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Abstract: The purpose of this paper is to present two important problems related to the numerical 

studies of clothoid curves: the exact calculation of their coordinates and the deduction of the 

distance between a point and the clothoid. 

     The paper begins with a brief presentation of the history of this curve, names of great 

mathematicians involved over time in the research and a lot of contemporary problems such as: the 

use of clothoids as transition curves between a line and a circle arc, between two lines or between 

two circle arcs, with the direct use in the construction of railways and highways, in the trajectory 

path-planning of mobile robots and autonomous vehicles, CAGD and so on , with many references 

to the main existing works.  

     The clothoid curve has a very interesting kinematic property: in the case of a mobile moving 

along the curve with a constant velocity, the normal acceleration of the mobile varies linearly, 

depending on the curvilinear abscissa corresponding to the curve point, because the product 

between the curvilinear abscissa and the curvature radius is constant:  s ρ(s) = A2.  

     The paper solves the problem of calculating the exact coordinates of the clothoid points, using 

numerical quadrature formulas, in the context of Romberg procedure, which is based on the 

principle of extrapolation of Richardson. These calculations are necessary because the accuracy of 

the coordinates calculus induces the accuracy of all subsequent calculations for: the point-clothoid 

distance, the connection points coordinates, the parameters that determine the position of a clothoid 

in the Oxy axis system, etc. 

     In the second part of the paper is presented a new method to obtain the nonlinear equation whose 

solution is the curvilinear abscissa of the point where the perpendicular line on the clothoid from 

an outer point intersects it. 

Many numerical results, presented mainly as graphs, obtained with our own C programs, are given 

in the final part of the paper, certifying the correctness of the proposed calculation methods.  
Key words:  Clothoid, Fresnel’s integrals, Romberg method, nonlinear equation, Newton-Raphson 

method. 
 

1. INTRODUCTION  
 
 The planar curve, named clothoid, was 
studied for the first time by the Swiss 
mathematician Jakob Bernoulli (1654-1705) 
linked with the problem of bending of curved 
elastic bars. Bernoulli has established the 
fundamental formula: s ρ(s) = A2, where A is the 
so-called clothoid parameter, s is the curvilinear 
abscissa of the clothoid’s point and   ρ(s) is the 
radius of the oscillating circle. 

 These studies have been continued by 
Leonhard Euler (1701-1783) who established 
the parametric equations as definite integrals: 
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also, the limits: 
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and noticed the spiral form of the curves. 
Consequently, the name “Euler spiral” began to 
be used for this curve. Considering the above-
mentioned parametric equations, the value of the 

clothoid parameter results as � = �
√� =

0.564189. 
 One has to mention that the French physicist 
Augustin Jean Fresnel (1788-1827), studying the 
light diffraction problem, has find similar 
expressions for the coordinates of light rays 
trajectories.  
 The study of Euler’s spiral was resumed a few 
years later by Alfred Marie Cornu (1841-1902). 
In 1874 he discovered other properties of this 
curve, by using complex numbers, so that the 
name “Cornu spiral” began to be known as 
describing the curve.  
 The third name – clothoid - was given by the 
mathematician Ernesto Cesàro (1859-1906), in 
1886, after the name of goddess Clotho 
(Κλωθώ), of the Greek mythology. 
 The fourth name (and the last) “railway 
transition spiral” was given by Arthur Talbot, in 
1899, for the curve used as a transition between 
a straight line and a circle arc, in the construction 
of railways. 
 Detailed information on this subject may be 
found in [11]. 
 At the beginning, the study of clothoid was 
perform due to the theoretical importance but 
starting with the construction of railways and 
highways the practical interest grows up.  

This curve has a very interesting property: if 
a mobile covers it with a constant speed, its 
tangential acceleration is null and the normal 
acceleration has a linear variation with respect to 
curvilinear abscissa of the clothoid.  

