
7

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 64, Issue I, March, 2021

USING JAVA AFFINE TRANSFORMATION IN A SWING BASED 2DOF

PLANAR ROBOT SIMULATION

Tiberiu Alexandru ANTAL

Abstract: Computer graphics that study and implement the simulation of the operation of robots is a topical

field. Java programming language provides a ready-implemented package for the programmer with a set

of 2D geometric transformations implemented in the form of homogeneous coordinate matrices in the

AffineTransform class. The following paper aims to show how they are used concretely in simulating the

operation of a simple 2R, planar (2D) robot and draws conclusions about the performance of the simulation

by comparing the simulation based on the mathematical model with that based on affine transformations.

Key words: four-bar linkage, bisection, java, multithreaded, simulation.

1. INTRODUCTION

1.1 Some words on vector graphics

Geometrical objects need a model in order to

be shown on devices like the monitor or the

printer. One way of modelling the geometrical

objects is based on vectors and is called vector

graphics. Complex objects are obtained by

combining primitive (or elementary) objects like

lines, rectangles, arcs, circles or ellipses.

Primitive graphical objects are described in

terms of position and some parameters that are

object specific. For example, a circle has a center

point against which the radius parameter is

given, a rectangle an upper-left point against

which the parameters length and height are

given. Although the vector based construction of

complex geometric figures is simple using

graphical primitives the vector modelling of

objects is not directly suitable for drawing on

pixel oriented devices like the monitor or a

printer. Monitors and printers are based on raster

graphics also called pixel oriented graphic.

Raster graphics is using a fixed size matrix of

elements called pixels where each pixel has an

associated color. In order to display a vector

modelled geometrical object on a raster graphics

device the object must be converted to colored

pixels. The procedure is called scan conversion

and involves:

• high computational effort and

• some aliasing effects (as the continuous

model must be sampled to get the

discrete one).

Compared to raster graphics the advantages

of vector graphics are:

• smaller size;

• ability to zoom indefinitely;

• moving, scaling, filling, or rotating do

not degrade the quality of an image.

Although the objects must be brought to a

rasterized form in order to be displayed on the

monitor or printer it would be a great advantage

to keep them stored as vector graphics. One of

the benefits of using Java is that it implements

rasterized two- and three-dimensional graphical

primitives while preserving the vector storage

strategy of the graphical objects to be displayed.

1.2 Vector graphics in Java

2D geometrical objects in Java were based

initially on the Java 2D API extensions of the

Abstract Windowing Toolkit (AWT) [1]. The

Java 2D API stores and works with two

coordinate spaces:

8

• User - the space in which graphics

primitives are specified ;

• Device - the coordinate system of an

output device such as a screen, window,

or a printer.

The necessary conversions between user

space and device space are performed

automatically during rendering. The

java.awt.Graphics class is used for custom

painting. It manages the graphics context and

provides methods for rendering of three types of

graphical objects: text, graphical primitives and

raster (also called bitmap) graphics. The

graphics to be displayed is defined inside the

paint() (for JFrame) or paintComponent() (for

JPanel) methods while the device context is a

parameter of the paint() (or paintComponent())

method passed as paint(Graphics g). The user

coordinate system in which the programmer

specifies the graphical primitive coordinates

starts at (0, 0) in the upper left corner of the

window (JFrame of JPanel) and extends to the

right for the x-axis and down for the y-axis. This

means that the y-axis points downwards that is

reversed to how are used to consider it. The

window corresponding to the container we use

to draw has a size (in pixels) and has margins (in

pixels) on all the four sides. It is not possible to

draw outside the size of window and the drawing

space of the window in smaller than its size

because of the margins. The exact size of the

margins can be determined inside the paint()

method by calling the getInsets() method which

indicates the size of the JFrame (or JPanel)

border using the line:

Inset ins = this.getInsets();

with the following properties: ins.left, ins.right,

ins.top and ins.bottom. However, since these

dimensions are platform-dependent a valid

insets value cannot be obtained until the panel is

made visible. The Graphics2D class extends the

Graphics class by adding support to operations

or new attributes like:

• Geometric transformations (translation,

rotation, scaling and shearing);

• Pen (outline of a Shape) and Stroke

(point-size, dashing-pattern, end-cap and

join decorations);

• Fill (interior of a shape) and Paint (fill

Shapes with solid colors, gradients, and

patterns);

• Constructive Geometry of Shapes (for

overlapping shapes);

• Clip (display area) etc.;

