
- 615 -

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 64, Issue Special IV, December, 2021

DESIGN-CENTRIC OBSTACLE AVOIDANCE ALGORITHM FOR AN

AUTONOMOUS MOBILE ROBOT AND ITS TESTING USING VIRTUAL

PROTOTYPING TECHNOLOGIES

Stelian BRAD, Damaris Naomi DOLHA

Abstract: Autonomous mobile robots are required in many applications, from industry to services, security,

and defense. The capacity to navigate autonomously in a smooth way in environments with various

obstacles is essential for adoption in the practice of these types of robotic systems. Smooth navigation and

obstacle avoidance significantly depend on the right correlation between the obstacle avoidance algorithm

and the robotic system design (type of sensors, sensor location, type of control, mechanical construction of

the mobile platform). This paper investigates the possibility to design the obstacle avoidance algorithm

from the perspective of the particular design of the robot. Early validation of the algorithm is a cost-

effective approach. In this respect, this paper also introduces an architectural construct of various open-

source technologies to test and validate the algorithm via a digital prototype (or digital twin) that embeds

the physical properties of the real robot and of the obstacles within the simulation environment. Tests run

in the virtual environment show that the proposed algorithm, embedded in a wider Simultaneous

Localization and Mapping (SLAM) algorithm, is capable to ensure a smooth avoidance of obstacles. Results

can be easily implemented in a physical mobile robot for intelligent autonomous navigation.

Key words: autonomous navigation, virtual prototyping, mobile robots, SLAM, obstacle avoidance, robot

operating system, digital twin, robot simulation.

1. INTRODUCTION

 The global market of autonomous mobile
robots (AMRs) is constantly growing due to
their capacity to navigate in highly dynamic
environments without human interventions [1].
There are many applications where these types
of robots are implemented, from parts transfer in
manufacturing plants, cleaning and logistics in
hospitals, logistics in warehouses, to patrol and
surveillance in ports, material carrying in
defense, inspection and operations in
agriculture, transportation in malls, logistics in
airports, cleaning in public spaces and houses,
search, and rescue [2]. In the last decade, many
autonomous navigation and mapping algorithms
have been proposed, but very few are related to
the configuration of the robotic system.

One recent research, published in [3],
indicates the role of LiDAR (light detection and
ranging) configuration on motion accuracy.

Using a nodding LiDAR configuration,
combined with GPS waypoint, the robot
navigates with a root mean squared error of
0.0778 m, which is 0.2% of the total travelled
distance. This research does not consider other
aspects of configuration, even if it highlights the
relevance of configuration for the navigation
system concerning to a given application (i.e., in
this case, the data collection in the field on
phenotyping of crops).

Paper [4] proposes a new positioning method
based on multiple ultrasonic sensors for AMRs
that can realize higher positioning accuracy. A
measurement model is established for sensor
configuration. Three time-of-flight signals are
obtained from three ultrasonic sensors. Despite
its merits to improve navigation accuracy, this
paper does not consider the dynamics of the
mechanical system and its influence on
navigation accuracy.

- 616 -

A review paper that describes various
navigation techniques for AMRs is referenced at
[5]. After surveying about 1000 papers, it was
found that the heuristic approaches (e.g., fuzzy
logic, neural network, neuro-fuzzy, genetic
algorithm, particle swarm optimization, ant
colony optimization, and artificial immune
system) provide the most suitable and effective
results for AMR navigation (both target-
reaching and obstacle-avoidance) in an
unknown and dynamic environment. Using a
heuristic approach, an AMR can navigate among
obstacles without hitting them.

Regardless of the developments in the
navigation and path planning algorithms, the
accuracy of navigation strongly depends on the
symbiosis between the mechanical design of the
robot, types of sensors used for navigation,
location of these sensors, and the control
algorithms.

Our additional search in the Web of Science
database for the combination of keywords
“AMR” AND “mechanical design” AND
“navigation accuracy” indicates two relevant
titles [6], [7]. A closer look at the content of
these papers reveals that they do not treat
navigation accuracy in conjunction with the
architectural design of the robotic system. Thus,
we see here a window of opportunity for further
investigations. In this line, we introduce in this
paper a heuristic algorithm for obstacle
avoidance that is aligned to a particular design
of the mechanical structure of the robot.

2. METHODOLOGY

The key research question we investigate in
this paper is “What algorithm to select or design
for obstacle avoidance by an AMR that
navigates in a dynamic environment,
considering a given type of sensors and a given
mechanical structure (both being imposed in the
design specifications and considered as design
constraints)?

A cost-effective approach, already practiced
by researchers and engineers to investigate
designs, is to model and simulate the system in a
virtual environment where properties of the
physical system are incorporated. The traditional
path is to select and/or design more solutions and
to test them on a virtual prototype that operates
in a virtual environment. This is an empirical
approach, which does not necessarily indicate

the best solution, but rather the best one from the
set of tested solutions.