If a segment of straight way is connected with 
a segment having a circle arc form and a vehicle 
passes from one to the other, when the vehicle 
leaves the straight section a normal acceleration 
will suddenly appear and also a not desirable 
centrifugal inertial force.  
 This problem may be avoided if the 
connection between the straight segment and the 
circle arc is made by using a clothoid, tangent to 
the straight line in its initial point (where s=0) 
and with the radius of the osculator circle being 
equal with the radius of the circle arc in the final 

point. When a vehicle covers such a trajectory, 
the acceleration is zero when the movement is 
on the straight line and grows up from zero to a 
specified value when the movement is on the 
clothoidal curve. Because the radius of the 
osculating circle corresponding to the last 
clothoidal point is equal with the radius of the 
circle arc, jerks cannot appear, and the obtained 
acceleration is a continuous curve.  
 For the same reason, when it is necessary to 
connect two trajectories (straight lines or two 
circle arcs) other three intermediate curves are 
used: a clothoid, a circle arc and again a clothoid. 
The first practical clothoid utilization was in the 
domain of railways construction, later the same 
curve was used in the building of highways.  

In the last decades, the movements of mobile 
robots that must avoid the obstacles and the 
movement of autonomous vehicles are 
performed covering not only straight lines, 
circles but also segments of clothoids.  

The clothoids are usually considered in the 
displacement path-planning of such vehicles.  

There are many scientific papers in the 
literature dealing with different theoretical and 
practical problems linked with clothoids. Here it 
is a short review: 
- Theoretical studies of clothoidal curve and its 
properties [3], [5], [10],  
- Computing of clothoid point coordinates [1], 
[3], [22],   
- Fitting clothoids to the straight lines and circle 
arcs, [4], [5], [13], [20], 
- Mobile robots and autonomous vehicles path-
planning [2], [7], [21],  
- The CNC machines tools trajectory 
optimization to obtain a low level of vibrations 
[16l], [17], 
- Using clothoidal curves in CAGD [9], 
- Approximation of clothoidal curves with other 
curves used in CAGD [6],[14].  
 Our aim is to present in this paper two 
problems of great interest by our opinion: the 
accurate computing of the clothoid coordinates 
and the calculation of the distance between a 
point and a clothoid curve. 
 
 
2. THE BEST ACCURATE METHOD TO 
COMPUTE THE CLOTHOID 
COORDINATES 
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 The coordinates of the clothoid having A as 
parameter are the following:  
 

���� = ���� = � cos * �
2��+ � ,�

�
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(3) 

 
There are several methods, used in the articles 

studying different aspects of the clothoids, to 
compute the coordinates, for all values of 
curvilinear abscissas in the interval [0; smax]. 

The first method uses series expansions and 
is the most frequent cited in the literature. The 
series to be computed may be find in [1], [3], [4], 
[5], [20] a. o. 

According to the second method, the series 
are replaced by equivalent formulas, which leads 
 to a decrease in the number of necessary 
arithmetical operations, e. g. in [12]. 

The third possibility to compute the 
coordinate values is to solve simultaneous 
differential equations, as it is shown in [20]. 

The functions under the integral sign of 
relations (3) are presented in figures 1, 2 and 3, 
for different values of parameter A (2.0, 2.5 and 
3.0). Looking to the right of the figures, it can be 
noticed that the use of quadrature formulas of 
generalized rectangles, trapezes, Simpson and 
also Chebishev or Gauss-Legendre is not 
appropriate due to the oscillating shape of the 
graphical representations. 

 

 

 
Fig. 1 Clothoid with parameter A=2.0 

 

Fig. 2 Clothoid with parameter A=2.5 
 

 

Fig. 3 Clothoid with parameter A=3.0 
 

Remembering that the clothoid curves are 
used as transition curves between a line and a 
circle arc, line to line or circle arc to circle arc, 
we realize that in these cases are used only the 
first parts of diagrams, especially between s=0 
and the value that corresponds to the point of 
maximal ordinate. 

On the left, figures 4, 5 and 6 represents 
segments of clothoids used as transition curves 
and on the right there are the functions under the 
integral sign. It is obvious that for such shapes 
the use of quadrature formulas is possible, with 
a high degree of accuracy. 

Consequently, the well-known formulas of 
numerical quadrature will be used, and to obtain 
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results close to the exact values, the number of 
intervals must be big enough ([15], [19]).  

