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Abstract: This article details how to obtain the type I and II singularities of the 3RTS parallel 
manipulator. These singularities appear when the determinants of the Jacobian matrices are cancelled. 
The study of singularities is based on the input-output equations of the manipulator. 
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1. INTRODUCTION 

  

Figure 1 shows the kinematic scheme of the 

3RPS parallel space manipulator which has 

three degrees of mobility and three identical 

kinematic chains. The symbolic notation of 

such a mechanism is related to its 

characteristics: 3 - the number of degrees of 

freedom; RTS - the type of successive joints  in 

a kinematic chain starting from the base to the 

final element (R-revolute; T-translation; S-

spherical).  

The passive revolute joints from the base 

have the axes placed along the sides of an 

equilateral triangle of side "b", the radius 

corresponding to the circle inscribed to the 

triangle being "R". The centers of the torques 

are denoted by B1, B2 and B3, and are placed in 

the middle of the sides of the equilateral 

triangle of the base. 

The active translation joints are placed on 

the BiAi segments that connect the revolute 

joints at the base with the spherical joints from 

the mobile platform. 

The passive spherical joints on the last level 

are placed at the tip Ai of an equilateral triangle 

of side “a” (the mobile platform of the 

manipulator), the radius of the circle 

circumscribed to it being denoted by “r”. Such 

an arrangement of the joints on the kinematic 

chains leads to a spatial parallel mechanism 

with 3 degrees of freedom (Fig.1). 

In order to study the manipulator, a fixed 

OXYZ coordinate axis system with origin O 

was considered in the center of the circle 

inscribed in the triangle of the base platform. 

The OXY plane is chosen to contain the fixed 

platform and the OX axis to be perpendicular to 

the axis of the first passive joint (passing 

through B1). The angles formed by OX with 

OBi (i = 1,2,3) were denoted by δi (according to 

fig.1). 

The oxyz coordinate system with the origin 

“o” in the center of the circle circumscribed to 

the triangle of the mobile platform was 

connected to the mobile platform. The oxy 

plane is chosen to contain the mobile platform 

and the ox axis to pass through A1. The angles 

formed by ox with oAi (i = 1,2,3) were denoted 

by δi′. The oz axis is along the height “h” of the 

gripper, perpendicular to the platform. 

The generalized coordinates of the 

mechanism (articular coordinates) are: qi - the 

linear displacements from the motor joints, 

measured from Bi to Ai, i = 1,2,3. 

 The generalized coordinates of the mobile 

platform (operational coordinates) are: ZP, Ψ, θ 

meaning the coordinates of the point P of the 

center of the gripper with respect to the fixed 

system OXYZ, the precession angles and 
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notation of Euler between the 2 platforms 

(mobile and fixed). 

 By varying the coordinates qi, i = 1,2,3, the 

object manipulated in space can be positioned 

according to the phases of the manipulation 

operation. 

 

 
Fig. 1. Kinematic scheme of the 3RTS parallel 

manipulator 
  

2. COMPUTATION OF JACOBIAN 

MATRIX EXPRESSIONS FOR THE 3RPS 

MANIPULATOR 

 

Starting from the input-output equations (1) of 

the mechanism, defined in [1]: 
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relations where XAi , YAi şi ZAi have the 

expressions defined in eq. (2): 
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In [1] the following relations have been 

defined: 
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The guiding cosines between the mobile 

oxyz system and the fixed OXYZ system, 

taking into account the relation (3) are 

relatively simplified. 

In the input-output equations of the 

mechanism, the variables Ψ, θ, ZP and qi are 

time functions. By deriving eq. (1) we obtain 

three other equations that can be arranged in 

matrix form (6): 

 

 
(6) 

 

The column matrices of the articular and 

operational velocities have the expressions (7) 

and (8). 
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Partial derivatives that appear as elements of 

the matrix [A] are obtained immediately: 
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For the calculation of the elements of the 

matrix [B] it is necessary to calculate certain 

partial derivatives whose expressions have been 

established in [2] and given below: 
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Thus, the first, second and third columns of 

the matrix [B] have the expressions (34), (35) 

and (36): 
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Having the expressions of the elements of 

the matrices [A] and [B], so implicitly of the 

determinants, the singularities of the 

mechanism can be analyzed. 
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3. TYPE I SINGULARITIES ANALISYS 

  

Type I singularities occur when: 

 Det (A) = 0   (37) 

The configurations corresponding to this type 

of singularity are configurations for which the 

manipulator is at a limit of the workspace or at 

an internal limit of his workspace, which he 

divides into two areas where the number of 

solutions of the inverse geometric problem is 

different [2]. In other words, this type of 

singularity occurs when two branches of the 

inverse geometric problem meet. 

 According to equations (6) and (37), because 

the determinant of the matrix A is zero, it is 

possible to find zero articular velocity vectors 

that produce zero (Cartesian) operational 

velocity vectors. Thus, certain Cartesian 

velocities cannot be produced at the terminal 

organ of the manipulator. The end-effector 

(mobile platform) loses one or more degrees of 

freedom. According to the principle of 

kinematic-static duality, in the presence of 

these singular configurations, the terminal 

organ can oppose an arbitrary force or torque in 

a given direction. 

The calculations presented below were 

performed for the following geometric-

constructive configuration of the mechanism 

3RTS: a = 300 mm, b = 500 mm, h = 50 mm,  

δ δ δ δ δ δ1 1

0

2 2

0

3 3

00 120 240= = = = = =' ' '; ;  

With a special program designed in the 

Fox language, it was verified that from the 

points of the workspace the value of the 

determinant of the matrix [A] is zero (or has a 

very small value). Going through the 

workspace with the smallest step on all three 

axes, it is observed that the values of the 

determinant of the matrix [A] are not in the 

range (-10-2;10-2), therefore there is no question 

of the appearance of this type of singularity. 

