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Abstract: Qualitative analysis of surface defects on aluminium High-Pressure Die-Casting components is 

relevant for both quality assurance and process monitoring purposes. Besides part functionality and 

durability, the outward appearance of a die-cast component can be of paramount importance during 

incoming goods inspection by the customers in order to ensure parts’ functionality. Especially when it 

comes to inspections of parts’ surfaces, the use of Artificial Intelligence is gaining traction for identifying 

and classifying defects. The present paper illustrates a case study on surface defect detection of aluminium 

die-cast components where a commercial Deep Learning system has proved to reach a 90% effectiveness 

in recognizing compliant and uncompliant parts. The development of the presented experimental 

application is intended to pursue the objective of using automated systems for defect detection in-line, 

which represents an original goal of the present paper. The development of the technical system used in 

this application has benefitted from the knowledge of TRIZ beyond the understanding of optical principles 

overlooked in a first-attempt design.  

 

Key words: surface defect classification, high-pressure die-casting, quality control, artificial intelligence, 
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1. INTRODUCTION   
 

In High-Pressure Die-Casting (HPDC) of 

aluminium, the control of the quality of castings 

is of great importance especially if these 

components are applied in the automotive 

industry where even the slightest imperfection 

can compromise the functionality of the 

component itself and, hence, the safety of the 

end user. Nowadays, many of the operations for 

surface defect detection are carried out by 

specialized operators who, over time, have 

developed visual skills that allow them to detect 

the majority of surface defects. Understandably, 

this approach is repetitive and proves tedious 

especially when having to match the inspection 

quotas to the output rates and speeds of the 

production machines. Hence, fatigue and 

consequent decrease in concentration, lead to 

undesirable variations in reliable defect 

detection. 

To compensate for this, the focus of research has 

turned to optical systems for automatic defect 

detection based on artificial intelligence (AI) 

and artificial neural networks. 

In recent years, the study and use of AI within 

the industry has progressed, e.g. for defect 

detection on car bodies [1]. Here, a system 

consisting of image acquisition and processing 

devices was applied in a closed environment in 

non-contact mode with four LED light sources 

and Charge Coupled Device cameras. This 

approach achieved 95.6% to 97.1% accuracy in 

defect detection. Similarly, in [2], a "low-cost" 

system consisting of a single LED tube and a 

camera with a complementary metal-oxide-

semiconductor (CMOS) sensor for detecting 

paint defects on car roof tops was proposed and 

described. Here, an application for automatic 

optical control was found to be able to detect 

defects while suppressing false positives. The 

detected defects were verified several times by a 

differential image based on a single frame and 



- 476 - 

 

 

moving trajectory data based on multiple 

frames, which effectively reduced the 

occurrence of false detections. Huang et al. [3] 

focused on the development of a Convolutional 

Neural Network with low computational energy 

for the detection of surface defects. A study 

conducted on aluminium profiles by Wei and Bi 

[4] distinguished multiple types of defects on 

aluminium profiles with varying sizes. The 

developed system based on Deep Learning (DL) 

enabled the identification of different kinds and 

sizes of defects. After subsequent training of the 

network with images of the defective parts, the 

average defect detection accuracy was 75.8%, 

deemed as an insufficient result for the intended 

outcome (detection accuracy >90%). Galan et al. 

[5] conducted a study on defect identification 

and measurement on stamped metal parts using 

a computational algorithm. They chose this 

algorithm running on a graphics processing unit, 

and for the industrial application a later study 

was mentioned. Frayman et al. [6] used a hybrid 

image-processing algorithm based on 

mathematical morphology to detect defects of 

different sizes and shapes and achieved a defect 

recognition level of 99%. The system was 

applied directly in an HPDC foundry. Świłło and 

Perzyk [7] developed and applied an automatic 

optical defect detection system for die-cast 

aluminium components. The machine vision 

system used an image processing algorithm 

based on the modified Laplacian Gaussian edge 

detection method to detect defects with different 

sizes and shapes. Still, in this work, the 

application to a deep neural network was left to 

subsequent studies. Pastor-Lopez et al. [8] 

studied surface defect detection and 

categorization in high-precision steel foundry 

supported by Machine Learning (ML). Using a 

robot equipped with a laser triangulation 

camera, a system based on vision and ML was 

proposed to detect and classify defects on the 

surface of iron castings. This approach started by 

retrieving images of the tested castings. Then, a 

segmentation method identified all possible 

defects within the castings. Finally, ML models 

are used to classify the characteristic defects. 

