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Abstract: The Ackermann’s four-bars linkage, having the shape of an isosceles trapezoid, is used in the 

steering mechanism of the cars, making rotations with unequal angles of the front wheels, in order to 

eliminate the slip frictions during changing the vehicle direction of travel. 

Both Ackermann's mechanism and other mechanism which perform similar tasks have come to the 

attention of many researchers over time and there it is a lot of scientific work in this field. 

One of the important tasks is the dimensional optimization of the mechanism, to ensure compliance 

with a certain relationship between the angles of rotation of the two front wheels, around some axes 

perpendicular on the ground. 

 The authors propose a new method of optimization, based on geometric aspects. Theoretical 

problems are presented as well as a numerical example that fully justifies this new optimization 

methodology and its correctness.  

Key words: four-bar mechanism kinematics, steering mechanisms, optimization, curve fitting, 

simultaneous equations solving 

 

1. INTRODUCTION  

   

A method to avoid the lateral slip of the 

wheels has been known for over 200 years, this 

can be achieved by using a mechanism name 

Ackermann’s mechanism (Rudolp Ackermann, 

1764-1834), patented in England, in 1817, 

which was firstly used in the building process 

of carriages and now it is used for automobiles. 

The Ackermann steering gear is a four-bars 

mechanism, ABCD, [11] (figure 1), having two 

links of equal length: AB and CD and two of 

unequal length: AD and BC, mounted at the 

back of the front wheels. This mechanism is the 

most used in the construction of vehicle 

steering systems, a vital element for the control 

and stability of vehicles during maneuvers to 

change the direction of travel [1],[2], [3],[7]. 

In a curve, all the four wheels of a vehicle 

should be exactly on a circular trajectory and in 

order to obtain this, the extensions of the four 

axles of the wheels must intersect in the center 

of the circle (Ackermann’s steering principle, 

figure 1). 

 

Fig. 1. Ackermann steering mechanism principle 

 

Different aspects of the steering mechanisms 

presented interest for researchers over time, 

such as: steering geometry and performance 

optimization [5],[6],[12],[14], evaluation of 

steering errors [11], investigations on the 

dynamic behavior [3], geometrical and 

operational constraints [4],[5],[10], etc., but 

research topics are far from exhausted. 
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This paper aims to address aspects of the 

geometry of the mechanism, based on which 

the authors propose a new method of 

optimization. 

 

2. THE RELATIONSHIP BETWEEN THE 

ROTATION ANGLES OF THE WHEELS 

 

By moving the four-bar mechanism’s 

connecting rod to the left or to the right, the two 

rocking levers realize unequal angle rotations, 

such that the two wheels rotate with the same 

(unequal) angles around some perpendiculars 

on the ground. If the two (front) drive wheel’s 

axes intersect in one point that can also be 

found on the rear wheel’s axis, then all of the 

wheels are realizing rolling movement on the 

ground, without any side slip (figure 2). 

It is clear that, in order for the axles’s wheels 

positions represented in figures 1 and 2 to be 

the ones seen in the drawings, there must be a 

link between the two angles φ and ψ, and the 

value of the distance L between the front and 

rear axles’s wheels and the distance between 

the wheels, d. 

 By using the elements from figure 2, this 

link can be easily established. The lines OA1 

and OA2, which pass through the origin and 

have known angular factors, have the following 

equations: 

ψ=ϕ= tanxy)D(,tanxy)D( 21  

 

 

Fig. 2. Working principle, geometry and notations 
  

Given the fact that the points A1 and A2 , of 

known coordinates, are on these lines, we can 

write: 

               
ψ+=+

ϕ=
tan)da(L]L;da[A

,tanaL]L;a[A

2

1
    (1) 

The parameter a can be eliminated, resulting 

into a relationship between the four variables: 

     
ϕ+

ϕ=ψ
tandL

tanL
tan    ,    (2) 

having the final form: 

d

L
,

tan

tan
tana =ξ









ϕ+ξ
ϕξ=ψ   (3) 

Its graphical representation in figure 3 uses four 

different values of the L/d, ratio. 
                                                                                                           

 

Fig. 3. Dependency between ψ, φ and L/d 

 

Starting from the L and d dimensions, which 

characterize the vehicle, the rotation angle’s 

variation curve of a wheel based on the rotation 

angle of the other wheel has been determined, 

such that the first part of the problem was 

solved.    

The solution for the second part of the 

problem is a bit more difficult, as we don’t 

have an exact way of solving it – a quadrilateral 

trapezoid isosceles type mechanism with which 

we can obtain values for angle ψ for the given 

values of angle φ based on the relation (3) for a 

certain value of the ratio L/d can not be 

determined. 

From  figure 4,  the relation between angles 

φ and ψ can be established, which will be 
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based on the values of the other elements of the mechanism, lengths d and r and the angle α . 