In this paper, we consider a systematic design
algorithm, called complex system design
technique (CSDT) [8], which depicts an abstract
problem into small steps of ideation, and uses
systematic creativity techniques to tackle each
step. In this paper, we consider TRIZ [9] and
SAVE [10] methods for guiding the ideation
process at the lower layers of the design’s
granularity.

Fig. 1. The mobile robot(With courtesy: Dan

Hășmășan)

3. THE MOBILE ROBOT PLATFORM

The mobile robot under investigation is
illustrated in Figure 1. The CAD model of the
robot, done in SolidWorks, is shown in Figure 2.
It consists of two modules that are connected by
a rotary axle. On each module, there are two
wheels. Two motors are used to drive the robot,
each motor being linked to one of the rear
wheels. By combining the direction and
rotational speed on each driving shaft, the
mobile unit is driven forward, backward, or
angular.

Fig. 2. The CAD model of the analyzed mobile robot

4. VIRTUAL PROTOTYPE SETTINGS

- 617 -

4.1. From the CAD model to the virtual

prototype

The CAD model of the robot accurately
reproduces the geometrical parameters of the
physical robot. To create the virtual prototype of
the robot, we used ROS (robot operating system)
and the Gazebo platform. To define the
kinematic and dynamic models of the robot in
the virtual prototype, the CAD model from
SolidWorks was converted into a URDF format
(Unified Robotic Description Format) – a
special XML file that is recognized by ROS.

Fig. 3. Main modules for CAD model conversion into

URDF to be recognized by ROS and Gazebo

To export the CAD model of the mobile robot as
URDF and to spew it correctly inside the Gazebo
simulator, it is mandatory to set it up properly by
configuring the parent link of the assembly (the
chassis and the components inside it, labelled as
“base_link”), as well as its child links (the four
wheels called “Front_Right_Link”,
“Front_Left_ Link”, “Rear_Right_Link”,
“Rear_Left_Link”, the camera
(“Camera_Link”) and the laser scanner
(“Laser_Sensor_Link”) (see Figure 3).
Each link, except for the “base_link”, is defined
by a joint name (that is being defined by the
user), a reference coordinate system, a reference
axis, and a joint type (continuous joints for
wheels and fixed joints for camera and LiDAR
sensor). The parent link is attached to the other
links through a joint and the movements of the
parent influence the motion of the connected
links, which represent, in fact, the child links.

The robot is described through a collection of
links that are connected by a set of joints. A rigid
body with inertia, visual characteristics, and
collision qualities is described by the link
element, while its kinematics and dynamics are
described by the joint element.
4.2. Consideration of the physical properties

For each element of the structure, physical
properties are stored in a special XML file. The
exemplification for the case of “base_link”
element is shown in Figure 4.

Fig. 4. The XML code to describe properties for

“base_link”
The <inertial> component (Figure 4) greatly
influences the physics engine in the simulation
platform (i.e., Gazebo in this case), where the
mass of a link, defined in kilograms, must be
bigger than zero, for Gazebo to not disregard it.
Furthermore, in any finite torque application,
links with the value of the principal moment of
inertia that is equal to zero, might lead to an
infinite acceleration.
Thus, we must consider these dynamic
parameters. They are represented by the
<inertia> property in Figure 4, which represents
a 3x3 rotational matrix, defined by only six
parameters, since the matrix is symmetrical: ixx,
ixy, ixz, iyy, iyz, izz.
The <collision> property enhances the feature
that allows the collision detection engine from
Gazebo to better determine the borders of the
object, along with the <visual> attributes.

- 618 -

Moreover, in the case of a robot with visual
characteristics that are more complicated, the
collision property is simplified by specifying a
mesh file of the respective part of the assembly,
inside the <mesh> element, which significantly
improves the collision detection accuracy.
Gazebo plugins extend the capability of the
URDF models by connecting ROS messages and
service calls for sensors and motors. Different
types of plugins are supported by Gazebo and all
of them may be linked to ROS, but only a
handful of them can be referenced via a URDF
file, such as “ModelPlugins”, “SensorPlugins”
and “Visual Plugins”.
Cameras and sensors in Gazebo are designed to
be associated to links, therefore the <gazebo>
element that describes them must include a link
reference, to allow permission to use their APIs.
In this case study we consider the Hokuyo
LiDAR. For this LiDAR model, the <visualize>
element emits a semi-translucent laser ray that is
visible in the Gazebo simulator when it is true,
within the scanning area of the gpu laser.
Other elements worth mentioning are
<min_angle> and <max_angle>, that represent
the angular scan range of the sensor, and the
lowest and maximum distances at which the
laser may operate (described by the <min> and
<max> ranges). Increasing the value of the
<noise> tag, enhances the volume of the
feedback unit, depending on how realistic the
simulation is required to look [11].
The noise is distributed in a Gaussian-style, with
a standard deviation of 0.01 m. As a result,
99.7% of samples are within 0.03 m of the real
reading, resulting in a +/- 30 mm accuracy for
distances less than 10 m [3]. All this
information, whatsoever, is specified either by
the manufacturer or resulted from calibration
tests.
4.3. 3D visualisation of robot simulation