Evidently, it comes out that a great number of 
intervals increases the accuracy but also grows 
the number of necessary computations, to obtain  

six ~ eight exact significant digits are 
necessary thousands of intervals.  

Our idea is to use the Romberg procedure 
based on Richardson extrapolation, set out in 
some numerical analysis books [15] pp. 144-
146, [9] pp. 351-356 a. o. The main advantage of 
this method is high accuracy resulting with 
minimal computational effort.   

Fig. 4 Clothoid with parameter A=2.0 Fig. 5 Clothoid with parameter A=2.5 
 

 

Fig. 6 Clothoid with parameter A=3.0 
 

 
 To find the value of definite integral - =
. /�����0

1   we need to calculate the elements of 
the following triangular Romberg matrix:  
 

 
 

starting with elements on the first column, using 
a recurrent formula, followed with elements on 
the next columns (starting with elements on the 
main diagonal), using another recurrence 
formula. 

 From line to line, it is necessary to double the 
number of intervals used in the quadrature 
formula.    
 The values of the elements in the first 
column, except for the first, are obtained with a 
recurrence formula based on the generalized 
trapezoidal method for 2m respectively 2m+1 
intervals, using the following relations:  
 

-�,� = 2 − 4
2 5/�4� + /�2�7 (4) 

 

-89�,� = -8,�2 + 

+ 2 − 4
289� : / ;4 + �2� − 1� 2 − 4

289� < ,
�=

>?�
 

� = 0,1, … , A − 1 

 
 
 
(5) 

 
the accuracy depending on the square of the 
interval length.    
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The following recurrence formula is 
repeatedly used for the computing of elements 
on the next columns,  
 

-8,B = -8C�,BC� − 4B-8,BC�1 − 4B , 
� = 2,3,4 … , A ;     F = 2,3, … , � 

(6) 

 
and passing from column to column the 
accuracy of computed elements grows with 
square of interval length. 
 This procedure may be used to compute the 
definite integral values (3) for the clothoid 

having as parameter A=3.0 and for the point of 
clothoid defined by the curvilinear abscissa 
value s=3.0. 

The expressions of integrals are as follows 

��3.0� = � �	� *�
18+ �G.�

�
 

��3.0� = � ��� *�
18+ �G.�

�
 

(7) 

 
The Romberg’s matrix for the first definite 
integral is:

 
  1   2.8163738428 
   2   2.8964834223 2.9231866154 
   4   2.9184074623 2.9257154756 2.9258840663 
   8   2.9239925049 2.9258541858 2.9258634332 2.9258631056 
  16  2.9253950126 2.9258625152 2.9258630704 2.9258630647 2.9258630645 
  32  2.9257460259 2.9258630303 2.9258630647 2.9258630646 2.9258630646 2.9258630646 
  64  2.9258338033 2.9258630625 2.9258630646 2.9258630646 2.9258630646 2.9258630646 2.9258630646 
128  2.9258557492 2.9258630645 2.9258630646 2.9258630646 2.9258630646 2.9258630646  2.9258630646 2.9258630646 

 
We notice that the value of sixth element on 

the main diagonal remains unchanged on the 
following positions on the diagonal, this stands 
that after dividing the interval [0;3.0] in only 32 
parts the resulting integral value has 11 exact 
digits, therefore one may write:  

 

��3.0� = � �	� *�
18+ � =G.�

�= 2.9258630646 
(8) 

  
In order to realize the advantages of Romberg 

procedure, it can be mentioned that the result 
with eight exact significant digits is obtained 
with the generalized trapezoidal method if the 
interval [0;3.0] is divided in 1362 parts, as can 
be seen below: 

 
     1355   2.9258629993 
     1356   2.9258629994 
     1357   2.9258629995 
     1358   2.9258629996 
     1359   2.9258629997 
     1360   2.9258629998 
     1361   2.9258629999 
                   1362 2.9258630000 (eight exact                             

significant digits) 
     1363   2.9258630001 
     1364   2.9258630002 
     1365   2.9258630003 

 
According to the Romberg procedure, the 

result with the same accuracy is obtained on the 
fifth matrix line, after dividing the interval in 16 
parts.  

