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Abstract: Autonomous mobile robots are required in many applications, from industry to services, security, 

and defense. The capacity to navigate autonomously in a smooth way in environments with various 

obstacles is essential for adoption in the practice of these types of robotic systems. Smooth navigation and 

obstacle avoidance significantly depend on the right correlation between the obstacle avoidance algorithm 

and the robotic system design (type of sensors, sensor location, type of control, mechanical construction of 

the mobile platform). This paper investigates the possibility to design the obstacle avoidance algorithm 

from the perspective of the particular design of the robot. Early validation of the algorithm is a cost-

effective approach. In this respect, this paper also introduces an architectural construct of various open-

source technologies to test and validate the algorithm via a digital prototype (or digital twin) that embeds 

the physical properties of the real robot and of the obstacles within the simulation environment. Tests run 

in the virtual environment show that the proposed algorithm, embedded in a wider Simultaneous 

Localization and Mapping (SLAM) algorithm, is capable to ensure a smooth avoidance of obstacles. Results 

can be easily implemented in a physical mobile robot for intelligent autonomous navigation. 

Key words: autonomous navigation, virtual prototyping, mobile robots, SLAM, obstacle avoidance, robot 

operating system, digital twin, robot simulation. 
 

1. INTRODUCTION  
 

 The global market of autonomous mobile 
robots (AMRs) is constantly growing due to 
their capacity to navigate in highly dynamic 
environments without human interventions [1]. 
There are many applications where these types 
of robots are implemented, from parts transfer in 
manufacturing plants, cleaning and logistics in 
hospitals, logistics in warehouses, to patrol and 
surveillance in ports, material carrying in 
defense, inspection and operations in 
agriculture, transportation in malls, logistics in 
airports, cleaning in public spaces and houses, 
search, and rescue [2]. In the last decade, many 
autonomous navigation and mapping algorithms 
have been proposed, but very few are related to 
the configuration of the robotic system.  

One recent research, published in [3], 
indicates the role of LiDAR (light detection and 
ranging) configuration on motion accuracy. 

Using a nodding LiDAR configuration, 
combined with GPS waypoint, the robot 
navigates with a root mean squared error of 
0.0778 m, which is 0.2% of the total travelled 
distance. This research does not consider other 
aspects of configuration, even if it highlights the 
relevance of configuration for the navigation 
system concerning to a given application (i.e., in 
this case, the data collection in the field on 
phenotyping of crops).  

Paper [4] proposes a new positioning method 
based on multiple ultrasonic sensors for AMRs 
that can realize higher positioning accuracy. A 
measurement model is established for sensor 
configuration. Three time-of-flight signals are 
obtained from three ultrasonic sensors. Despite 
its merits to improve navigation accuracy, this 
paper does not consider the dynamics of the 
mechanical system and its influence on 
navigation accuracy.  
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A review paper that describes various 
navigation techniques for AMRs is referenced at 
[5]. After surveying about 1000 papers, it was 
found that the heuristic approaches (e.g., fuzzy 
logic, neural network, neuro-fuzzy, genetic 
algorithm, particle swarm optimization, ant 
colony optimization, and artificial immune 
system) provide the most suitable and effective 
results for AMR navigation (both target-
reaching and obstacle-avoidance) in an 
unknown and dynamic environment. Using a 
heuristic approach, an AMR can navigate among 
obstacles without hitting them.  

Regardless of the developments in the 
navigation and path planning algorithms, the 
accuracy of navigation strongly depends on the 
symbiosis between the mechanical design of the 
robot, types of sensors used for navigation, 
location of these sensors, and the control 
algorithms.  

Our additional search in the Web of Science 
database for the combination of keywords 
“AMR” AND “mechanical design” AND 
“navigation accuracy” indicates two relevant 
titles [6], [7]. A closer look at the content of 
these papers reveals that they do not treat 
navigation accuracy in conjunction with the 
architectural design of the robotic system. Thus, 
we see here a window of opportunity for further 
investigations. In this line, we introduce in this 
paper a heuristic algorithm for obstacle 
avoidance that is aligned to a particular design 
of the mechanical structure of the robot.  

2.  METHODOLOGY 

The key research question we investigate in 
this paper is “What algorithm to select or design 
for obstacle avoidance by an AMR that 
navigates in a dynamic environment, 
considering a given type of sensors and a given 
mechanical structure (both being imposed in the 
design specifications and considered as design 
constraints)?  