Graphics2D is designed as a subclass of

Graphics. The Graphics2D context must

downcast the Graphics g in paintComponent() to

g2 as shown in the following piece of code:

public void paintComponent(Graphics g) {

// graphics subsystem passes a Graphis2D

// subclass object as argument

// paint parent's background

// must be the first line in the method

 super.paintComponent(g);

// downcast the Graphics object

// back to Graphics2D

 Graphics2D g2 = (Graphics2D) g;

 // Perform custom drawing using g2 handle

}

The Java 2D based of the Graphics2D class

distinguishes between the definition and the

drawing of a graphical primitive. All these

primitives (definitions) can be manipulated

using some general drawing methods which

operate on the Shape interface. One a graphical

primitive object is defined is can be drawn using

the draw() or fill() methods that will receive as

argument the object. This is how Java 2D

implements the vector representation of the

object and the raster drawing of the vector

representation of object for the screen. The

vector representation is based on floating point

arithmetic while the raster drawing is based on

integer arithmetic obtained by scan conversion.

The abstract class Shape has various subclasses

for defining graphical primitives. The

coordinates used to position and to define the

dimensions of the Shapes are of float or double

type. The abstract class Line2D is used to store

lines. A line object is created by the following

code:

9

Line2D.Double line = new Line2D.Double(x1,

y1, x2, y2);

The x1, y1, x2, y2 parameters are of double type

and are representing the coordinates of the start

point and the end point of the vector

representation of the line object. The line object

is drawn only by calling the draw() method as

follows: g2.draw(line). A line object can be used

in a simulation to model a link. The Ellipse2D

abstract class describes an ellipse that is defined

by a framing rectangle. If the rectangle is a box

then the ellipse is a circle. An ellipse object can

be created by the following code:

Ellipse2D.Double ellipse = new

Ellipse2D.Double(x, y, w, h);

An ellipse object can be used in a simulation to

model a revolute joint.

The Path2D abstract class provides the way of

creating a shape of an arbitrary geometric path.

For example the following code can be used to

create an end effector shaped path:

int xpoints[]={ 40, 30, 10, 0, 10, 30, 40 };

int ypoints[]={ 5, 15, 15, 0, -15, -15, -5 };

Path2D PD = new Path2D.Double();

PD.moveTo(xpoints[0],ypoints[0]);

PD.lineTo(xpoints[1],ypoints[1]);

. . .

PD.lineTo(xpoints[6],ypoints[6]);

g2.draw(PD);

1.3 Some word on geometric transformations

and homogenous coordinates

Computer graphics is using coordinates and

parameters to describe geometric objects. The

position of the geometric objects can be defined

using geometric transformation. The primitive

geometric transformations used in simulations

are translation, rotation and scaling. All these

transformations are carried out with respect of

the origin of the coordinate system. A T(dx, dy)

translation, defined by two distances dx and dy,

causes the (x,y) point to shift to the (xT, yT) point

based on the equations:

������ = �� + 	
� + 	�� = ���� + �	
	�� (1)

A rotation R(φ), defined by the φ angle, causes

the (x,y) point to rotate anticlockwise around the

origin to the (xR, yR) point based on the

equations:

��
�
� = �� ∙ ������ − � ∙ sin ���� ∙ ������ + � ∙ cos ���� (2)

or

��
�
� = ������� − sin ��������� cos ��� � ���� (3)

A S(sx, sy) scaling, defined by two scaling factors

sx and sy, causes the (x,y) point to map to the (xS,

yS) point based on the equations:

������ = ��
 · ��� · �� = � �
 00 ��� ���� (4)

If the absolute value of the scaling factor is over

one we have a stretching on that direction, if it’s

less then one we have a shrinking. Negative

scaling factors define a reflection with respect of

the corresponding axis. Homogenous

coordinates use an additional dimension to

represent a point. In our case for a 2D Cartesian

point a 3D representation is going to be used by

adding a w coordinate. Instead of (x,y) we are

using (x,y,w) where the correspondence with the

2D Cartesian representation is (

! , �

!), with w ≠

0. Any representation of the form (w·x,w·y,w)

encodes the same point 2D point (2D Cartesian

point can be anywhere on a line that goes

through the origin of the homogenous coordinate

system). Fixing the value of w to one (w = 1) in

the homogenous plan the Cartesian plan is

represented as a parallel plan at the

corresponding w value. The origin of the

Cartesian coordinate system corresponds to any

point in the homogenous coordinate system with

the form (0,0,w). The origin of the 2D Cartesian

coordinate system is no longer fixed and can be

mapped to another point in homogenous

coordinates. The rotation and the scaling

primitive transformation in the matrix

formulation can be extended to homogenous

coordinates in a straightforward way. In the case

of translation in homogenous coordinates the

following matrix multiplication can be written:

10

#����1 % = &� + 	
� + 	�1 ' = &1 0 	
0 1 	�0 0 1 ' #��1% (5)

Rotation and translation transformation preserve

lengths and angles, scaling, in general, will not

preserve lengths and angles but parallel lines

will be mapped to parallel lines. The following

table (Table 1) gives the primitive geometric

transformations matrix description for

homogenous coordinates:
Table 1

Primitive transformations in homogenous

coordinates.