 
 

Fig. 4. Ackermann’s four-bars linkage – working position

 

 The length of the rod, b, results from the 

relation:  

α−=α+= cosr2db,cosr2bd   (4) 

The vector equation of the closing contour of 

the mechanism is projected horizontally and 

vertically, obtaining: 

0DACDBCAB =+++      





=ψ+α−θ+ϕ−α
=−ψ+α+θ+ϕ−α

0)(sinrsinb)(sinr

0d)(cosrcosb)(cosr
 (5) 

relations from which the unknown angle θ can 

be eliminated, obtaining a trigonometric 

equation having the unknown ψ: 

22

2

2

])(sin)(sin[r

])(cosr)(cosrd[

)cosr2d(

ϕ−α−ψ+α+
+ψ+α−ϕ−α−

=α−
  (6) 

After some calculations the equation becomes: 

 

0C)(cosB)(sinA =+ψ+α+ψ+α   (7) 

 

The A, B and C coefficients have the 

expressions:  

 

   

22

222

2

)cosr2d(r

])(cosrd[)(sinrC

])(cosrd[r2B

,)(sinr2A

α−−+
+ϕ−α−+ϕ−α=

ϕ−α−−=
ϕ−α−=

  (8) 

With the substitutions:  

           

2

2

2
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t1
)(cos

,
t1

t2
)(sin,

2
tant

+
−=ψ+α

−
=ψ+αψ+α=

(9)     

equation (7) turns into a second degree 

equation,                                   

0CBtA2t)BC( 2 =+++−    (10) 

having the solutions: 
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t
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The value of the angle ψ is calculated as: 

α−=ψ )t(tana2 2     (12) 

If we consider a certain specified value of 

the angle φ, which corresponds to a computed 

value of the angle ψ and the extensions of the 

two front wheel’s axes are drawn, we can see 

that their point of intersection, E, is situated 

somewhere in the plan (figure 4), but only by 

chance it will be situated on the rear wheel’s 

axis, as it should be in order not to have any 

wheel side slip. 

By repeatedly using the relations (8), (11) 

and (12), the values of the angles φ and ψ can 

be graphically represented, overlapping the 

obtained curve with the one of relation (3), 

noting that the two graphical representations 

don’t coincide, but are “close” one to another. 

It can be seen that after some modifications of 

the parameters r (=AB) and α (the angle 

between the crank and the horizontal) a 

graphical representation closer to the desired 

one can be obtained, and if we refer to figure 4, 

the intersection point of the extensions of the 

two front wheel’s axles will be closer to the 

rotation axis of the rear wheels, for different 

values of angle φ. 

In the specialty literature this problem is 

widely represented, the authors using different 

optimization methods to achieve the optimal 

solution. In the next section an optimization 

solution which belongs to the authors will be 

presented. 

3. THE NEW OPTIMIZATION METHOD 

 

Figure 5 shows the axles of the front wheels 

that intersect the axis of the rear wheels at 

points T1 and T2, and the point T3 is their 

common point of intersection. 

By writing the equations of the three lines 

and solving the three equation systems, each 

with two unknowns, the cartesian coordinates 

of the three points T1 , T2  and T3 are determine. 

Ly,
tan

L
x

)TT(,Ly

)AT(,tanxy
11

21
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33
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ψ−ϕ
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ψ−=
ϕ=

(15) 

 

It is clear that, in order not to have any 

wheel lateral slip, those three points would 

have to coincide for any possible value of angle 

φ, which is impossible.  

 

Fig. 5.  The steering mechanism and the triangle to be minimized 
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A possible way to determine the optimal 

values of the parameters r and α is to find their 

values for which the sum of the areas of the 

triangles which are obtained for every value of 

the angle φ from the range [00; φmax], taken 

with constant step, to be minimal [13]. 

The area of each triangle can be calculated by 

using the formula: 










ψ−ϕ
ψϕ+−









ϕ
+

ψ
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=−−=
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L
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L
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L
d

2

1

)16()yy()xx(
2

1
S 3112

 

and their sum is realized, which is attributed to 

the elements of a matrix. The number of the 

matrix’s lines being equal to the number of 

values which r can take and the number of its 

columns being equal to the number of values 

which the angle α can take.  

The matrix (18) was obtained for the 

following values: L = 2700 [mm] and d = 1300 

[mm] (Figure 2), its elements being the 

calculated sums of the areas of the triangles in 

the case of the values of r and α. 

One may observe that the minimal value was 

obtained for the values 
070,]mm[200r =α=      (17)      

In each of the figures 6, 7 and 8 the diagram 

which corresponds to the theoretical case has 

been graphically represented, based on relation 

(3), showing the dependency between the 

values of the angles ψ and φ, when L and d 

have the values: 2700 and respectively 1300. 