A cost-effective approach, already practiced 
by researchers and engineers to investigate 
designs, is to model and simulate the system in a 
virtual environment where properties of the 
physical system are incorporated. The traditional 
path is to select and/or design more solutions and 
to test them on a virtual prototype that operates 
in a virtual environment. This is an empirical 
approach, which does not necessarily indicate 

the best solution, but rather the best one from the 
set of tested solutions.  

In this paper, we consider a systematic design 
algorithm, called complex system design 
technique (CSDT) [8], which depicts an abstract 
problem into small steps of ideation, and uses 
systematic creativity techniques to tackle each 
step. In this paper, we consider TRIZ [9] and 
SAVE [10] methods for guiding the ideation 
process at the lower layers of the design’s 
granularity. 

 
Fig. 1. The mobile robot(With courtesy: Dan 

Hășmășan) 
 

3. THE MOBILE ROBOT PLATFORM 

The mobile robot under investigation is 
illustrated in Figure 1. The CAD model of the 
robot, done in SolidWorks, is shown in Figure 2. 
It consists of two modules that are connected by 
a rotary axle. On each module, there are two 
wheels. Two motors are used to drive the robot, 
each motor being linked to one of the rear 
wheels. By combining the direction and 
rotational speed on each driving shaft, the 
mobile unit is driven forward, backward, or 
angular. 

 
Fig. 2. The CAD model of the analyzed mobile robot 

 

4. VIRTUAL PROTOTYPE SETTINGS 
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4.1. From the CAD model to the virtual 

prototype 

 

The CAD model of the robot accurately 
reproduces the geometrical parameters of the 
physical robot. To create the virtual prototype of 
the robot, we used ROS (robot operating system) 
and the Gazebo platform. To define the 
kinematic and dynamic models of the robot in 
the virtual prototype, the CAD model from 
SolidWorks was converted into a URDF format 
(Unified Robotic Description Format) – a 
special XML file that is recognized by ROS. 

 
Fig. 3. Main modules for CAD model conversion into 

URDF to be recognized by ROS and Gazebo 

To export the CAD model of the mobile robot as 
URDF and to spew it correctly inside the Gazebo 
simulator, it is mandatory to set it up properly by 
configuring the parent link of the assembly (the 
chassis and the components inside it, labelled as 
“base_link”), as well as its child links (the four 
wheels called “Front_Right_Link”, 
“Front_Left_ Link”, “Rear_Right_Link”, 
“Rear_Left_Link”, the camera 
(“Camera_Link”) and the laser scanner 
(“Laser_Sensor_Link”) (see Figure 3).  
Each link, except for the “base_link”, is defined 
by a joint name (that is being defined by the 
user), a reference coordinate system, a reference 
axis, and a joint type (continuous joints for 
wheels and fixed joints for camera and LiDAR 
sensor). The parent link is attached to the other 
links through a joint and the movements of the 
parent influence the motion of the connected 
links, which represent, in fact, the child links. 

The robot is described through a collection of 
links that are connected by a set of joints. A rigid 
body with inertia, visual characteristics, and 
collision qualities is described by the link 
element, while its kinematics and dynamics are 
described by the joint element. 
4.2. Consideration of the physical properties 

For each element of the structure, physical 
properties are stored in a special XML file. The 
exemplification for the case of “base_link” 
element is shown in Figure 4. 