Transformation Notation Matrix

Translation T(dx,dy) &1 0 	
0 1 	�0 0 1 '

Rotation R(φ) &cos ��� −sin ��� 0sin ��� cos ��� 00 0 1'

Scaling S(sx,sy) & 1 �
 0�� 1 00 0 1'

The homogenous coordinate system has the

advantage over the Cartesian 2D coordinate

system of describing all the geometric

transformation of objects using only matrix

multiplication. However, when composing

transformation is important to remember that

matrix multiplication is a noncommutative

operation meaning the order in which the

transformation are applied is important (and will

lead to different results). An expression of

matrix multiplications that results by composing

transformations is evaluated from left to right.

All matrices that describe primitive geometric

transformation in homogenous coordinates have

the following form:

#()) ()* ()+(*) (** (*+0 0 1 % (6)

As a result, their implementation in graphical

libraries is simple, compact and easy to

optimize, all coming down to the multiplications

of 3x3 matrices.

1.4 Affine transformations in Java

In Java the java.awt.geom.AffineTransform class

has been created to support affine

transformations or geometric transformations in

homogenous coordinates implemented by

matrices as given in (6) to support operations

like translation, rotation or scaling. The most

important constructors are:

• AffineTransform() which generates the

unity matrix that maps every point to

itself;

• AffineTransform(m11, m22, m21, m13, m12,

m23) which generates an arbitrary

transformation matrix (where all

arguments are of type double).

Some of the primitive geometrical

transformation methods are:

Rotation

setToRotation(angle) defines a rotation

transformation around the origin with angle;

setToRotation(angle,x,y) defines a rotation

transformation around the (x,y) point with angle;

getRotateInstance(angle) returns a transform

representing a rotation transformation.

If at is an AffineTransform writing

at.rotation(angle) or at.rotation(angle,x,y)

extend the at transformation by a rotation that

correspond to a multiplication from the right of

the at transform.

Translation

setToTranslation(dx,dy) defines a translation

transformation by the (dx,dy);

at.translate(dx,dy) extends the at transformation

by a translation as matrix multiplication from the

right;

getTranslateInstance(dx,dy) returns a transform

representing a translation transformation.

Scaling

setToScale(sx,sy) defines the scaling

transformation by the sx and sy scaling factors

for x and y;

at.scale(sx,sy) extends the at transformation by

a scaling as matrix multiplication from the right;

getScaleInstance(sx,sy) returns a transform

representing a scaling transformation.

Composition

11

The presented affine transformation can be

composed using the following methods:

at.concatenate(at1) to multiply the at

transformation by at1 from the right (at x at1)

with the result stores in at;

at.oreConcatenate(at1) to multiply the at

transformation by at1 from the left (at1 x at)

with the result stores in at;

Successive transformations are concatenated,

until it is reset (to the identity transform) or

overwritten.

// create the identity transform

AffineTransform id = new AffineTransform();

// overwrite the transform associated with the

current Graphics2D context

g2.setTransform(id);

// translates from (0, 0) to the current (x, y)

position

g2.translate(x, y);

// scaling by

g2.scale(sx, sy);

// rotation clockwise about (0, 0), by angle (in

radians)

g2.rotate(angle);

The current transformation associated with the

Graphics2D context can be saved and restored as

follows:

//save

AffineTransform saveAt = g2.getTransform();

...

//restore

g2.setTransform(saveAt);

2. JAVA SWING MOTION SIMULATION

USING AFFINE TRANSFORMATIONS

The following simulation is based on the 2 DOF

planar manipulator from [2] (see Figure 2 also).

The principles of the Java simulation and robot

driving based on a mathematical model and the

graphical primitives used locally and in a client-

server implementation were discussed in [3] -

[9] . Compared to those this implementation

evades the mathematical model and completes

the simulation using only affine transformations.