In figure 6 another diagram was represented, 

containing the values of angle ψ based on angle 

φ, obtained after solving the trigonometric 

equation (7), considering the values for r and α  

the ones from (17), which realizes the minimal 

value of the sum of the triangles areas.  

 

One may observe that in this case the two 

diagrams are very close, which denotes the 

correctness and efficiency of the used process. 

        

 

Fig. 6.  Results for optimal values of r and α 

 

 

Fig. 7. Results for nonoptimal values of r and α 
 

 

Fig. 8. Results for nonoptimal values of r and α 
 

r     550      600       650      70
0       750      800       850 

 1 100 265450.9 116411.7  27392.1  11635.4 113741.7 480849.8  1867342.3    (18) 
 2 125 290995.4 130301.3  32523.1  10250.5 107658.5 471596.1  1856245.1 

 3 150 318757.7 145460.0  38329.5   9185.1 101698.5 462372.9  1845148.4 

 4 175 348966.6 161997.3  44859.2   8457.3  95866.7 453181.3  1834052.1 

 5 200  381885.0 180036.6  52164.9   8086.2   90168.7 444022.1  1822956.3 

 6 225 417816.4 199717.0  60304.7   8092.9  84610.2 434896.1  1811861.0    

 7 250 457113.1 221195.9  69342.9   8499.8  79197.4 425804.4  1800766.1 

 8 275 500187.4 244652.6  79351.1   9331.6  73936.7 416748.1  1789671.7 

 9 300 547524.7 270292.1  90408.7  10615.0  68835.2 407728.0  1778577.8 

10 325 599702.0 298350.1 102604.8  12379.0  63900.1 398745.4  1767484.5 

11 350 657410.8 329099.4 116039.2  14655.6  59139.4 389801.3  1756391.6   
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   r   670    680        690      70
0      710      720      730        

  1  180  19973.3  12092.8   8095.6   8353.9  13333.5  23618.3  39944.0    (19) 
  2  185  20732.0  12549.1   8269.6   8264.9  12999.8  23057.5  39172.7 

  3  190  21514.5  13025.7   8460.9   8190.5  12678.4  22506.8  38409.7 

  4  195  22321.1  13522.8   8669.7   8130.9  12369.4  21966.4  37655.2 

  5  200  23152.0  14040.8   8896.2   8086.2  12072.8  21436.3  36909.2 

  6  205  24007.7  14580.0   9140.6   8056.7  11788.9  20916.8  36171.7 

  7  210  24888.4  15140.5   9403.2   8042.3  11517.7  20407.8  35443.0 

  8  215  25794.5  15722.6   9684.1   8043.5  11259.5  19909.5  34723.0 

  9  220  26726.4  16326.7   9983.6   8060.3  11014.3  19422.0  34011.9 

 

 

      r     550      600       650      70
0       750     800       850 

  1  100  37688.3  25113.6   9643.4  12614.8  43850.7 105445.7 283964.3    (20) 
  2  125  39239.2  26562.1  11023.0  11670.6  42544.8 104155.7 282680.8 

  3  150  40823.8  28030.2  12413.5  10780.8  41236.3 102864.7 281396.9 

  4  175  42445.3  29519.6  13815.6   9960.9  39925.2 101572.6 280112.7 

  5  200  44107.9  31032.1  15230.1   9203.8  38611.4 100279.5 278828.2 

  6  225  45815.9  32570.0  16658.0   8520.1  37294.6  98985.3 277543.3 

  7  250  47574.9  34135.5  18100.2   7917.9  35974.9  97689.9 276258.0 

  8  275  49390.8  35731.4  19557.8   7403.1  34652.1  96393.4 274972.3 

  9  300  51271.1  37360.9  21032.2   6984.9  33326.0  95095.7 273686.3 

 10  325  53224.3  39027.5  22524.7   6684.2  31996.5  93796.7 272400.0 

 11  350    55260.9  40735.4  24036.8   6511.3  30663.5  92496.5 271113.2 

 

 

In figures 7 and 8, diagrams which 

correspond to other values for r and α are 

displayed: 

r=150 [mm],     =800   (Figure 7), 

r=250 [mm],     =600   (Figure 8). 

One may observe from figures 7 and 8 that 

the diagrams computed based on the solving 

procedure are much more different than the 

theoretical diagram, compared to the case of 

figure 6.  

The optimal variant has been obtained when 

the sum of the areas of the triangles was 

minimal. 

 In order to obtain a better result, the 

calculation can be repeated, decreasing the 

ranges from which the values r and α are taken, 

and also decreasing their variation step [13]. 

After a new iteration of the procedure, the 

matrix (19) was obtained.  For the values: 

070,]mm[210r =α=       (21)                      

the computed sum of the areas decreases from 

8086.2 to 8042.3 . 