Experimental results indicate a recognition of 

detected defects higher than 90%. 

Other studies published in recent years have 

concerned the application of DL to detect defects 

in aluminium castings using X-ray images as 

well as picture images extracted from optical 

cameras or different vision systems. Wang et al. 

[9] proposed a model composed by two sub-

networks: a general feature network and a subtle 

feature network (SFN) In addition, the self-

attention mechanism is modelled as a guided 

self-attention module (SGM) embedded in the 

SFN. SGM improves the ability of the model to 

extract subtle features from a badly defined 

background in the extracted images, as typical in 

X-ray applications. The effectiveness of the 

proposed model was evaluated on real X-ray 

images acquired in the fusion process. 

Experimental results showed that the proposed 

model has very high defect detection 

performance, overall above 90%.  

In summary, many studies have approached, 

with different degrees of success, the detection 

of surface defects on various types of metallic 

materials using (in some cases) DL algorithms 

with both optical images and images from X-ray 

analysis. Most of the proposed and tested 

solutions have neglected the possibility for in-

line application during the production of die-cast 

components. The goal of this study is to develop 

an automatic system based on DL able to detect 

any type and size of defect on the surface of the 

component under examination while fulfilling 

the requirements of speed and precision to be 

able to guarantee the quality control of 

aluminium components with a detection level 

above 95%. The paper presents a first effort in 

this direction by benefitting from an industrial 

application. 

  

2. PROBLEM DESCRIPTION 

 

This study was conducted at Alupress AG, a 

company specialized in the production of die- 

cast aluminium and its machining. The 

components produced are installed in safety 

systems for motor vehicles (such as ABS) or for 

electric and hybrid car systems. Given the 

advances discussed in the introduction, Alupress 

is focusing on using AI in inspection systems 

and to integrate them into the production 
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process. As per customer request, all 

components are inspected after casting, 

blanking, slide grinding and before the 

components are packed. Currently, this 

inspection work is carried out by human 

operators. 

Those are engaged in checking the aluminium 

component in all its details with a 90% defect 

detection rate and 10% of falsely indicated 

components. Clearly, the kinds of possibly 

found defects are manifold; Section 2.1 

introduces those of major relevance for the 

present case study. 

Here, both approaches were conducted only on 

the surface where the electronic components will 

be installed later on, equalling to a 180° check. 

The study was based on a two-step approach. In 

in a first phase, the setup for automatic defect 

control was applied directly in the production 

department to get a status quo of performance of 

the system involving all relevant factors (all 

processes, all environmental effects, etc.). For a 

more in-depth study of certain parameters, 

(illumination, camera, etc.) trials were 

conducted in the laboratory as a second step. At 

the end of the second step, the images of the 

component to be analysed were sent to a DL-

based AI software that processed them in order 

to recognize OK parts from nOK parts. Cognex 

VIDI™ software containing the DL algorithms 

was used, as more widely illustrated in the 

following. As the software used is a commercial 

product and the authors could not intervene on 

it, nor large customization options were 

possible, the employed DL algorithms can be 

thought as a “black box” in the present case 

study. 

 

2.1 Description of the analysed aluminium 
component 
 

For this analysis, a plate made of die-cast 

aluminium alloy EN AC-44300 (AlSi12(Fe)), a 

common secondary alloy applied in this sector, 

was chosen.  

The component is part of an ABS pump of cars; 

it represents a high-volume component with 

high requirements on safety. Hence, the number 

of non-identified incompliances must be 

minimized. In Fig.1, the most sensitive areas of 

the component are indicated. 

 
Fig.1. Aluminium die casting component chosen for the 

evaluation of surface defects: 126x104x76 mm3 

(BxWxH) 

 

These plates have high requirements for 

geometrical precision and technical cleanliness. 

Especially two areas are particularly relevant for 

part quality: flat areas with heat sink purpose 

(Fig.1, Zone 1) and borders with pressure 

tightness requirements.  

Defects in these areas may give rise to 

overheating or even short circuits as well as 

intrusions caused by previous manufacturing 

steps.  

Optical control will focus on three particular 

types of defects, described below along with, 

where applicable, their area of the object in 

which they are typically found. 