In the case of definite integral S(3.0) the 
Romberg matrix is as follows:

 
   1   0.7191383079 
    2   0.5465812540 0.4890622361 
    4   0.5048918762 0.4909954170 0.4911242957 
    8   0.4945725520 0.4911327772 0.4911419346 0.4911422145 
   16   0.4919993035 0.4911415541 0.4911421392 0.4911421424 0.4911421422 
   32   0.4913564049 0.4911421053 0.4911421421 0.4911421421 0.4911421421 0.4911421421 
   64   0.4911957061 0.4911421398 0.4911421421 0.4911421421 0.4911421421 0.4911421421 0.4911421421 
  128   0.4911555330 0.4911421420 0.4911421421 0.4911421421 0.4911421421 0.4911421421 0.4911421421 0.4911421421 

 
and the result with ten exact significant digits is 
obtained on the sixth matrix line,  
 

��3.0� = � ��� *�
18+ � =G.�

�= 0.491 142 142 1 
(9) 
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The obtained results certify that this method, 

based on the Romberg procedure, may be 
successfully applied, the values of the definite 
integrals are obtained with extremely good 
accuracy with minimal number of arithmetic 
operations. 
 The proposed method may be considered the 
fourth possible method to compute the 
clothoid’s coordinate values and has many 
advantages by comparison to the previously 
mentioned methods.  
 
3. THE DISTANCE BETWEEN A POINT 
AND A CLOTHOID CURVE 
 

The computing of clothoid curve coordinates 
was done only for the points at the beginning of 
this curve, belonging to a segment used as 
transition curve. The same considerations will 
apply when calculating the distance between a 
point and a clothoid curve. 

Such a problem arises when the clothoidal 
trajectory of a mobile robot or autonomous 
vehicle must avoid an obstacle or when a 
deviation from the prescribed trajectory occurs.  

It is obvious that in both cases we deal with 
the initial section of clothoid, the spiral part is 
not considered.  

The cloidoid curve has as its point of 
symmetry the origin of the coordinate system, so 
if the point is located in the second or third 
quadrant, we can consider its symmetrical 
position in the fourth or first quadrant. 

In figures 1 to 6 the sections considered 
useful of the clothoid are drawn with thick line, 
the point A has the greatest abscissa value, the 
angle between the tangent through A and the 
horizontal axis is H = �

�.  

The ordinate of point B has the highest value 
and the tangent through B is horizontal H = 0.  

The slope of the tangent line is computed with 
the formula:  

� = 4� H = � ′���
� ′��� = 4� * ��

2��+, 
H = �I

�JI     

(10) 

and results 

HJ = �J�2�� = �
2 , �J = �√�, (11) 

 HK = �LI�JI = �, �K = �√2�  
 
obtaining the values of the curvilinear abscissas 
sA and sB corresponding to the points A and B.  

Depending on the value of the clothoid 
parameter A and position of point P (figures 7 
and 8), there are two intervals [0; sA] or [sA; sB] 
which may contain the value of the unknown 
curvilinear abscissa of point N, the foot point, 
representing the intersection between the curve 
and the perpendicular drawn on it from point P. 

 

 
Fig. 7 The distance from point to the clothoid 

 

Fig. 8 The distance from point to the clothoid 
 

Note that if yP < yA, the perpendicular from 
point P on the clothoid intersects the curve in a 
foot point having the curvilinear abscissa 
belonging to the interval [0; sA], as shown in 
figure 8.   

Figure 7 shows that if the coordinates of point 
P meet the conditions xP > xB and yP > yA, the 
value of the curvilinear abscissa of the foot point 
belongs to the interval [sA; sB].   

It is obvious that the distances result 
immediately in two particular cases: 

1. if yP = yA and xP > xB then d = |xP–xA|,  
2. if xP = xB and yP > yA then d = |yP–yB|, 
The points situated in the first quadrant 

defined by the inequalities 0 < x < xB and y > yA  
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are without any importance because the 
clothoid’s sections with points having s > sB 
aren’t used as transition curves between straight 
lines and circle arcs. 