The program designed in Fox shows that the 

minimum value of the determinant of the 

matrix [A] is 221,180 at a certain point of the 

workspace. 

 Val.min.det A = 221.180     

      

4. TYPE II SINGULARITIES ANALISYS  

 

Type II singularities occur when the matrix 

[B] becomes singular: 

 

 Det (B) = 0   (38) 

  

Contrary to type I singularities, type II 

singularities occur for configurations located 

inside the workspace and correspond to the set 

of configurations where two branches of the 

forward geometric problem meet [2]. 

According to equations (6) and (38), non-

zero operating speed vectors can be found 

which correspond to zero actuator speeds. The 

manipulator is therefore in a position where the 

terminal organ can undergo an infinitesimal 

movement even if the actuators are blocked. In 

this case there is a gain of one or more degrees 

of freedom and the system loses its rigidity. 

Therefore, it becomes unable to withstand a 

force or torque in a given direction on his 

terminal organ. 

A program has also been designed in the Fox 

language that, traversing the workspace with 

the smallest step on all three axes, allows the 

display of the values of the determinant of the 

matrix B, values that are very high as illustrated 

in Tab.1. The points where det [B] cancels out 

determine even the OZ axis of the workspace 

and another axis parallel to OZ that pierces the 

XOY plane at the point Xp = -7 mm, Yp = 12 

mm, as shown in Tab.1. The minimum value of 

the determinant of the matrix B is 10,000 at a 

certain point of the workspace, in the rest of the 

points of the workspace det [B] having very 

high values. 

 

5. CONTRIBUTIONS AND 

CONCLUSIONS  

 

The contributions regarding the study of the 

singularities of the 3RTS parallel mechanism 

are: 

• Mathematical models and computational 

algorithms corresponding to computer-assisted 

solutions of the mechanism singularities 

problem have been proposed. 
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• A program for graphical representation of 

singularity points (type II) within the 3D 

workspace has been designed, thus obtaining a 

clear image of the areas of the workspace to be 

avoided. 

The conclusions that emerge from the 

running of the above-mentioned programs 

regarding the singularities of the 3RTS 

mechanism are: 

• The study of mechanisms with any 3 DOF 

is more difficult sometimes because the 

independent parameters (Zp,  Ψ and θ in this 

case) must be chosen with great care in order to 

be able to establish analytical relations for the 

other 3 dependent parameters (Xp, Yp and ϕ in 

this case ) 

• The existence of translational motor joints 

facilitates the study of the parallel mechanism; 

• The expressions of the elements of the 

Jacobian matrix [B] are more complicated than 

in the case of the 3RKK mechanism [3] but 

simpler than in the 3RRS mechanism [4] 

respectively as in the case of the TRR serial 

robot [5]. 

• Type I singularities do not appear, det [A] 

taking very high values throughout the 

workspace, instead,  type II singularities appear 

along the OZ axis and on another line parallel 

to OZ that intersects the XOY plane at the point 

(X = -7 mm, Y = 12 mm) as shown in tab.1, 

which is a major disadvantage. 
 

Tab.1 
Input data Output data Computed data 

Ψ θ Zp q1 q2 q3 Xp Yp Computed value 

[B] 

(deg) (deg) (mm) (mm) (mm) (mm) (mm) (mm) (mm) 

30 -30 160 162.58 30.68 162.58 -7 12 0 

30 -30 165 167.51 35.60 167.51 -7 12 0 

30 -30 170 172.43 40.53 172.43 -7 12 0 

30 -30 175 177.36 45.49 177.36 -7 12 0 

30 -30 180 182.30 50.45 182.30 -7 12 0 

30 -30 185 187.24 55.42 187.24 -7 12 0 

30 -30 190 192.18 60.39 192.18 -7 12 0 

30 -30 195 197.13 65.37 197.13 -7 12 0 

30 -30 200 202.07 70.35 202.07 -7 12 0 

30 -30 205 207.02 75.33 207.02 -7 12 0 

30 -30 210 211.97 80.32 211.97 -7 12 0 

30 -30 215 216.93 85.30 216.93 -7 12 0 

30 -30 220 221.89 90.29 221.89 -7 12 0 

30 -30 225 226.84 95.28 226.84 -7 12 0 

30 -30 230 231.80 100.27 231.80 -7 12 0 

30 -30 235 236.77 105.26 236.77 -7 12 0 

30 -30 240 241.73 110.26 241.73 -7 12 0 

30 -30 245 246.69 115.25 246.69 -7 12 0 

30 -30 250 251.66 120.24 251.66 -7 12 0 

30 -30 255 256.63 125.24 256.63 -7 12 0 

30 -30 260 261.60 130.23 261.60 -7 12 0 

30 -30 265 266.57 135.23 266.57 -7 12 0 

30 -30 270 271.54 140.22 271.54 -7 12 0 

30 -30 275 276.51 145.22 276.51 -7 12 0 

30 -30 280 281.48 150.21 281.48 -7 12 0 

30 -30 285 286.46 155.21 286.46 -7 12 0 

30 -30 290 291.43 160.21 291.43 -7 12 0 

30 -30 295 296.41 165.20 296.41 -7 12 0 
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Studiul singularităților manipulatorului 3RTS 

 
Rezumat: În acest articol se prezintă detaliat modul de obținere a singularităţilor de 
tipul I şi II ale manipulatorului paralel 3RTS. Aceste singularităţi apar când 
determinanţii matricelor Jacobiene se anulează. Studiul singularităților are la bază 
ecuațiile de intrare-ieșire ale manipulatorului. Key words: manipulator paralel 3-
RTS,grade de libertate, matrice Jacobiană, singularităţi paralele 
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