• Cold flow: this defect comprises a pre-

solidified part of the material covered 

with an oxide layer to the later solidified 

melt caused by incorrect process control 

during casting. The defect is 

disconnected from the surrounding 

material and can be located all over the 

part close to the surface. The transition 

from the defect area to the surrounding 

material is rather sharp (strong gradient 

of grey/colour-level). This kind of 

defect is frequently located in heat sink 

zones. With the presence of this defect, 

the component is nOK in 100% of the 

cases. (Fig.2) 
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Fig. 2. Cold flow defect 

 

• Breakouts: broken out material of sizes 

in the range of 0.5mm to 15mm. They 

can appear everywhere on the part, 

respectively at the circumference or 

protruding areas and render a 

component nOK in 100% of the cases. 

Figure 3. 

 

 
Fig. 3. Breakout 

 

• Deformation: all defects comprising 

geometrical deviations from the part 

drawing with respect to the production 

tolerance range. With the presence of 

this defect, the component is nOK in 

100% of the cases. (Fig.4). 

 

 
Fig. 4a. Deformation 

 

2.2 Inspection Methodology 
 

After a thorough market analysis and literature 

study on the application of DL systems for 

industrial online applications, Alupress AG 

chose as a first configuration a set of electronic 

equipment (hardware) and DL software readily 

available on the market (Fig. 4), which are listed 

below. 

 

 
Fig.4b. Setup for inline optical control at the plant 

 

In this first step of image acquisition in the 

production department, the following equipment 

was used: 

• A 5 MPixel color camera (CMOS) with 

16mm focal length  

• A flat-dome illuminator with white 

LEDs 

• A profile structure to support the camera 

and illuminator, which could be installed 

cantilevered on a support surface on 

which the objects to be photographed 

could be placed. 

• A PC equipped with the image 

acquisition and the Deep learning 

software applications. 

The reasons for applying a CMOS camera were 

a significantly lower power consumption, a 

greatly reduced blooming. This latter aspect is of 

particular relevance in our case study because of 

the need to extract images with precise outlines. 

In order to counteract the reflective surface of 

the aluminium, the camera was equipped with 

polarizing filters. 

A flat-dome illuminator with white LEDs is a 

special form of front light illumination, which 
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combines the advantages of coaxial front lights 

with those of common dome illuminations. A 

flat dome enables a shadowless illumination of 

most objects. Using a special hole template on 

the diffusor, light scattering is reduced and 

homogeneous, diffuse light is spread over the 

object. As this illumination occupies less room 

than a dome light, it can also be used for 

applications with limited space available close to 

the dome.  

The camera and the illuminator are supported by 

an aluminium frame structure, which can be 

installed cantilevered over a support surface on 

which the objects to be photographed are placed 

(see Fig. 4). This cantilevered structure is also 

the first useful mechanism for viewing parts in 

line, i.e. adapting the position of the viewer to 

the usual mode of operation of the Alupress 

production department.  

Lastly, a PC is equipped with the image 

acquisition and the DL software applications. 

The software used, COGNEX VIDI™, has three 

tools for image location, analysis, and 

classification (see Section 3.3). It contains 

various DL architectures to carry out specific 

tasks. Fig. 5 shows a simplified scheme of the 

DL software used (COGNEX VIDI™); relevant 

tasks and operations will be mentioned in the 

sections that follow.  

 
Fig.5. Deep Learning Software workflow  

3. DEVELOPMENT AND TESTING 
 

3.1 Setting of the test in the first-attempt 
configuration 
 

After positioning the equipment described in 

Fig. 1 in the Alupress production department, an 

initial sampling of images of the parts to be 

checked was carried out. 

During this first phase of experiments, the 

images of about 1200 sample parts were 

acquired: 

• 1000 good parts as per human operator 

judgement 

• 200 parts with defects (cold flow, 

deformations, cracks). 

It was decided to start the acquisition phase by 

considering a sample of components between 

OK and rejects representative for a typical 

production situation. In order to make the 

images suitably selective, a light and shadow 

acquisition technique was used, which involves 

combining four images of the same part 

illuminated alternately from four sides 

(0°,90°,180°,270°). For this technique, a 

completely opaque mask was created, of a shape 

and size compatible with the available 

illuminator (Fig.6). This aims to generate the 

desired effect of diffused illumination from 4 

different directions with respect to the center of 

the image (effect obtained by manually 

positioning the mask in contact with the 

illuminator in 4 successive positions: 0°, 90°, 

180°, 270°). The manual positioning was 

deemed tolerable because of the prototypal and 

experimental scope of the study, but it will be 

expectedly eliminated in a final version of the 

inspection system. 