The first method that may be used to compute 
the distance between a point P and a clothoid is 
based on finding the value of the curvilinear 
abscissa s that minimize an expression, the 
square of the distance from point P to a curve 
([8]),   M���� = 5�N − ����7� + + 5�N − −����7�  

(12) 

 
In order to obtain the value of s determining 

an extreme value of this expression, it is 
necessary to equal with zero the derivative: �5M����7

�� = 

−5�N − ����7�	� * ��
2��+ − 

−5�N − ����7��� 
 �I
�JI� = 0  

(13) 

 
and to solve the resulting nonlinear equation.  

This equation has a single solution, located in 
the interval [0; sA] or in the interval [sA; sB], 
depending on the position of point P. 

After determining the value of s, we may 
calculate the coordinates of the cloidoid point, 
followed by the calculation of the distance. 

According to the second method, and here is 
our contribution, the nonlinear equation is 
established using another method, its importance 
consisting in the fact that it can also be used in 
solving another theoretical problem related to 
clothoids. 

Let’s consider in figure 9, the clothoid, the 
osculating circle, the curvature radius ΓN and an 
external point P, whose distance from the 
clothoid will be calculated. 

Note that the angle φ between the tangent in 
N to the clothoid and the horizontal direction is 
equal to the angle between the vertical direction 
and the PN segment, perpendicular to the 
clothoid (angles with perpendicular sides). 

According to relation (10), one may write 

H = �I
�JI and there are the following relations 

between the coordinates of points P and N: �N = �O − � ��� P, �N = �O + � �	� P 
(14) 

 

 
Fig. 9 The clothoid, osculating circle and distance 

 

If ψ is the angle between the vertical direction 
and a segment PM, M being an arbitrary point 
on the clothoid, we write the following relations 

  
     � ��� Q = �R − �N , � �	� Q = �N − �R                        

and after dividing them:  

4� Q = �R − �N�N − �R = ���� − �N�N − ���� (15) 

 
The segment PM must be perpendicular to the 

clothoid, therefore the angles φ and ψ will be 
equal, φ = ψ. This is possible when the value of 
the curvilinear abscissa s satisfies the relation: 

 

4� �I
�JI = S���CTU

VUCW���     (16) 

 
which is obtained by matching expressions (10) 
and (15). The previous relation may be written 
as a nonlinear equation: 
 

/��� = 5�N − ����7 ��� 
 �I
�JI� −

−5���� − �N7�	� 
 �I
�JI�  

(17) 

 
that has the same form as (13), obtained with the 
first method ([8]). 

The numerical solving of equations (17) or 
(13) may be performed using the bisection or 
Newton-Raphson method, in the specified 
intervals: [0; sA] or [sA; sB] existing only one 
root.  

In the case of Newton-Raphson method, the 
following formulas are repeatedly used: 

�X>Y = �>Y>Z − /��>Y>Z�
/ ′��>Y>Z� , �>Y>Z ← �X>Y 

 
and the number of necessary iterations is about 
10~15. In this case, due to the shape of f(s) 
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expression, it is not necessary to use other 
formulas belonging to Halley, Ostrowski, a. o., 
containing the second function derivatives 
which would increase the number of arithmetic 
operations [15], [19] pg. 67-68).  

The final value sfin of the curvilinear abscissa 
is thus obtained, corresponding to the point N of 
the clothoid, where the perpendicular from P 
crosses the curve, the coordinates of foot point 
N being: �O = �\�X>Y], �O = �\�X>Y] (18) 

 
As final step, we may calculate the distance 

between points P and N, 
 

�NO = ^��N − �O�� + ��N − �O�� (19) 
 
the problem being accomplished.  