Also, it demonstrates how to use Swing events

to transfer data computed in a JPanel to

components of the JFrame to which the JPanel

is added. The class diagrams of the

implementation are given in Figure 1. The

GrPanel class does all the work inside the

paintComponent() method.

Fig. 1. - Class diagrams of the robot simulator.

public void paintComponent(Graphics g) {

// paint parent's background

 super.paintComponent(g);

// draw in RED the points of the end effector

// stored in an ArrayList

 g.setColor(Color.RED);

 for (Point2D p : pointList)

 g.fillOval((int) (p.x - 1), (int) (p.y - 1), 2, 2);

//draw the ground link with translation

// to the middle of the screen

 at =

AffineTransform.getTranslateInstance(xmid,

ymid);

 grlk.set(at);

 grlk.draw(g);

//change to orientation of the y axis

at.concatenate(AffineTransform.getScaleInstan

ce(1, -1));

//rotate with fi1 angle

12

at.concatenate(AffineTransform.getRotateInsta

nce(fi1));

// set the rob object position based on the

// at rotation before drawing and get

// the coordinates of the rotating point

 lastP = rob.set(at);

//draw de rob object

 rob.draw(g);

//translate to the rotating point of rob object

 at =

AffineTransform.getTranslateInstance(lastP[0],

lastP[1]);

// scale the y axis

at.concatenate(AffineTransform.getScaleInstan

ce(1, -1));

// rotate around lastP with fi1 angle

at.concatenate(AffineTransform.getRotateInsta

nce(fi2));

 lastP = rob1.set(at);

 rob1.draw(g);

//add the end effector to the ArrayList

 pointList.add(new Point2D(lastP));

//draw the end effector

 at =

AffineTransform.getTranslateInstance(lastP[0],

lastP[1]);

at.concatenate(AffineTransform.getScaleInstan

ce(1, -1));

at.concatenate(AffineTransform.getRotateInsta

nce(fi2));

 lastP = ef.set(at);

 ef.draw(g);

//fire the property change event for each

// round of computation

 this.firePropertyChange("Label",

"",String.format("(fi1:%-7.3f,fi2:%-7.3f) -

size:%d ", fi1, fi2, pointList.size()));

}

The constructor of the GrPanel is:

public GrPanel() {

 initComponents();

 setPreferredSize(new Dimension(600, 600));

 xmid = 300;

 ymid = 316;

 grlk = new GroundLink(0, 0, 70,

60,getBackground(), getForeground());

 rob = new RobotLink(0, 0, 50, 0,

getBackground(), getForeground());

 rob1 = new RobotLink(0, 0, 100, 0,

getBackground(), getForeground());

 ef = new EndEffector();

 startTimer();

}

As the code from above shows all objects to be

drawn are created at position (0,0), then

translations, scaling and rotations are used to

position them based on the fi1 and fi2 angles.

Fig. 2. - Workspace simulation of a 2R planar robot.

The ground link (grlk object of the GroundLink

class) is created at the (0,0) point (upper-left

corner) then translated to the middle of the

JPanel at the (xmid,ymid) position and drawn. As

this point is the same with the O point from the

following link no translation is need to position

the next object. The OA link model (rob object

of class RobotLink) is formed of the O joint

(black point in O) and the OA link (OA black)

line. Again the object is created in the (0,0)

point. As this object is going to be moved scaling

must be applied to make the y axis point up, then

a rotation with fi1 angle is made before drawing

the object. The coordinates of the A point have

to be extracted after the rotation in the lastP two

O

E

A

13

element array as this is going to be the rotation

point for the AE object. This is another object

(rob1) of class RobotLink transformed from the

origin representation by a translation to the A

point, a scaling for the reversed y axis and a

rotation of fi2 angle. Again the coordinates of the

E point are extracted as the end effector must be

positioned in the E point and oriented by the fi1

angle along the AE object.

Each time the PropertyChange event is fired

inside the paintComponent() code of the

grPanel1 object of GrPanel class the grPanel1

object on the GrFrame that holds grPanel1 is

catching the event by the handler:

private void grPanel1PropertyChange(java.

beans.PropertyChangeEvent evt) {//GEN-

FIRST:event_grPanel1PropertyChange

 // TODO add your handling code here:

 if (evt.getPropertyName().equals("Label"))

 jLabel2.setText(evt.getNewValue().toString());

}//

The handler sets the contents of the jLabel2

object to show the angles and the number of

points used to draw the end effector positions.