 

 
Fig.6 Opaque mask 400x400 mm2 
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In practice, this method was used to generate 

“near”dark field conditions by which the light 

shines at a shallow angle between 0 and 45°. 

According to the principle "angle of incidence = 

angle of reflection", all the light is directed away 

from the viewer (the camera), and hence, the 

field of view remains dark. 

Inclined edges, scratches, imprints, slots, and 

elevations obstruct light beam´s travel. At these 

anomalies, the light is reflected towards the 

camera, or mostly only strayed. The camera lens 

and the illuminator are positioned at a distance 

of approximately 50 cm from the component to 

be checked.  

In this way, it is possible to identify more 

accurately and quickly all types of defects that 

create an angle of incidence such as cold flow 

(Fig.7)  

 

 
Fig. 7. Cold flow defect: Comparison of the actual 

image of the defect as seen by the human eye (a) and 

the post-process image acquired by the optical system 

(b)  

 

The mathematical system for combining the 

four images is based on Photometric Stereo 

(PS), and described in [11]. In practice, PS 

evaluates the surface norms of an object by 

observing that object under different lighting 

conditions but viewed from the same position, 

exploiting variations in the intensity of the 

lighting conditions. During the acquisition 

process, it is assumed that the camera does not 

move in relation to the illumination and that 

no other camera settings are changed while 

acquiring the series of images. The resulting 

images are used together to create a single 

composite image, where the resulting 

radiometric constraint allows for local 

estimates of both the orientation and curvature 

of the surface of the component being 

analysed and makes it possible to eliminate 

the random noise caused by the surface 

imperfections, while the slightest depressions 

and protuberances are emphasized that 

generate shadows thanks to the differentiated 

illumination of the four sides (Fig. 8)  

 

 
Fig.8 a) Acquisition of the images by partializing the 

light of the upper illuminator. b) Overlapping of the 

acquired images by acquisition and alignment program in 

according to [11] 

 

One of the first tasks carried out was to process 

the acquired images to verify the sensitivity of 

the system to the detection of surface anomalies 

throughout the sample. Using the technique of 

PS for each piece, it is possible to superimpose 

the images captured at different angles. 

However, it was seen that the unstable 

acquisition conditions in the production 

department, due to vibrations and disturbances 

caused by sunlight penetrating in the production 

department, affected the quality of the 

composite images being lower than expected, 

which effectively hindered the final processing 

result. In Fig.9, readers can observe the presence 

of the defect but also the splitting of the edges 

and the general lack of sharpness of the image 

obtained.  
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Fig. 9. Lack of image sharpness due to unstable 

acquisition conditions (overexposure, vibrations, etc.) 

 

 

3.2 The need to develop a second 
configuration 
 
This first analysis of the images showed that the 

configuration of the first approach was not 

suitable for detecting the smallest imperfections 

on the parts proposed for analysis, because: 

• In case of overexposure, small defects 

were invisible even to the naked eye on 

the images. 

• In case of optimal exposure, defects were 

confused with natural anomalies (not to 

be considered as defects) even with the 

naked eye. 

To solve this problem, a number of changes have 

been made to improve the quality of image 

capture, which would later be processed by 

Cognex VIDI™ AI software: 

• The cantilever structure for the 

acquisition was moved into the 

laboratory to eliminate disturbing 

variables such as incoming sunlight and 

vibrations due to machinery in the 

production area. This measure was 

deemed necessary despite the need to 

develop an in-line solution. The 

additional required steps will be outlined 

in the conclusion. 

• Four flat dome illuminators positioned 

perimetrically to the part inspection area 

were added to recreate “near” dark field 

conditions more effectively (Fig. 10). 

The individuation of this possible 

solution was supported by the TRIZ 

Inventive Principles “Segmentation” and 

“Another dimension”. However, the 

application of these principles took place 

in an intuitive way and without following 

any systematic problem analysis and 

solving process. Otherwise said, the 

restricted use of TRIZ tools can be 

regarded here as benefitting from TRIZ 

knowledge for inspiration purposes []. 

 

 
Fig. 10. Set up 2: the 4 side illuminators, in addition to shielding the workpiece from overexposure to external light, can 

be switched on alternately to illuminate the surface of the workpiece at 360° 
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Based on the consideration that other types of 

components may require a different incidence of 

light, while maintaining the four-sided lighting 

technique, the adoption of large LED panels was 

considered sufficiently general to support 

various options. 

