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Abstract: In the present paper, a dynamic vibration absorber with negative stiffness is developed. This 

study aims to optimize absorber components by using the two-fixed point approach and H ∞ maximization 

criterion. Optimum values of the grounded stiffness and tuned mass damper components are derived to 
minimize resonance amplitude of an un-damped system under harmonic excitation. The two-fixed point 
theory is employed to minimize the tuning frequency, damping ratio and negative stiffness parameter. 
Optimum parameters of the absorber are then formulated and used to quantify the influence of each factor 
on the primary system response. Finally, the mitigation of resonance oscillation amplitude of the primary 
structure is compared with those of the traditional one. Thus it is shown that the pre-tensioned stiffness 
provides well attenuation at the resonant vibration range. Adding, this device can be also broadening the 
efficient frequency range of vibration 

Key words: Dynamic vibration absorber, pre-tensioned negative stiffness, H-infinity optimization, 
mitigation of the resonant vibration amplitude, control performance.  

 

1. INTRODUCTION  

 

     In many engineering domains, the tuned 

mass damper (TMD) or dynamic vibration 

absorber (DVA) is widely used in various fields of 

engineering and construction. The large use is due 

its reliability, efficiently and low cost. Really, 

DVA is among passive control device and one of 

the common procedures to control system 

vibrations. The optimization of DVA parameters 

plays an important concern to minimize maximum 

displacement magnitudes of the primary system 

under dynamic loads.  

The optimization criterion is firstly applied to 

design traditional DVA. In literature, optimization 

criteria already developed in DVA design are 

regrouped in (1) stability maximization, (2) H2 

optimization and (3) H ∞ optimization. The last one 

of optimization was developed by Ormondroyd 

and Den Hartog [1] for damped TMD used for 

extending the resonance frequency range when the 

primary system is subjected to harmonic force. 

Optimal tuning factor and that of damping ratio 

were studied for traditional DVA by Hahnkamm 

[2] and later by Brock [3], respectively. Den 

Hartog [4] derived the optimum parameters of 

damped DVA using the fixed-point approach and 

proved that they are not closed due the introduction 

of hypotheses simplifying the mathematical 

problem. Based on bellow results, Nichihara and 

Asami [5] improved Den Hartog solutions and 

concluded that the fixed-point theory leads to well 

convergence of the exact solution of H ∞

optimization.    

Then, various configurations of structural DVA 

have been proposed. In this domain, Asami [6] 

studied the optimization of the three-element 

device of DVA and concluded that this device had 

a better control performance with the same mass 

ratio. More to exhibit better control performance 

of DVA with negative stiffness, Ren [7] developed 

a DVA device with damping element connected 

directly to the ground. Based on previous results, 

Wang [8] coupled Asami and Ren models to obtain 

the optimum parameters of DVA with negative 

stiffness. The introduction of the inerter to three-

element type of DVA is established and the 

effectiveness of vibration suppressing was 

investigated [9]. Once DVA was connected to a 
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given structure, it is capable to absorb vibratory 

energy to protect the primary system to high 

excessive vibrations. 

In this case, optimal choice of absorber 

parameters were suggested [10]. To reach 

pertinent results in the construction domain, 

Barredo et al. [11-12] integrated an inerter device 

to DVA to minimize displacement magnitudes of 

the primary system by using the extended fixed-

points technique. Also, optimal parameters of 

DVA equipped with lightly and moderately linear 

damped rotary system under harmonic torque has 

been studied [13]. In this study, a closed formula 

of the optimum tuning coefficient is obtained 

based on the fixed point approach. This process is 

essentially used to protect equipment from steady 

state harmonic disturbances. The performance of a 

DVA using a magneto-rheological damper is then 

employed [14]. 