 
Fig. 4. The XML code to describe properties for 

“base_link” 
The <inertial> component (Figure 4) greatly 
influences the physics engine in the simulation 
platform (i.e., Gazebo in this case), where the 
mass of a link, defined in kilograms, must be 
bigger than zero, for Gazebo to not disregard it. 
Furthermore, in any finite torque application, 
links with the value of the principal moment of 
inertia that is equal to zero, might lead to an 
infinite acceleration.  
Thus, we must consider these dynamic 
parameters. They are represented by the 
<inertia> property in Figure 4, which represents 
a 3x3 rotational matrix, defined by only six 
parameters, since the matrix is symmetrical: ixx, 
ixy, ixz, iyy, iyz, izz.  
The <collision> property enhances the feature 
that allows the collision detection engine from 
Gazebo to better determine the borders of the 
object, along with the <visual> attributes.  
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Moreover, in the case of a robot with visual 
characteristics that are more complicated, the 
collision property is simplified by specifying a 
mesh file of the respective part of the assembly, 
inside the <mesh> element, which significantly 
improves the collision detection accuracy. 
Gazebo plugins extend the capability of the 
URDF models by connecting ROS messages and 
service calls for sensors and motors. Different 
types of plugins are supported by Gazebo and all 
of them may be linked to ROS, but only a 
handful of them can be referenced via a URDF 
file, such as “ModelPlugins”, “SensorPlugins” 
and “Visual Plugins”.  
Cameras and sensors in Gazebo are designed to 
be associated to links, therefore the <gazebo> 
element that describes them must include a link 
reference, to allow permission to use their APIs. 
In this case study we consider the Hokuyo 
LiDAR. For this LiDAR model, the <visualize> 
element emits a semi-translucent laser ray that is 
visible in the Gazebo simulator when it is true, 
within the scanning area of the gpu laser.  
Other elements worth mentioning are 
<min_angle> and <max_angle>, that represent 
the angular scan range of the sensor, and the 
lowest and maximum distances at which the 
laser may operate (described by the <min> and 
<max> ranges). Increasing the value of the 
<noise> tag, enhances the volume of the 
feedback unit, depending on how realistic the 
simulation is required to look [11].  
The noise is distributed in a Gaussian-style, with 
a standard deviation of 0.01 m. As a result, 
99.7% of samples are within 0.03 m of the real 
reading, resulting in a +/- 30 mm accuracy for 
distances less than 10 m [3]. All this 
information, whatsoever, is specified either by 
the manufacturer or resulted from calibration 
tests. 
4.3. 3D visualisation of robot simulation 

Rviz or "ROS visualisation" is the 3D 
visualization graphical tool that incorporates 
plugins to visualize information provided by 
sensors, cameras, and other 3D gadgets, to 
generate an accurate representation of the 
surroundings of the robot. Rviz shows what the 
robot thinks is happening, while Gazebo shows 
what is really happening. Additionally, Rviz 
includes a Graphical User Interface (GUI) that 

offers the user the possibility to display data 
relevant to their project. 

 
Fig. 5. Virtual robot visualization in Rviz 

 
Fig. 6. Random obstacles in Rviz 

¶ The virtual prototype for simulation of the 
mobile robot from this paper is shown in Figure 
5. The random generation of obstacles in the 
working space of the robot is shown on Figure 6. 
The simulation environment includes 
specialized plugins for visualising the behaviour 
of cameras and LiDARs. For our case, this is 
shown in Figure 7. 

 
Fig. 7. Camera and LiDAR plugins in Rviz 

 To provide the robot with the ability to interact 
in the Gazebo simulator, as in to actuate the 
joints of the robot, simulated controllers must be 
included. These simulated controllers rely 
mostly on ROS, within the “ros_control” 
packages. “ros_control” receives joint status 
data and an input set point (target) and delivers 
the necessary commands to the actuators as an 
output. Controller manager, controller, 
transmission, and hardware interfaces, as well as 
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control toolbox, are all part of the “ros_control” 
package set. 
4.4. Control in the virtual environment 

To achieve control of the robot with the 
“ros_control” package, some additions have 
been integrated into the URDF, starting with the 
<transmission> element. This element 
represents a component of the URDF robot 
description model, that enhances the interaction 
between an actuator and a joint. Figure 8 depicts 
the “transmission” element between the joint of 
the right wheel and one of the two motors of the 
mobile platform.  

 
Fig. 8. URDF transmission element of the right front 

wheel 
In addition to the comments of this snippet of 
code, it is essential to discuss a few other 
aspects, including the “name” parameter inside 
the <joint> element, that must be related to one 
of the joints previously described inside the 
URDF.  
Besides that, the “gazebo_ros_control” plugin 
receives information from the 
<hardwareInterface> parameter, within the 
<joint> and <actuator> tags, about which 
hardware interface to fetch (in this case, velocity 
interface). 
The control of the robot wheels is distinct from 
the control techniques of sensors. For this job, an 
open-source ROS package is implemented. It is 
named “diff_drive_controller”. Velocity 
command is divided and transmitted to the 
wheels via a differential drive wheelbase. The 
differential drive controller package is set up 
using the joints and transmissions specified in a 
so-called Xacro file, as well as robot 
dimensions. In this respect, “geometry/Twist 
message” type is accepted by the 
“diff_drive_controller”, which describes 
velocities (linear and angular) along the x, y and 
z axes. The controller extracts both, the x 
component of the linear velocity and the z 
component of the angular velocity. Additionally, 
a velocity interface connects the controller to the 

wheel joints. The corresponding .yaml file 
containing the differential drive controller is 
detailed in Figure 9. 

