea modelului, ceea ce simplfică enorm problema. În plus, dăm şi reprezentările grafice ale deplasărilor relative 

pentru angrenajul considerat. 
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