Currently, there are many studies aiming the pre-

compressed load in stiffness element on vibration 

isolation system based on their mechanical 

characteristics [15-18] compared to those taken in 

the optimal design of TMD parameters. To 

improve the dynamic performance of TMDs, new 

devices of TMD with preload stiffness have been 

developed. In this subject, Hao et al. [19] have 

coupled the Maxwell model with viscoelastic 

material for multiples negative stiffness springs. In 

this case, TMD parameters are optimized with 

better reduction of oscillations both under 

harmonic and random excitations [20]. Most 

mechanical vibrations cause not only noise but 

also decrease of the service life and operating 

performance of equipments. To minimize these 

effects, a grounded stiffness and inerter have been 

employed to change the natural frequency of the 

system [21]. 

In this work, the H ∞  infinity optimization of a 

pre-tensioned tuned mass damper for passive 

control of un-damped linear systems is studied. 

When the pre-load is applied on spring, it tends to 

absorb a restoring energy in which the direction of 

the force is opposite to displacement one. The 

effect of pre-tensioned stiffness on the tuning 

frequency curve of the primary structure is 

investigated, thus an analytical solution of the 

optimum parameters is investigated based on the 

two-fixed points approach for Voigt-Kelvin DVA 

model under harmonic excitation. 

The paper is organized as follow. Section II 

presents the equation of motion of DVA 

considering the pre-tensioned TMD. In section III, 

the formulation of optimum DVA parameters is 

described. The section IV shows the influence of 

pre-tensioned stiffness parameter, frequency 

tuning ratio and optimal damping coefficient. The 

section V shows the comparison between 

traditional DVA and pre-tensioned TMD. 

Conclusions of the study are drawn in section VI.    

 

2. Pre-tensioned TMD model 

 

In this study, the traditional TMD developed by 

Den Hartog (model A) shown in Fig. 1 is taken as 

a witness model to show the performance and 

ability of developed pre-tensioned TMD (model B) 

described in Fig. 2. In this modelling, the absorber 

is attached to the ground by a negative stiffness and 

damper according to the Voigt-Kelvin model. 

The load is a harmonic force ( ) ( )0 cosF t F tω=  

acted on the primary structure, where 0F  and ω
are the amplitude and frequency of the force 

excitation.  

 

 

 

 

 

Fig. 1. Traditional model  

 

 

 

 

Fig. 2. DVA with negative stiffness 

2.1.  Analytical solution 

 

Equations of motion of the primary system and 

DVA can be formulated using the second law of 

Newton. 
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where 1m , 2m , 1k  and 2k are the masses and 

stiffness coefficients of the primary system and 

absorber, respectively. gk and gc are the coefficient 

of pre-tensioned stiffness spring and damping 

parameter. 
1x  and 

2x are the displacements of the 

primary system and absorber, respectively.  

The Use of following dimensionless parameters is:   

2 1
1

1

k

m
ω = , 2eq gk k k= + , 2

2

2

 
eqk

m
ω = , 

2 22

gc

m
ξ

ω
= , 

2

1

 
m

µ
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= , 1
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f
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ω
ω

= , 2

eq

k

k
λ = . 

Letting 
0 cosF tω  in (1) be represented by

0

i tF e ω , 

the steady-state solutions can take the forms:  

1 1

2 2

( )

( )

i t

i t

x t X e

x t X e

ω

ω

=

=
                                                 (2)                                

Equation (1) can be rewritten in matrix form using 

the equation (2) with introducing dimensionless 

parameters.   

202 2
1

12
2

 
 

1 2
0

F
fXf µ r µ

k
Xr i r

λ λ
λ ξ

 
  + − −  =    − − +     

 

   (3)                           

The displacement of the primary structure is given 

by:    

( )2 2

0
1

1

1 2
 
f r i rF

X
k

ξ− +
=

∆
            (4) 

where ( ) ( )2 2 2 21 2  r i r f µ r µξ λ λ ∆ = − + + − − 
The normalized amplitude amplification factor of 

the primary structure (model B) can be formulated 

using the equation (4).  