 
Fig. 9. Differential drive controller of the robot wheels 

The term "differential" refers to the ability of the 
robot to shift direction by altering the relative 
rate of rotation of its wheels, without requiring 
extra steering motion. 
4.5. Driving system modelling  

The robot comprises two driving wheels, 
positioned on a shared axis, each of them being 
able to independently rotate clockwise or 
anticlockwise. To examine the point around 
which the robot can revolve, the ICC 
(Instantaneous Centre of Curvature) parameter 
is introduced (see Figure 10).  

 
Fig. 10. Position of ICC 

In Figure 10, V represents the velocity of the 
robot, R is the signed distance between the ICC 
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and the midway of the wheels,   represents the 
angular velocity, Vr and Vl are the velocities of 
the right and left wheels, respectively, and l is 
the distance between the centres of the wheels.  
Changing the velocities of the wheels imply 
different trajectories of the robot and because 
both wheels must rotate at the same rate of 
rotation ( ) around the ICC, we get the 
following relationships: 
� �
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Relationships (1) and (2) are essential for 
navigation and obstacle avoidance algorithms. 
When Vr = Vl, there is a forward linear motion in 
a straight line. R approaches infinite and the 
rotation is zero ( ).When Vl = -Vr, R is zero. 
It implies a rotation of the robot about the centre 
of the wheel axis, known as in-place rotation. 
When either Vr = 0 or Vl = 0, there is a rotation 
about the right wheel and left wheel, 
respectively.  
The mobile robot platform meets certain 
restrictions, meaning that it can only move in the 
xy plane, having three degrees of freedom 
(DOF): orientation and position in two axes. 
Nevertheless, the robot only comes with two 
degrees of freedom that are controllable: speed 
and steering angle; the term for such a driving 
system is non-holonomic. 
Using the rotation data of the wheels, forward 
kinematics are applied to compute the 
orientation and position of the robot. For this 
study, it was of interest to characterize the robot 
as being situated at a point in space defined by x 
and y coordinates, which moves towards a 
direction, creating an angle  with the x axis. 
Assuming that the robot is in the middle of the 
wheel axle, it can move to different positions and 
orientations, by adjusting the control parameters 
Vr and Vl.  
At the time (t + δt), the new position of the robot 
can be defined as a simple 2D rotation model, 
represented by a rotation matrix around ICC 
frame by , multiplied by the pose of the robot 
in the ICC frame, to which the pose of ICC in 
the world coordinate system is added (see (3) 
and Figure 10).  

         (3) 

          
 
In the 

equation (3), parameters determine the new 
positions of the robot in the world coordinate 
system, with the heading. Therefore, equation 
(3) depicts the motion of a robot rotating around 
its ICC, with an angular velocity of. 
In ROS, the “geometry_msgs/Twist” message 
type is commonly used to transmit movement 
orders to the robot. The data saved in the motor 
driver node should then be used to control the 
motor.  

 
Fig. 11. Current linear and angular velocities displayed 

inside the terminal 
(Figure 11 shows the x component of the linear 
speed vector and the z component of the angular 
speed vector used to operate the 
mobile_platform in the xy plane. 
 
5. AUTONOMOUS NAVIGATION AND 

MAPPING 

 

Autonomous mobile robot platforms can 
navigate in their surrounding environment and 
accomplish cognitive tasks on their own. 
Simultaneous localization and mapping is the 
key technology that allows the robot to estimate 
its own position using sensors, and create a map 
of the surrounding environment. These two tasks 
are interdependent. 
The ROS Navigation package includes several 
navigation-related algorithms that may be used 
to quickly create autonomous navigation in 
mobile robots. The user must provide the 
Navigation package with the input consisting of 
the target location of the robot and the odometry 
data from sensors, while the output is 
represented by the velocity commands that will 
move the robot to the target position. 
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In ROS, Hector SLAM is a LiDAR-based, open-
source package that can create 2D and 3D maps 
of an unknown environment, and simultaneously 
identifying the position of the robot. Its main 
modules are the following: “hector_slam”, 
“hector_ mapping”, “hector_map_server”, 
“hector_geotiff” and 

“hector_trajectory_server”. The module 
“hector_mapping” estimates the current 2D 
posture information of the mobile robot platform 
using the ultra-high scanning frequency of 
LiDAR. The path planning algorithm is shown 
in Figure 12.  