The above procedure was based on the 

determination of the values of r and α for 

which the sum of the areas of the triangles 

T1T2T3 (Figure 5) is minimal, so all of the 

obtained triangles should be as small as 

possible. 

In conclusion, another way for obtaining this 

optimisation can be taken into account: small 

triangles mean smaller lengths of the sides, so 

instead of searching for r and α values which 

minimise the sum of the area of the triangles, 

we could search those values which would 

minimise the sum of the perimeters of the 

triangles. 

The perimeter of a triangle T1T2T3 can be 

computed by using the following relation: 

 
2

23

2

23

2

13

2

1321

)yy()xx(

)yy()xx(xxP

−+−+

+−+−+−=
 (22) 

For each pair of values r and α, the sum of 

perimeters is computed, determining the 

elements of a matrix, which, as in the case of 

the previous method, will have the number of 

lines equal to the number of values of r and the 

number of columns given by   the values taken 

by the angle α.   

As a result of performing these calculations 

the matrix (20) resulted. The matrix’s smallest 

element is obtained for the values:  

      070,]mm[350r =α=      (23)  

Performing the graphical representation of 

the variation of the angle ψ depending on the 

angle φ (Figure 9) it can be seen that in the 

previous case, of minimizing the sum of 

surfaces, a better result was obtained, the 
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curves in Figure 6 being closer than those in 

Figure 9, so the first method returns better 

results.  

 

Fig. 9. Results obtained by minimizing the sum of 

triangle perimeters 
 

4. CONCLUSIONS 

 

The problem of determining the optimal 

dimensions of the elements of the trapezoidal 

mechanism used in the vehicle steering system 

has been in the attention of many researchers 

over time. At present, the Ackerman-type 

steering mechanism has returned to the 

attention of researchers, especially in the field 

of construction of mobile robots, namely in the 

study of the rotation of their wheels in order to 

follow a prescribed path or to avoid certain 

obstacles. 

The method chosen to optimize the 

dimensions of the mechanism - so that 

Ackermann's law is satisfied for the largest 

possible ranges of values of the considered 

variables - is based on geometric 

considerations, regarding the reduction of the 

dimensions of a triangle formed by the 

intersection of three directions: rear wheel axis 

and the axles of the two front wheels, both in 

terms of its surface and perimeter, an idea that 

has not been used so far. The numerical 

calculations and graphs presented in the paper 

were made by authors with programs written in 

the C programming language [8],[9],[13]. 

Like other optimization methods, the 

proposed method has a degree of uncertainty, 

because it was considered that the axes of the 

joints of the trapezoidal quadrilateral 

mechanism are vertical, which is not achieved 

in practice.   

For the previous calculations it was 

considered that a front wheel rotates around a 

vertical axis (perpendicular on the ground). In 

reality, this axis, the pivot axis, has an 

inclination to the vertical, a so call escape 

angle, in a vertical plan perpendicular on the 

wheel’s axis, and an inclination angle, in a 

vertical plan which contains the wheel’s axis.  

In practice, the wheelbase L and track gauge 

are specified in the technical characteristics of 

the vehicles. The distance d between the pivot 

axes is obviously smaller than the gauge and 

must be measured to work with real values. 

This study will be continued in the future, 

both in the case of the analyzed mechanism and 

in the case of the other variant used (two 

mechanisms driven by an element performing a 

translational movement) determining the 

optimal dimensions of the elements so that 

Ackermann's law is satisfied for different 

positions of the steering mechanisms. 
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 O METODĂ GEOMETRICĂ DE OPTIMIZARE A MECANISMULUI DE DIRECŢIE TIP 

ACKERMANN 

 

Rezumat: Patrulaterul lui Ackermann, de forma unui trapez isoscel este utilizat în cadrul 

mecanismului de direcţie a autovehiculelor, realizând rotiri cu unghiuri neegale a roţilor din faţă, 

pentru ca să se elimine frecările de alunecare în timpul schimbării direcţiei de mers al 

autovehiculului. 

Atât mecanismul lui Ackermann cât şi alte variante care sunt utilizate efectiv în construcţia 

dispozitivelor de direcţie a autovehiculelor au stat în atenţie cercetătorilor, existând multe lucrări în 

acest domeniu. 

Una din problemele importante este cea a optimizării dimensionale a mecanismului astfel încât 

să fie asigurată respectarea relaţiei de legătură între unghiurile de rotaţie, în jurul unor axe verticale, 

a celor două roţi din faţă.  

Autorii propun o nouă metodă de optimizare, bazată pe aspecte geometrice. Sunt prezentate 

problemele teoretice precum şi un exemplu numeric care justifică pe deplin metodologia de 

optimizare propusă. 
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