( ) ( )2 2

2 2
1

2 2

1

0

1 2

/
( )

f r rX
r

F k
H

ξ

α β

− +
= =

+
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( )( )2 2 2 21  r f µ r µα λ λ= − + − −  and 

( )2 22  r f µ rβ ξ λ= + −  

The amplitude of the frequency response function 

(5) can be written as 
2

2
( )

A B
H r

C D

ξ
ξ

+=
+

              (6) 

With;
( )

( )

2
4 2 4 2

2
2 2 2

,4 , 1

4  

A f r B f r

C r f µ rλ

= = −

= + −
and  

( )( )( )2
2 2 2 2

1  D r f µ r µλ λ= − + − −  

It is seen that excited frequency-normalized 

amplitude curves pass by two-fixed points P and Q 

independently of the damping ratio (Fig. 3). The 

two-fixed point approach can be used to minimize 

the amplitude displacement of the primary based 

on DVA parameters.  

    

 
Fig. 3. Normalized amplitude-frequency curves 

under 1f =  , 0.10µ = , 1.5λ = for various damping 

values 

 

2.2.  Optimization of DVA parameters  
 

2.2.1. Optimization of the relative natural 

frequency factor   

 

An approach used to optimize damper 

parameters is based on the two fixed-points theory. 

This approach shows that displacement 

magnitudes of the primary masse pass through two 

specific points independently of the damping 

coefficient (Fig. 3).  

The amplitude amplification factors for ξ →∞ in 

equation (6) becomes      

2

2

2
( )

 
H

r

f
r

f µλ
=

+ −
                   (7)  

In the same manner, displacement magnitudes 

are the same applying the two-fixed point 

approach for over-damped system and un-damped 

absorber. One could write   

           
A B

C D
=                       (8) 

Thus, the development of the equation (8) holds:                 
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( )
( )( )

2

2 2 2 2 2 2

11
 

1

r

f µ r r f µ r µλ λ λ
−

=±
+ − − + − −

    (9)    

The negative part can be taken into account and the 

equation (9) becomes     

( ) ( )4 2 2 2 22 2 1 2 0r f µ r f µ µλ λ λ− + + + + − = (10)                                                        

Roots of (10); relative frequency ratios at P and Q 

points are  

2 2 2 2 2 4 2

,

1 2 2 2 2 1

2
PQ

f µ µ µ f µ µ f f
r

λ λ λ λ λ+ + + + − + − +
=

m
  (11) 

 

 The sum of root squares is 
2 2 2 1P Qr r f µλ+ = + +               (12) 

Applying the two-fixed point theory, it can be 

deduced that 

2 2 2 2

1 1

P Qf µ r f µ rλ λ
= −

+ − + −
           (13)     

That leads to  
2 2 22 2P Qr r f λµ+ = +               (14) 

The optimal relative frequency ratio can be 

obtained by using equations (12) and (14).     

1
optf µλ= −               (15)  

 

2.2.2. Optimization the damping factor   

  

The substitution of equations (11) and (15) into 

(7), the common displacement amplitude of P  and

Q points become 

( ) ( ) ( )2 1

2
P Q

µ
H r H r

µ

λ
λ

−
= =               (16)  

 

The root of equation (5) in 2ξ holds  
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2
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2

2
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Q
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According to [8], assuming 
2 2

Qr r δ= + and 
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2

µ
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µ

λ
λ

−
= with letting 0δ → , the 

relationship (17) can be written as 
2 3
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2 3
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Neglecting the higher-order parameters, the 

equation (18) becomes 
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Substituting equations (11), (15) and (16) in (19), 

the optimal damping coefficient relative to the Q-

point is  

 
2

2

1 3

2 2 2

opt
Q

µ

µ

λξ
λ

=
+

              (20)  

 

This procedure can be applied to the second P-

point, the corresponding optimal damping 

coefficient is computed:   
2

2

1 3

2 2 2

opt
P

µ

µ

λξ
λ

−=
−

                (21) 

 

Thus an average value of optimal damping 

coefficient can be evaluated  

( )
2

2

1 3

2 2

opt µ

µ

λξ
λ

=
−

                (22) 

 

2.2.3. Optimization of the pre-tensioned 

stiffness factor       
 

Optimal expressions of the relative frequency 

(15) and damping (22) are been developed as a 

function of the pre-tension stiffening . The two-

fixed point displacement magnitudes are much 

lower meaning the best control performance of the 

absorber system. Pretension of the grounded 

stiffening will cause a pre-displacement of the 

primary structure; therefore an approximation is 

used leading to the value of the response of 
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excitation at zero frequency equal to the values of 

the two invariant points, that is 

 

0 ,
( ) ( )

r P Q
H r H r

=
=                (23) 

The equation (23) is applied to evaluate the value 

of pre-tension stiffness. 