 
Fig. 12. The path planning algorithm 

 
 
“RobotModel” and “LaserScan” plugins in Rviz, 
are used to generate the map, as it is seen in 
Figure 13.  

 
Fig.  13. Rviz display with the “Map” plugin while 

running the “hector_slam” package 
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 The map will be updated anytime the robot 
travels a distance given by the 
"map_update_distance_thresh" parameter or 
rotates by an angle defined by the 
"map_update_angle_thresh" parameter, 
mentioned in “mapping_default” file. 
In a dynamic environment, local route planning 
is required to address the deviation produced by 
the dynamic, complex environment. Local path 
planning prioritises obstacle avoidance, whereas 
global path planning prioritises the shortest 
route. Using a mix of global and local planning 
algorithms the robot can accomplish precise 
navigation. 
The results of the path planning in the simulated 
environment for the robot platform analysed in 
this paper is shown in Figure 14. On the left side 
it is seen the environment mapped by the robot’s 
sensor. On the right side it is shown the 
environment (designed in Gazebo). On the top 
side it is shown the starting phase. On the bottom 
side it is shown the result of the path execution.  

 
Fig. 14. Path execution with the path planning algorithm 
The pink arrow points from Figure 14 indicate 
the goal position and orientation of the robot. 
The cyan-coloured space is the security space for 
the robot. 
 

6. DESIGN-CENTRIC OBSTACLE 

AVOIDANCE ALGORITHM 
 
For designing the algorithm dedicated to 
obstacle avoidance, we consider that mechanical 
construction influences, through its dynamics, 

the performances for obstacle avoidance. This 
means, for a given longitudinal speed of the 
mobile robot, for a given geometrical shape and 
volume of the mobile robot, and for a given 
aggregated mass and aggregated inertial 
moment around the z axis of the mobile robot, as 
well as for a given distance between the robot 
and the obstacle, the algorithm for obstacle 
avoidance must consider not only the kinematics 
of the robot, but also its dynamics. This is 
illustrated in Figure 15, which shows the model 
for the dynamic analysis of the robot. For the 
four wheels, masses are concentrated in one 
point, whereas for each of the two bodies of the 
robot, masses are dynamically concentrated in 
three points.  

 
Fig.  15. Dynamic model of the robotic platform 

It is not the purpose of this paper to provide more 
information about the dynamic modelling of the 
robotic platform. Data about masses and inertial 
moments around the z axis, reduced to the 
pivotal centre (see the Huygens–Steiner theorem 
of the parallel axes), have been introduced in the 
simulation software to adjust the level of torques 
on each motor.  
To identify or design the obstacle avoidance 
algorithm (in the case none of the existent ones 
are appropriate), we consider the CSDT method 
[8]. It creates in the first stage relationships 
between the performance metrics of the 
algorithm and the constitutive generic 
components of the algorithm, as well as 
correlations between metrics. Based on this 
result, a roadmap for ideation is generated by the 
CSDT algorithm. Following the elementary 
steps of the roadmap, with assistance provided 
by systematic inventive problem-solving tools 
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(e.g., in this case TRIZ and SAVE, as it was 
mentioned in section 2 of this paper), a suitable 
solution must be identified to achieve the 
established performance indicators.  
The following metrics (performance indicators) 
have been considered: (A) capacity to avoid 
obstacles that occur in less than 1 m; (B) 
capacity to realize a smooth path for collision 
avoidance such as to reduce shocks on the 
motors; (C) capacity to ensure obstacle 
avoidance with a single LiDAR; (D) capacity to 
move at a speed equivalent of half than the speed 
of human when it walks, while respecting 
metrics (A), (B), and (C).  
The generic components of the algorithm are: 
(K1) division of the space; (K2) decision 
according to information about the scene; (K3) 
angle of rotation; (K4) direction of rotation.  
The CSDT planning framework is shown in 
Figure 16. Further, the investigation and ideation 
roadmap is illustrated. 