If the value of sfin (curvilinear abscissa 
corresponding to point N) is known, there are 
other possibilities for calculating the distance: 
first the calculus of angle φ* between the 
horizontal direction and the tangent through N 
and then the calculation of distance:   

 H∗ = 4 4� ;S\�`ab]CTU
VUCW\�`ab]<,  �NO = VcCW\�`ab]

de�  g∗  

 
4. NUMERICAL RESULTS 

 
Example no. 1. The clothoid with parameter 
A=2.0 is considered and five points in the plane 
(in the allowed regions) having the coordinates: 
P1[1.0; -1.0], P2[1.5; 1.25], P3[4.0; 1.0], P4[2.25; 
1.75], P5[3.5; 3.0] 
 When the clothoid parameter is A=2.0 the 
following values for the curvilinear abscissas of 
points A and B are obtained:  
 �J = �√� = 3.544908, 

�K = �√2� = 5.013257 
 
resulting the Cartesian coordinates of these 
points:  �5���J�; ���J�7, �J = ���J� = 2.764150,�J = ���J� = 1.553181 i5���K�; ���K�7, �K = ���K� = 1.874128,�K = ���K� = 2.530966

 

 
Fig. 10. The clothoid (parameter A=2.0), five points in the plane and the computed distances between points and the 

clothoid. The points A and B have the coordinates: A[2.764150;1.553181],   B[1.874128;2.530966] 
For each considered point, the nonlinear 

equation (17) is solved, at the beginning 
choosing the interval where the root is located, 

starting with an initial value. The root is 
determined by the Newton-Raphson method and 
finally the distance is computed.   
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Numerical results are presented in figure 10: 
the clothoid, positions of points P1 to P5 and - in 
the rectangles - the obtained coordinates of the 
foot points N, the distances from points P1 to P5 

to the clothoid and also the value of the 
curvilinear abscissa for each point N.   
Example no. 2.  Three clothoids are considered 

having different parameter values 
0.40, �
√� =

0.564189,0.70�  and a point P of coordinates 

[0.95; -0.15]. The Newton-Raphson method was 
used three times, resulting the curvilinear 
abscissas corresponding to the points N1, N2 and 
N3 followed by the computing of coordinates 
and distances. 
 In all three cases the solving of the nonlinear 
equation starts with the initial value sinit = 0.6, 
the following obtained values being presented in 
Table 1 and the numerical values in figure          
no. 11.

                                                                                              Table 1 
 A1 =0.40 A2=0.564189 A3=0.70 

Nr. 
iter 

s         f1(s) s         f2(s) s         f3(s) 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
 
 

   0.60 
0.578056 -0.322145 
0.564364 -0.146264 
0.557556 -0.061064 
0.554678 -0.023790 
0.553571 -0.008848 
0.553158 -0.003254 
0.553005 -0.001205 
0.552937 -0.000530 
0.552920 -0.000136 
0.552910 -0.000079 
0.552904 -0.000046 
0.552901 -0.000027 

 
N1[0.504608;0.164955] 

d1=0.545500 

   0.60 
0.693633   -0.203569 
0.692309  -0.004559 
0.692001   -0.001053 
0.691929   -0.000244 
0.691925   -0.000014 
0.691922   -0.000009 
0.691921   -0.000006 
0.691920   -0.000003 
0.691919   -0.000002 
0.691919   -0.000001 

 
 
 

N2[0.653872;0.166586] 
d2=0.433495 

  0.60 
0.792369   -0.272327 
0.772988   -0.044831 
0.770042   -0.006369 
0.769687   -0.000759 
0.769676   -0.000025 
0.769668   -0.000017 
0.769663   -0.000011 
0.769659   -0.000008 
0.769657   -0.000005 
0.769655   -0.000003 
0.769654   -0.000002 
0.769653   -0.000002 
0.769653  -0.000001 

N3[0.742052;0.151071] 
d3=0.365905  

 
Fig. 11. The clothoids with parameters A=0.40, A=0.564189 and A=0.70 and the distances between a point P and 

clothoid
5. CONCLUSIONS 
  

The main problem when the clothoid curves 
are studied is the accurate computing of point 
coordinates. In  all cases involving calculus 

performed on clothoids, such as: the computing 
of the distance between a point and a clothoid, 
the coordinates of points where clothoid fits with 
a line or with a circle arc when are used as 
transiton curves, coordonates of clothoids 
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deplaced and rotated in the plane, it is necessary 
to have accurate values of the clothoid points. 
  