The red points in Figure 2 are positions of the

end effector. For each (fi1,fi2) variable pair a

point is drawn on the JPanel. As the number of

the points to be drawn is not known in advance

the safest way to deal with this situation is to use

a List ([2], [5], [6], [8]) to store the points. For

this purpose the ArrayList was chosen as this is

thread safe.

ArrayList<Point2D> pointList = new

ArrayList<Point2D>();

As the ArrayList only works with objects the

following inner class was used to store a point:

class Point2D {

 private double x, y;

 Point2D(double[] p) {

 x = p[0];

 y = p[1];

 }

}

The objects of the GrLink class are drawn to the

JPanel by the following code:

public void draw(Graphics g) {

 Graphics2D g2 = (Graphics2D) g;

 g2.setColor(pen);

 g2.draw(at.createTransformedShape(L));

 g2.setColor(Color.BLACK);

 g2.fill(at.createTransformedShape(C));

 }

where L and C are declared as: Line2D L;

Ellipse2D C; and the createTransformedShape()

method returns a new object defined by the

geometry of the specified Shape after it has been

transformed by at transform. The at is set by the

set() method of the object and determined in the

paintComponent() of the JPanel. This principle

is applied to all the objects that make up the

moving parts of the robot simulator.

In terms of resources used to run the applications

Figure 3 and Figure 4 are showing the

differences between the original application

from [2] and this one based on affine

transformation. As we can see differences in

resources are minimal with the exception that v2

has a better memory usage compared to v1 and

v1 a bit lower CPU usage. However, the CPU

processing time for v2 is half compared to v1. So

the major gain is that simulations based on affine

transformation that are implemented in Java are

faster than those based on the computations

resulting from the brute mathematical model of

the robot.

Fig. 3. - Resources for the v1 robot simulator.

14

Fig. 4. - Resources for the v2 robot simulator.

3. REFERENCES

[1] https://docs.oracle.com/javase/

tutorial/2d/overview/index.html

[2] ANTAL, Tiberiu Alexandru. Principles of

motion simulation of a 2 DOF RR planar

manipulator using Java Swing. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics, and Engineering,

v. 63, n. 1, Apr. 2020. ISSN 1221-5872.

[3] ANTAL, T. A., Elemente de Java cu

JDeveloper - îndrumător de laborator,

Editura UTPRES, 2013, p.150, ISBN: 978-

973-662-827-6.

[4] ANTAL, T. A., Java - Iniţiere - îndrumător

de laborator, Editura UTPRES, 2013, p. 246,

ISBN: 978-973-662-832-0.

[5] ANTAL, Tiberiu Alexandru; CHELARU,

Julieta Daniela. A multithreaded Java client-

server model for robot interaction. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics, and Engineering, v.

60, n. 3, sep. 2017. ISSN 1221-5872.

[6] ANTAL, Tiberiu Alexandru. A Java client-

server model to solve the forward and the

inverse robot kinematics. Acta Technica

Napocensis - Series: Applied Mathematics,

Mechanics, and Engineering, v. 62, n. 1, apr.

2019. ISSN 1221-5872.

[7] ANTAL, Tiberiu Alexandru. 3R serial robot

control based on arduino/genuino uno, in

java, using JDeveloper and Ardulink. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics, and Engineering, v.

61, n. 1, mar. 2018. ISSN 1221-5872.

[8] ANTAL, Tiberiu Alexandru. Using

networking services for remote access to a

Java robot simulator. Acta Technica

Napocensis - Series: Applied Mathematics,

Mechanics, and Engineering, v. 63, n. 1, Apr.

2020. ISSN 1221-5872

[9] Tiucă, T., T. Precup, şi T. Antal. Dezvoltarea

aplicaţiilor cu AutoCAD şi AutoLISP, Editura

Promedia Plus Computers, Cluj-Napoca,

1995, p. 304, ISBN: 973-96862-2-2

Utilizarea transformatelor afine din Java în simularea funcţionării cu Swing a unui

robot plan 2R

Grafica pe calculator care studiază şi implementează simularea funcţionarii unor roboţi este un

domeniu de actualitate. Limbajul Java pune la dispoziţia programatorului, gata implementate, un set

de transformări geometrice 2D sub forma unor matrice de transformare care operează în coordonate

omogene prin clasa AffineTransform. Lucrarea care urmează îşi propune să arate modul în care

acestea se utilizează concret în simularea funcţionării unui robot plan 2R şi trage concluzii cu privire

la performanţele simulării comparând simularea bazată pe modelul matematic brut cu cea bazată pe

transformări afine.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca, Department

of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul Muncii, Nr.

103-105, Cluj-Napoca, ROMANIA.