 
Fig.  16. The CSDT planning framework 

The following CSDT coefficients are introduced 
(see Figure 16): value weight (W), technical 
index of priority (I), relative technical effort (Z), 
impact depreciation (Q), technical depreciation 
(O), input risk (J), difficulty to satisfy inputs (d), 
correlation index of priority (K), and input index 
of priority (H). These coefficients are introduced 
in a logic algorithm [8] to generate the ideation 
roadmap. These are technicalities that can be 
consulted in [8] and we consider that there is no 
value-added by displaying the whole demarche 
here. To visualize the design flow (the ideation 
roadmap), some conventions are used. They are 
further introduced: (1) symbol “<>” indicates a 
link between two subsequent steps from the 
flow; (2) the symbol “&” describes the request 
to analyse the correlation between two outputs; 
(3) the symbol “|” asks to apply a given method 

(here TRIZ or SAVE) to solve a negative 
correlation between two outputs; (4) the symbol 
“—“ represents the process of conceptualizing, 
finding a partial or complete solution for a given 
input with respect to a given output or a pair of 
outputs. The ideation roadmap is further 
introduced. 
Flow 1: K3—(A&C) | TRIZ <> K2—(A&C) | 
TRIZ <> K1—(A&C) | SAVE <> K4—(A&C) | 
TRIZ 
Flow 2: K3—(B&C) | TRIZ <> K2—(B&C) | 
TRIZ <> K1—(B&C) | SAVE <> K4—(B&C) | 
TRIZ 
Flow 3: K3—(A&B) | TRIZ <> K2—(A&B) | 
TRIZ <> K1—(A&B) | SAVE <> K4—(A&B) | 
TRIZ 
Flow 4: K3—(A&D) | TRIZ <> K2—(A&D) | 
TRIZ <> K1—(A&D) | SAVE <> K4—(A&D) 
| TRIZ 
Flow 5: K3—(C&D) | TRIZ <> K2—(C&D) | 
TRIZ <> K1—(C&D) | SAVE <> K4—(C&D) | 
TRIZ 
Flow 6: K3—(B&D) | TRIZ <> K2—(B&D) | 
TRIZ <> K1—(B&D) | SAVE <> K4—(B&D) | 
TRIZ 
We exemplify only one elementary step of the 
ideation process: K3—(A&C) | TRIZ. This 
means “find a solution for deciding the 
elementary angle of rotation such that to ensure 
the capacity to avoid obstacles that occur in less 
than 1 m using a single LiDAR”. In TRIZ 
language this means “reduce criticality without 
increasing complexity of the tool”. This conflict 
leads to a set of TRIZ inventive vectors [9]: 
periodic action (increase frequency of 
impulses); increase the degree of segmentation 
(cover 180 degrees with one LiDAR and divide 
it into several segments); change the conditions 
(e.g., location of LiDAR).  
Following the steps indicated by the roadmap, 
we finally identified an algorithm that 
adequately satisfies our requirements. It was 
developed in 2019 and described in [12].  
The “obstacle avoidance” algorithm analyses a 
large quantity of data from the LiDAR and 
conducts sophisticated robot actions, combining 
linear and angular velocities to allow the robot 
to follow a curved path, while avoiding 
collisions with obstacles. The sensor scans a 
space of 180°, which is divided into 5 distinct 
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sets, as highlighted in Figure 17, where each set 
is the shortest distance recorded on a 36-degree 
sector, hence the total of 5 sectors (  
). 

 
Fig. 17. Five divisions of the scanned space [12] 

According to Figure 18, front left, front and front 
right regions are of major interest for the 
avoidance of obstacles. For each of these 
regions, eight possibilities can occur, depending 
on the position of the detected obstacle. 

 
Fig. 18. Three obstacle detection areas studied through 

eight possible cases [12] 

In this regard, the Python script “obstacle_ 
avoidance” considers each case and publishes 
linear and angular velocity commands to the 
“/mobile_ base_diff_controller/cmd_vel” topic, 
in conformity with each situation, as it is 
reflected in Figure 19. 

 
Fig. 19. Obstacle avoidance logic in Python 

The “take_action” function (Figure 19) 
implements the logic for avoiding obstacles – 
depending on the distances in each of the five 
regions – analysing various obstacle 
combinations and steering the robot in a 
different direction, avoiding collision. The logic 
behind the algorithm is quite straightforward: for 
example, “case 1” depicts the circumstance 
where the robot moves forward, since there is no 
obstacle situated at 1 meter from the robot. 
Taking “case 3” and “case 5” as another 
example, the obstacle detected on the right side 
determines the robot to turn left. The function 
concludes with specifying and publishing the 
“twist” message (the values for the robot 
velocities according to the selected case). 
 