The Photometric Stereo technique was again 

used to reconstruct the image of the part: 

superimposing the four images of the same part, 

acquired by alternately switching on the 

perimeter illuminators, and combining them to 

create a single final image. The results, when 

compared to those of the first approach, visibly 

demonstrated the improvement in image quality, 

as can be seen from the sharpness of the 

following example in Fig. 11 and its differences 

with respect to Fig. 9. 
 

 
Fig.11. Final combined image composed of the 

overlapping of the four images of the same piece 

acquired by alternately switching on the perimetric 

illuminators 

 
3.3 Verification of the usability of the 
acquired images 
With the new set of images derived from the 

second acquisition approach, it was possible to 

create the control program for the inner face of 

the piece.  

The COGNEX VIDI™ software revealed that 

the anomalies present in the samples were 

ascribable to three main classes: 

1. Relatively large defects, typically lack of 

material, common of the surface under 

examination. 

2. Cracks and tears on the edges and vertical 

walls of the grooves. 

3. Small defects, holes or scratches, often in 

correspondence with a larger defect on 

the opposite face. 

Once the images of the individual components 

analysed by the PS method have been 

reconstructed, the resulting final image, known 

as the overlapping image, is analysed by the DL 

software. The tool parameters adjust how the 

network trains and processes images. 

 

1. Alignment of the piece using surface features 

in order to separate the background and areas to 

be analysed with different sensitivity (Fig. 12). 

This automatic tool is called ‘Locate tool’ and is 

used to identify and locate specific features or 

groups of features in an image. The output of the 

tool can be used to provide positional data for 

other tools. 

 

 
Fig. 12. Alignment of the piece: reference points 

(indicated by arrows) are taken on the workpiece to 

obtain images of workpieces with the same orientation. 

 

2. Unsupervised control of the image in order to 

detect the most important defects in the areas of 

maximum attention and breaks on vertical faces 

(Fig.13). In this mode, the Analyse tool is taught 

the appearance of the good parts – and only the 

good parts (including all acceptable variations) 

– so that it finds anomalies from the learned, 

normal appearance. 

 

 
 

Fig.13. Unsupervised control ´s image: with black circle 

area the detected defect 
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3. Supervised control of the smallest defects in 

order to characterise the actual defect in relation 

to the irregularities on the surfaces of the part 

(Fig.14). In this mode, the Analyse tool is taught 

the appearance of defects. As such it does not (at 

least explicitly) form a model of the inspected 

part and as a consequence is much less 

dependent on part configuration, type or the 

conditions during image acquisition (e.g. 

orientation). 

 

 
 

Fig.14. Supervised control´s Image: Small defects are 

identified with black circles areas 

 

The Analyze tool that is used to perform two 

types of defect detection anomaly detection and 

segmentation, depending on the mode of 

operation, unsupervised or supervised is similar 

to the analysis neural network, such as U-Net 

[13]. 

For reasons of program efficiency, consisting of 

the four phases explained above, when a defect 

is detected by one of the four phases, the image 

is not processed in the subsequent, and the part 

is catalogued as non-compliant immediately. 

Eventually, the DL software used a last tool 

called ‘classify tool’ that is used to identify and 

classify an object, or the entire scene, in an 

image. Once a classify tool has been trained, it 

will assign a tag to the image, which the tool uses 

to assign a class. The tag is represented by a 

label, and is given as a percentage indicating the 

certainty the tool. This tool is similar to 

classification neural networks such as VGG, 

ResNet or DenseNet [12]. 

 

4. RESULTS AND DISCUSSION  

 

By considering a sample of 1200 pieces, out of 

which only 200 are considered nOK from 

previous visual analyses by the specialized 

operators, the control was relative to a single 

surface of the piece and therefore at 180°.  

 

The images were acquired in the laboratory and 

therefore in a situation free of the typical 

disturbing elements of the production 

department (sunlight, vibrations, fumes...). No 

false positives or false negatives emerged from 

the analysis. Only 3 nOK components were not 

analysed because they were damaged during 

transport to the laboratory, therefore, 2% of 

components were not analysed. As shown in Fig. 

15, two different layouts appear depending on 

whether the component is recognized as 

compliant or uncompliant.  

For OK parts (Fig.15a), no anomaly is 

highlighted on the part and at the same time a 

green bar appears at the top of the screen 

highlighting the absence of defects on the part. 