 

1,2

3,4

2

1

2

µ

µ

λ

λ

= ±

= ±

                     (24) 

 

Values of the above equation are taken into the 

optimum natural frequency ratio, optimum 

damping ratio and the normalized amplitude of 

steady-state frequency response of the primary 

structure.  

Obviously, only 3λ this can guarantee the 

stability of the system. The optimum pre-tensioned 

stiffness parameter is    

 

1

2

optλ
µ

=                  (25) 

 

Finally, parameters of the tuned mass damper 

are then optimized using optimum values of the 

frequency of masses (15), the damper factor (22) 

and the pre-tension stiffness ratio (25).  

 

3. Analysis of parameters optimization  

 

In this study, parameters having an influence on 

the DVA response are the subject of this section. 

In this case, the influence of the stiffness, tuning 

frequency and damping coefficient is expressed 

based on the mass ratio because this last can be 

limited according to manufacture and of 

operational conditions.  

So, eventually the mass ratio can take values of

0 0.25µ< ≤ .  

 

3.1.  Influence of pre-tensioned stiffness 

parameter  
 

Fig. 4 depicts the evolution of optimal pre-

tensioned stiffness coefficient versus mass ratio. It 

is shown that optλ decreases with the increase of µ

. This evolution is strongly emphasized for

0.25µ ≤ . Adding, this study showed that the 

optimum pre-tension stiffness parameter is not 

more influenced by the mass ratio for 0.25µ > . 

 

 
Fig. 4. Optimum pre-tensioned stiffness 

coefficient versus mass ratio 

 

3.2.  Influence of optimal tuning frequency ratio 

  

The mass of DVA is based on the 

manufacturing cost and space conditions. It is seen 

that for feeble values of the pre-tensioned stiffness 

parameter. The optimal tuning factor optf has a 

linear relationship versus the mass ratio. The curve 

becomes nonlinear for 0.2λ > .     

 Variation of the optimum tuning frequency 

ratio is plotted against the mass ratio of the DVA. 

It is seen optf decreases with the increase of the 

mass ratio. Adding, the optimum tuning frequency 

ratio decreases with the increase of the pre-

tensioned stiffness coefficient (Fig. 5).   

 

 
Fig. 5. Optimum tuning frequency ratio versus 

mass ratio 
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3.3. Influence of optimal damping coefficient 
 

The influence of pre-tensioned stiffness 

parameter on optimal damping ratio is shown (Fig. 

6). This effect is dispersed in a unified way for 

2λ ≤ values. In this case, the optimum damping 

ratio increases with the increase of the mass ratio. 

Nonlinearity effect becomes very important for

0.2λ > . Thus the optimum damping ratio varies 

with a great value corresponding too little mass 

ratio variation. In addition, optξ  increases with the 

increase of the pre-tensioned stiffness factor. 

 

 
Fig. 6. Optimum dumping coefficient versus mass 

ratio 

4. Comparison of the optimum tuning 

parameter 
 

In this section, we will check the performance 

and the ability of the DVA with negative stiffness 

spring by comparison it with traditional DVA 

developed by Ormondroyd and Den Hartog [1]. 

Comparison of obtained results of the two types of 

DVAs is made. It is seen that DVA with negative 

stiffness spring can provide a better control 

performance than traditional DVA.      

Figs. 7-9 describe the relative amplitude 

displacement versus frequency ratio for various 

mass ratios. This comparison is made between the 

pre-tensioned model and traditional DVA. It is 

seen that the pre-tensioned model presents two 

peaks, which are at r=0.50 and r=1.30, 

respectively. Regardless of the mass coefficient, 

the pre-tensioned model shows good vibration 

attenuation compared to the traditional model 

under harmonic loading. This performance ranged 

from 37.19% for mu = 0.05, passed by 9.78% for 

mu = 0.15 and reached 4.86% for mu = 0.25.   