7. RESULTS 

 

Because it provides a safe trajectory and 
guarantees convergence, a collision-free 
algorithm is a vital requirement for autonomous 
mobile robots. Figure 20 and Figure 21 show 
tests of the robot on obstacle avoidance during 
autonomous navigation, using two simulation 
platforms. 
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Fig.  20. Mobile robot avoiding obstacle (Gazebo) 

 
Fig.  21. Obstacle avoidance visualization (Rviz) 

In this manner, the implemented obstacle 
avoidance algorithm allows the robot to travel 
the complete perimeter of the obstacle and 
choose the appropriate position from which to 
depart towards the goal, as demonstrated in the 
figures above. Although the advantage of this 
approach is that it facilitates the detection of 
every obstacle inside the environment, the 
mobile robot requires a longer time to complete 
its task, because of the impact of linear and 
angular components of velocity. 
Regarding the performances of Hector SLAM 
algorithm with the proposed obstacle avoidance 
algorithm integrated in its logic, we noticed that 
it generates a superior quality mapping, due to 
its dependence on accurate scan matching. This 
is achieved when the navigation of the mobile 
robot is done with low linear and angular 
velocities (approximately 0.3 m/s). Quality 
refers to a successful overlap of the laser scans 
in real-time. Opposite results have been obtained 
when the latter velocity parameters were 
increased to 1 m/s. This situation is explained by 
the fact that this algorithm demands a laser range 
finder with high update rates (i.e., the update rate 
is 20 Hz for the Hokuyo LiDAR sensor); thus, 
restrictions concerning the values of linear and 
angular components of velocity are necessary 
for a high-quality mapping. 
 

8. CONCLUSIONS 

 
Autonomous navigation of mobile robots 
requires the integration of many technologies. 
Sensors that capture data from the external 
dynamic environment must be filtered and 
analysed in due-time and converted into 
adequate formats to be processed by the control 
unit and transfer rapid commands to the motors. 
The capacity to embed both kinematic and 
dynamic models of the robot within the decision 
algorithm is very important to ensure accurate 
navigation and obstacle avoidance, with smooth 
paths and low shocks to the motors. Thus, the 
obstacle avoidance algorithm necessitates 
customization to the specificities of the 
mechanical construction of the robotic platform, 
but also to the construction of the sensing system 
(sensor type, sensor location, number of 
sensors). We have found that the more accurate 
the dynamic model is, the better the obstacle 
avoidance algorithm behaves. In this paper we 
have tested an existing algorithm for obstacle 
avoidance, because the systematic investigation 
roadmap indicated it to be valuable. However, 
there is still potential for improvement this 
algorithm with the consideration of more 
divisions of the scanned space and interlinked 
with the geometrical dimensions of the platform.  
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ALGORITM DE EVITARE A OBSTACOLELOR CENTRAT PE DESIGN PENTRU UN 

ROBOT MOBIL AUTONOM ȘI TESTAREA ACESTUIA FOLOSIND TEHNOLOGII 

DE PROTOTIPARE VIRTUALĂ 
 

Rezumat: Roboții mobili autonomi sunt necesari în multe aplicații, de la industrie la servicii, securitate și apărare. 
Capacitatea de a naviga autonom într-un mod lin în medii cu diverse obstacole este esențială pentru adoptarea în practică 
a acestor tipuri de sisteme robotizate. Navigarea lină și evitarea obstacolelor depind în mod semnificativ de corelația 
corectă între algoritmul de evitare a obstacolelor și proiectarea sistemului robotizat (tipul de senzori, locația senzorului, 
tipul de control, construcția mecanică a platformei mobile). Această lucrare investighează posibilitatea de a proiecta 
algoritmul de evitare a obstacolelor din perspectiva designului particular al robotului. Validarea timpurie a algoritmului 
este o abordare rentabilă. În acest sens, această lucrare introduce, de asemenea, o construcție arhitecturală folosind diferite 
tehnologii open-source pentru a testa și valida algoritmul prin intermediul unui prototip digital (sau digital twin) care 
încorporează proprietățile fizice ale robotului real și ale obstacolelor din mediul de simulare. Testele efectuate în mediul 
virtual arată că algoritmul propus, încorporat într-un algoritm mai larg de Localizare și Cartografiere Simultană (SLAM), 
este capabil să asigure o evitare fără probleme a obstacolelor. Rezultatele pot fi implementate cu ușurință într-un robot 
fizic mobil pentru navigare autonomă inteligentă. 
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