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MATHEMATICAL MODELING OF A 3R ROBOT STRUCTURE  

IN THE NOMINAL CONFIGURATION  
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Abstract: The main purpose of this paper is to develop a study on the direct geometry and kinematics of 
an RRR-robot (with three degrees of freedom of rotation), in the nominal configuration.   
For this purpose, the algorithm of locating matrices was applied, to determine the direct geometry 

equations. To compute the velocities and accelerations relatively to { }0  fixed system, the algorithm of 
transfer matrices was used. The results are useful to establish the equations of the motion trajectory.  
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1. INTRODUCTION  
 

The industrial applications where serial robot 

structures are implemented are becoming an 

essential part of our lives. Robot manipulators 

are used for performing manufacturing tasks, 

such as part handling, welding, or painting. 

The development of industrial applications 

demands robot manipulators that ensure an 

increase in productivity and quality at lower 

manufacturing costs. As an effect, there is an 

increasing need to design robot structures that 

achieve faster and accurate motions [10-12]. 

These objectives result from improving the 

design of the robot's mechanical structure and 

the controllers. The present paper aims to 

present the geometric and kinematic model 

applied for three degrees of freedom robot 

mechanical structure - three rotations around 

x , y  and z  axes (see Table 1). The 3R robot 

structure, in the nominal configuration, is 

analyzed. The direct geometrical model 

(DGM) is obtained by applying an algorithm 

based on homogenous transformation 

matrices, while the direct kinematic's 

equations result from applying the Jacobian 

matrix [1-5]. The results will be used in future 

research to determine the inverse kinematic 

and dynamic model, essential in defining the 

motion trajectories for the analyzed robot.  

2. DIRECT GEOMETRIC MODELING 

OF AN 3R TYPE ROBOT STRUCTURE 

 

The analysis starts by defining the matrix 
( )0

vnM of nominal geometry for the considered 

3R robot structure. This matrix containing the 

input data corresponding to the direct geometric 

modeling, and is presented in the table below: 

                                                                                   

Table 1 

Element 
i=1 

Joint 
type 

( )0 T
ip  ( )0 T

ik  

1 R 0 0  0 1 0 

2 R 1l  0 0 1 0 0 

3 R 0 2l  0 0 0 1 

4 - 0 0  1 0 0 

 

The equations that define the direct geometrical 

model (MGD) were computed using the 

homogenous transformation matrices. Within 

Figure 1 is depicted the kinematic diagram of 

the mechanical structure, in the initial 

configuration (zero-configuration). The zero 

configuration is characterized by the fact that all 

the generalized coordinates initialize to zero: 

( ) [ ]0
0; 1

T
iq i nθ = = = → .                (1)         
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     Fig.1. Kinematic diagram of the 3R robot 

  
According to Fig. 1, in the geometrical center of 

every kinematical joint, is attached a mobile 

system { }i  that models the motion of the 

kinematical link. The homogeneous 

transformation matrices between the adjoined 

systems { }i  and { }1i − , where 1 4i = → , are 

determined according to [1], [6-8] as follows: 

[ ]
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0
1

1 1 0

0 0

0 1 0 0

0

0 0 0 1

cq sq

T
sq cq l

 
 
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 −
 
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[ ]

1
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2 2
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0 0
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cq sq
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[ ]

3 3
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0 0
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cq sq

sq cq l
T

− 
 
 =
 
 
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[ ]3
4

3

0 1 0 0

1 0 0 0

0 0 1

0 0 0 1

T
l

− 
 
 =
 
 
 

.                    (5)            

The transformations, between the mobile 

system{ }i and{ }0 fixed system, for any robot 

configuration, are computed according to:  

[ ]
1 1 2 1 2 1 1

2 20

2
1 1 2 1 2 0 1 1

0 0

0 0 0 1

cq sq sq sq cq l cq

cq sq
T

sq cq sq cq cq l l sq

⋅ ⋅ ⋅ 
 − =
 − ⋅ ⋅ − ⋅
 
  

, (6) 

[ ]
[ ]

1 1 2 1 2
0
3 2 20

3

0 1 1 2 1 2

0 0 0 1

l cq l sq sq

R l cq
T

l l sq l cq sq

⋅ + ⋅ ⋅ 
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 
  

,    (7)    

[ ]0
3 R  is the resultant rotation matrix that 

defines the orientation of the mobile system 
{ }3  (attached in the geometric center of the 

third joint) relative to { }0 fixed system:    