For parts that are nOK (Fig. 15b), on the other 

hand, the zones or area in which the defect has 

been found are highlighted and at the same time 

a red band appears on the screen to indicate that 

the part is to be considered uncompliant.  

With reference to the studies carried out in the 

literature and mentioned in this article, the first 

results obtained so far show that this system can 

be applied in the production line without any 

particular difficulty. The DL algorithms applied 

have excellent data processing stability and a 

high level of compatibility was achieved with 

the results obtained from the comparison with 

the manual analysis of the components, 

obviously only considering one sample surface 

analysed (98% of the 200 nOK parts were 

recognized). This outcome is comparable to the 

results of alternative systems presented in 

Section 1. 

 

5. CONCLUSION  

 
The aim of this research was to develop an in-

line vision control system based on DL for the 

detection of surface defects in aluminium die-

cast components for the automotive sector to 

evaluate a solution that gave positive results in 

terms of finding and checking defects 

automatically. 
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Fig.15 On-screen results of image processing by the AI software: Image a represents the on-screen output for parts 

considered OK. Image b is the on-screen output for parts considered nOK and in the image of the part the area where 

the defect has been detected is indicated in red. 
 

5. CONCLUSION  

 
The aim of this research was to develop an in-

line vision control system based on DL for the 

detection of surface defects in aluminium die-

cast components for the automotive sector to 

evaluate a solution that gave positive results in 

terms of finding and checking defects 

automatically. With this system, the role of the 

operators will be to make the final decision for 

components that the system cannot identify as 

OK or nOK and to supervise if there are any 

failures or anomalies. In this first phase of 

experiments, the in-line solution could not yet be 

achieved, but this first step allowed us to 

understand the initial difficulties caused by the 

acquisition of images and their subsequent 

processing in different environmental 

conditions. Some very important aspects for 

future steps will be: 

• to extend the tests to be carried out with 

the existing configuration in terms of the 

number of parts to further improve 

learning and also introduce other 

Green bar 

Red bar 

Red Area 
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automotive components on which to 

apply this control; 

• to use this configuration directly in the 

production environment by eliminating 

disturbing actions due to sunlight and 

vibrations due to production machinery; 

• to use a series of lateral illuminators with 

a beam of LEDs in order to occupy less 

space and have a more compact 

hardware system; 

• given the performance obtained with this 

software already on the market, to 

develop a custom software based on DL 

algorithms that fits the quality control 

requirements of Alupress customers. 

Custom is here intended as that it will not 

be a commercial "black box“ solution 

but a system that can be customised 

according to the company's needs for 

defect recognition on the widest scale of 

components produced; 

• to find the correct integration between 

software and hardware in the production 

line (ProfiNet / OPC-UA). 

One of the lessons learnt in the development of 

the inspection system regards the difficulties 

found when operating with a trial-and-error 

approach. In this respect, systematic design 

methods, such as TRIZ, could result useful in 

future developments, as its current use was 

markedly restricted in the present case study. 
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Studiu asupra unui sistem automatizat în linie pentru analiza defectelor de suprafață a 
componentelor turnate sub presiune din aluminiu utilizând inteligența artificială 

 
Rezumat: Analiza calitativă a defectelor de suprafață ale componentelor de turnare sub presiune din 

aluminiu este relevantă atât pentru asigurarea calității, cât și pentru monitorizarea proceselor. Pe lângă 
funcționalitatea și durabilitatea pieselor, aspectul exterior al unei componente turnate sub presiune 

poate avea o importanță capitală în timpul inspecției bunurilor primite de către clienți, pentru a asigura 

funcționalitatea pieselor. Mai ales când vine vorba de inspecțiile suprafețelor pieselor, utilizarea 

inteligenței artificiale câștigă tot mai multă forță pentru identificarea și clasificarea defectelor. 

Prezenta lucrare ilustrează un studiu de caz privind detectarea defectelor de suprafață ale 

componentelor turnate sub presiune din aluminiu, unde un sistem comercial Deep Learning s-a 

dovedit a atinge o eficiență de 90% în recunoașterea pieselor conforme și neconforme. Dezvoltarea 

aplicației experimentale prezentate este menită să urmărească obiectivul utilizării sistemelor 

automatizate pentru detectarea defectelor în linie, care reprezintă un obiectiv original al prezentei 

lucrări. Dezvoltarea sistemului tehnic utilizat în această aplicație a beneficiat de cunoștințele TRIZ 

dincolo de înțelegerea principiilor optice trecute cu vederea într-un design de primă încercare. 
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