The above presented method for the definite 
integral computing, using the Romberg 
procedure based on the Richardson 
extrapolation, solves the problem of accuracy 
and requires a minimal number of aritmetic 
operations, as can be seen from the numerical 
examples. 

 
Practical aspects were considered when the 

distance between a point and a clothoid was 
calculated. In the current practical activity 
(railways and highways construction), the 
distance between a point and a spiral segments 
of clothoid has no application, that's why our 
attention focused on the clothoid segments  
really used in practical situations. 

 
Consequently, an interval containing a single 

root results and the solving of the nonlinear 
equation can be done with the well known 
method of Newton-Raphson or bisection 
method.  

 
The root of this nonlinear equation is the 

value of the curvilinear abscissa of the clothoid’s 
point where the perpendicular form the outer 
point P intersects the curve. 

 
In paper [8] the authors have determined the 

nonlinear equation by searching the value of  s 
that minimize the lenght of the segment 
connecting the point P and a point on the 
clothoid. 

 
The present paper proposes another method, 

obviously obtaining the same results, based on 
geometrical considerations.  

 
Our original method may be used not only for 

solving the problem of computing the distance, 
but also in the frame of other problems, linked 
with the clothoids, especially when the fitting of 
clothoid with other planar curves is studied.  

 
The paper contains many numerical results, 

diagrams obtained by running original C 
programs, and tables, all of them illustrating and 

sustaining the studied theoretical and practical 
aspects.  

 
We hope that this paper may be included, 

together with the those contained in the 
reference section, in the category of scientific 
works that highlight important aspects of this 
domain and bring new achievements. 
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CALCULUL EXACT AL COORDONATELOR CURBELOR CLOTOIDE ȘI 
DETERMINAREA DISTANȚEI DINTRE UN PUNCT ȘI O CLOTOIDĂ  

 
Această lucrare tratează două probleme importante legate de studiul numeric al curbelor clotoide: 

calculul exact al coordonatelor acestora şi determinarea distanţei dintre un punct şi clotoidă.  
După o succintă prezentare a istoriei a acestei curbe sunt trecute în revistă principalele probleme 

legate de curba clotoidă: realizarea racordărilor dintre două curbe (dreaptă cu arc de cerc, arc de cerc 
cu arc de cerc, etc.) utilizate la construcţia de căi ferate şi autostrăzi, utilizarea lor în path-planning-
ul deplasărior roboţilor mobili şi a vehiculelor autonome, utilizarea lor în CAGD, etc., sunt citate 
principalele lucrări existente. 

Curba clotoidă are o proprietate cinematică foarte importantă: în cazul parcurgerii acesteia cu o 
viteză constantă acceleraţia normală a mobilului variază liniar, deoarece produsul dintre abscisa 
curbiline a punctelor clotoidei şi raza cercului osculator corespunzător punctului este constant,               
s ρ(s) = A2.  
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Este rezolvată problema calculului exact al coordonatelor punctelor clotoidei, utilizând formule de 
cuadratură numerică, încadrate în metoda lui Romberg, care este fundamentată pe principiul 
extrapolării al lui Richardson. Aceste calcule sunt necesare deoarece precizia de calcul a 
coordonatelor determină precizia tuturor calculelor ulterioare, calculul distanţei punct-clotoidă, 
determinarea coordonatelor punctelor de racordare, valoarea parametrilor care determină poziţia unei 
clotoide în sistemul de axe Oxy, etc. 

În cadrul celei de-a două părţi a lucrării se determină distanţa dintre un punct şi clotoidă, utilizând 
o metodă proprie pentru determinarea ecuaţiei neliniare a cărei soluţie este abscisa piciorului 
perpendicularei dusă pe clotoidă din punctul exterior acesteia. 

Lucrarea conţine multe rezultate numerice, prezentate în special sub formă de grafice, obţinute în 
urma utilizării unor programe proprii, rezultate care certifică corectitudinea relaţiilor de calcul 
folosite.  
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