    
[ ]

1 3 1 3

1 2

1 2 3 1 2 3
0
3 2 3 2 3 2

1 3 1 3

1 2

1 2 3 1 2 3

cq cq cq sq
sq cq

sq sq sq sq sq cq

R cq sq cq cq sq

sq cq sq sq
cq cq

cq sq sq cq sq cq
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 
 ⋅ + ⋅ +

⋅ 
+ ⋅ ⋅ + ⋅ ⋅  

, (8)       

The homogenous transformation between the 

system attached in the characteristic point of the 

robot end-effector and{ }0 system is computed: 

[ ]
[ ]

1 1 2 1 2 3 1 2
0
4 2 2 3 20

4

0 1 1 2 1 2 3 1 2

0 0 0 1

l cq l sq sq l sq cq

R l cq l sq
T

l l sq l cq sq l cq cq

⋅ + ⋅ ⋅ + ⋅ ⋅ 
 ⋅ − ⋅ =
 − ⋅ + ⋅ ⋅ + ⋅ ⋅
 
  

(9) 

In the expression above, [ ]0
4 R  is the resultant 

matrix between the mobile system{ }4  (attached 

in the characteristic point belonging to robot's 

end-effector) and the fixed system { }0 : 

[ ]

1 3 1 3

1 2

1 2 3 1 2 3
0
4 2 3 2 3 2

1 3 1 3

1 2

1 2 3 1 2 3

cq sq cq cq
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(10) 

To define the final orientation of the end-

effector, the following matrix identity is used: 

0x
0y

0z

{ }0

1x
1y

1z

{ }1

2x
2y

2z

{ }2

3x 3y

3z

{ }3

n

sa

{ }4
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[ ] ( )0
4 y x z

y x z y x z
y x

y z y z

x z x z x

y x z y x z
y x

y z y z

R R

s s s s s c
s cc c c s

c s c c s

c s s c s c
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α β γ
α β γ α β γ α βα γ α γ

β γ β γ β
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= − − =
 ⋅ ⋅ + ⋅ ⋅ −

⋅ + ⋅ − ⋅
 
 = ⋅ ⋅ −
 

⋅ ⋅ − ⋅ ⋅ + ⋅− ⋅ + ⋅ 
 

(11)                                                                                                  

By applying the function tan 2A , the orientation 

angles, represented by ,y xα β  and zγ that define 

the end-effector's final orientation, are obtained.  

According to [1], it results in the column vector 

of the orientation angles:   

1 2 3
2

T

q q c q
πψ   = +    

.           (12) 

Thus, the DGM equations are written: 

 

( )0

1 1 2 1 2 3 1 2

2 2 3 2

0 1 1 2 1 2 3 1 2

1

2

3
2

T

X p
l cq l sq sq l sq cq
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l l sq l cq sq l cq cq

q

q

c q

ψ

π

 = = 
⋅ + ⋅ ⋅ + ⋅ ⋅ 

 ⋅ − ⋅ 
 − ⋅ + ⋅ ⋅ + ⋅ ⋅
 
 
 
 

  +    

   (13) 

The DGM equations define the end-effector's 

final position and orientation relative to the 

fixed system and for any robot configuration. 

 

3. DIRECT KINEMATIC MODEL OF 3R 

ROBOT USING JACOBIAN MATRIX 
 

The Jacobian matrix is used in robot mechanics 

to transfer velocities from the space of 

configurations to the Cartesian space of motion. 

In kinematical modeling, this matrix 

corresponds to a specific configuration of the 

robot in the workspace. 

Further on, an algorithm for determining the 

Jacobian matrix components, based on the 

transfer matrices method, is applied [4].  

The matrix equations for operational velocities 

and accelerations defining the motion of the 

robot final effector, projected on the fixed 

reference system { }0 , are presented in a general 

form according to the following expressions: 

.  