 
Fig. 7. Relative displacement amplitude versus 

frequency ratio for µ=0.05 

 

 
Fig. 8. Relative displacement amplitude versus 

frequency ratio for µ=0.15 

 

 
Fig.9. Relative displacement amplitude versus 

frequency ratio for µ=0.25 

 

Adding, obtained results proved that the 

proposed TMD has a larger mitigation of resonant 

vibration amplitude of the main structure than the 

traditional TMD.  
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TABLE I:  

FORMULAS OF H ∞ OPTIMAL PARAMETERS OF 

TMDS. 

TMD 

MODEL 

optf  optξ  optλ

TRADITIONA

L TMD 

1

1 µ+
 

( )
3

8 1

µ

µ+
 

 

- 

THIS MODEL ( )1 µλ−  

( )
2

2

1 3

2 2

µ

µ

λ
λ−

1

2µ
 

 

5. CONCLUSION 
 

A dynamic vibration absorber equipped with 

negative stiffness spring is investigated. The 

investigation is focused on the optimization of 

DVA parameters by using the two-point approach 

and H ∞ optimization criterion. Thus, the optimum 

damping ratio, tuning frequency and pre-tensioned 

stiffness factor are formulated. The conclusions 

can be drawn are as follow:  

1- The increase of mass ratio decreases the 

optimum pre-tensioned stiffness parameter. 

This diminution decreases from 3.162 to 

1.416, it’s about 223.6%. 

2- The tuning frequency parameter decreases 

with increase of mass ratio and it tapers as 

soon as pre-tensioned stiffness parameter 

becomes important. 

3- The optimum damping coefficient versus 

mass ratio is influenced by the pre-tensioned 

stiffening parameter. The pace of variation is 

dispersed in a unified way for 0.2λ ≤ but 

becomes a nonlinear relationship for 0.2λ >
.  

4- Obtained results show that DVA equipped 

with negative stiffness spring can provide a 

better control performance than traditional 

DVA.  

5- Normalized amplitude displacement versus 

frequency ratio curves show a well 

improvement of the proposed DVA, a larger 

mitigation of resonant vibration amplitude of 

the main structure and a better control 

performance are well observed. Also, 

according to the mass ratio, the performance 

ranged from 37.19% ( 0.05µ = ) to 4.86% (

0.25µ = ).   

Finally, results of this study provide some 

technical information  to design more effective 

vibration control device in engineering practices. 
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OPTIMIZAREA INFINITĂȚII H A ABSORBILOR DIN VIBRARE DINAMICĂ CU 

REZIDENȚĂ NEGATIVĂ 

 

 
Rezumat: În prezenta lucrare, este dezvoltat un absorbant dinamic de vibrații cu rigiditate negativă. Acest studiu își propune 
să optimizeze componentele absorbantului utilizând abordarea în două puncte fixe și criteriul de maximizare H. Valorile 
optime ale rigidității împământate și ale componentelor reglate ale amortizorului de masă sunt derivate pentru a minimiza 
amplitudinea de rezonanță a unui sistem neamortizat sub excitație armonică. Teoria cu două puncte fixe este utilizată pentru 
a minimiza frecvența de reglare, raportul de amortizare și parametrul de rigiditate negativă. Parametrii optimi ai 
absorbantului sunt apoi formulați și utilizați pentru a cuantifica influența fiecărui factor asupra răspunsului sistemului primar. 
În cele din urmă, atenuarea amplitudinii oscilației de rezonanță a structurii primare este comparată cu cele ale celei 
tradiționale. Astfel, se arată că rigiditatea pre-tensionată asigură o atenuare bună la intervalul de vibrații rezonante. În plus, 
acest dispozitiv poate extinde, de asemenea, gama eficientă de frecvență a vibrațiilor. 
Cuvinte cheie: absorbant dinamic de vibrații, rigiditate negativă pretensionată, optimizare H-infinit, atenuarea amplitudinii 
vibrațiilor rezonante, performanță de control. 
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