(14) 

 

      (15) 

When required to express the operational 

velocities and accelerations about the n mobile 

system, a matrix operator ensuring the transfer 

from one system to another must be applied: 

         ,   

(16) 

 

,     (17) 

 where, 

 ( ) ( )0n nJ R Jθ θ= ⋅ ,              (18) 

          
[ ] [ ]
[ ] [ ]

0 1 0

0 1 0

0

0

n
n nnn

n
n nn

Rv v
X

Rω ω

−

−

    
    = = ⋅
    

     

& &
&&

& &
   (19) 

The following expressions define operational 

accelerations in the mobile system: 

 

      (20) 

The MCD equations about the { }n  system, 

expressed by using the Jacobian matrix, are: 

        ,              (21) 

.    (22) 

For the 3R robot structure represented in Fig. 1, 

the transfer matrices algorithm from kinematics 

is applied. The components of the linear 
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velocities transfer matrices, denoted ( )V θ  and 

linear accelerations ( )A θ  are computed: 

( ) [ ]1 2 3

T
V V V Vθ = ,                 (23) 

.                (24) 

.              (25) 

where the components iV  and , 1 3i = → , are: 

2 1 2 1 1
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,   

(28) 

,     .  

(29) 

The components of angular velocities transfer 

matrices ( )θΩ and angular accelerations 

transfer matrices are defined according to: 

( ) [ ]1 2 3

TθΩ = Ω Ω Ω ,                (30) 

,                (31) 

,                  (32) 

[ ] ( )0 0
1 1 1 1

0

1

0

R k

 
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  

,                (33)
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0
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[ ] ( )
2 1

0 0
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1 2
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R k sq

cq cq

⋅ 
 Ω = ⋅ ⋅ ∆ = − 
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   , , 

(36) 

The matrices defined with (26) - (29) are 

substituted in (23) - (24) resulting in the 

transfer matrices of linear velocities (23) and 

accelerations (25). 

   

. (37) 

The expressions (33) - (37) are substituted into 

(30) and (31) which results in the transfer 

matrices of angular velocities (30) and 

accelerations (32), according to [1-9]. The 

components of the Jacobian matrix and its 

derivative, projected on the fixed frame{ }0 , are 

computed by considering the expression (14): 

( ) ( ) ( )1 2 30 0 0
1 2 3

1 2 3

, ,
V V V

J J J
     

= = =     Ω Ω Ω          
,  (38) 

.  

(39) 

Where, and  are defined by (26) -

(29) and (33) - (37) respectively. The absolute 

linear velocities and accelerations that define 

the motion of the robot end-effector are 

obtained based on expressions (14) and (15):  

,         

(40) 

, (41) 
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,    (42) 

. (43) 

The velocities and accelerations of the end 

effector relative projected on the mobile 

reference frame are also determined 

[1]: ,      (44) 

, (45) 

,    

(46) 

The results from (40) - (43) are included in 

the column matrix of operational velocities 

and accelerations  and , (14) and 

(15).  

Finally, the column matrix of operational 

velocities and accelerations relative to the 

mobile system,  and results, For this, 

(21) and (22) were applied. 

(47)

 
In the expressions (38) and (39), 
0 , 1 3iJ i = →  and  define the 

Jacobian matrix and it time derivative 

corresponding to every robot joint. According 

to [1], the mathematical connection between 

the generalized and operational velocities, is 

done by the Jacobian matrix or the transfer 

matrix of linear velocities or the matrix of 

partial derivatives as it is also known.  

 

3. CONCLUSIONS 
 

This paper's objectives include the 

determination of DGM equations for a 3R 

robot structure, represented in Fig 1. For this 

purpose, the algorithm of the locating matrices 

was applied. Also, the kinematic equations of 

the direct kinematic model in the nominal 

configuration were obtained. The expressions 

for the Jacobian matrix with projections on the 
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fixed and mobile systems were determined 

based on the transfer matrices.  

The Jacobian matrix makes the correlation 

between the generalized velocities and 

operational velocities, both defining the 

forward kinematics equations. 

These results will be further use in future 

research regarding the establishing of motion 

equations and the study of motion trajectory.   
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MODELAREA MATEMATICĂ A UNUI ROBOT DE TIP 3R PENTRU  

CONFIGURAȚIA NOMINALĂ 
 

Scopul acestei lucrări este de a realiza un studiu asupra geometriei directe și a cinematicii unui 
robot RRR (cu trei grade de libertate de rotație), în configurația nominală. În acest scop, a fost 
aplicat algoritmul de matricelor de situare, pentru a determina ecuațiile geometriei directe. Pentru 
calcularea vitezelor și accelerațiilor în raport cu sistemul fix, a fost utilizat algoritmul matricelor 
de transfer. Rezultatele sunt utilizate pentru a stabili ecuațiile traiectoriei de mișcare. 
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