Rviz or "ROS visualisation" is the 3D
visualization graphical tool that incorporates
plugins to visualize information provided by
sensors, cameras, and other 3D gadgets, to
generate an accurate representation of the
surroundings of the robot. Rviz shows what the
robot thinks is happening, while Gazebo shows
what is really happening. Additionally, Rviz
includes a Graphical User Interface (GUI) that

offers the user the possibility to display data
relevant to their project.

Fig. 5. Virtual robot visualization in Rviz

Fig. 6. Random obstacles in Rviz

¶ The virtual prototype for simulation of the
mobile robot from this paper is shown in Figure
5. The random generation of obstacles in the
working space of the robot is shown on Figure 6.
The simulation environment includes
specialized plugins for visualising the behaviour
of cameras and LiDARs. For our case, this is
shown in Figure 7.

Fig. 7. Camera and LiDAR plugins in Rviz

 To provide the robot with the ability to interact
in the Gazebo simulator, as in to actuate the
joints of the robot, simulated controllers must be
included. These simulated controllers rely
mostly on ROS, within the “ros_control”
packages. “ros_control” receives joint status
data and an input set point (target) and delivers
the necessary commands to the actuators as an
output. Controller manager, controller,
transmission, and hardware interfaces, as well as

- 619 -

control toolbox, are all part of the “ros_control”
package set.
4.4. Control in the virtual environment

To achieve control of the robot with the
“ros_control” package, some additions have
been integrated into the URDF, starting with the
<transmission> element. This element
represents a component of the URDF robot
description model, that enhances the interaction
between an actuator and a joint. Figure 8 depicts
the “transmission” element between the joint of
the right wheel and one of the two motors of the
mobile platform.

Fig. 8. URDF transmission element of the right front

wheel
In addition to the comments of this snippet of
code, it is essential to discuss a few other
aspects, including the “name” parameter inside
the <joint> element, that must be related to one
of the joints previously described inside the
URDF.
Besides that, the “gazebo_ros_control” plugin
receives information from the
<hardwareInterface> parameter, within the
<joint> and <actuator> tags, about which
hardware interface to fetch (in this case, velocity
interface).
The control of the robot wheels is distinct from
the control techniques of sensors. For this job, an
open-source ROS package is implemented. It is
named “diff_drive_controller”. Velocity
command is divided and transmitted to the
wheels via a differential drive wheelbase. The
differential drive controller package is set up
using the joints and transmissions specified in a
so-called Xacro file, as well as robot
dimensions. In this respect, “geometry/Twist
message” type is accepted by the
“diff_drive_controller”, which describes
velocities (linear and angular) along the x, y and
z axes. The controller extracts both, the x
component of the linear velocity and the z
component of the angular velocity. Additionally,
a velocity interface connects the controller to the

wheel joints. The corresponding .yaml file
containing the differential drive controller is
detailed in Figure 9.

Fig. 9. Differential drive controller of the robot wheels

The term "differential" refers to the ability of the
robot to shift direction by altering the relative
rate of rotation of its wheels, without requiring
extra steering motion.
4.5. Driving system modelling

The robot comprises two driving wheels,
positioned on a shared axis, each of them being
able to independently rotate clockwise or
anticlockwise. To examine the point around
which the robot can revolve, the ICC
(Instantaneous Centre of Curvature) parameter
is introduced (see Figure 10).

Fig. 10. Position of ICC

In Figure 10, V represents the velocity of the
robot, R is the signed distance between the ICC

- 620 -

and the midway of the wheels, represents the
angular velocity, Vr and Vl are the velocities of
the right and left wheels, respectively, and l is
the distance between the centres of the wheels.
Changing the velocities of the wheels imply
different trajectories of the robot and because
both wheels must rotate at the same rate of
rotation () around the ICC, we get the
following relationships:
� �

�����

�
 (1)

� �

	

∙
�����

�����

 (2)

Relationships (1) and (2) are essential for
navigation and obstacle avoidance algorithms.
When Vr = Vl, there is a forward linear motion in
a straight line. R approaches infinite and the
rotation is zero ().When Vl = -Vr, R is zero.
It implies a rotation of the robot about the centre
of the wheel axis, known as in-place rotation.
When either Vr = 0 or Vl = 0, there is a rotation
about the right wheel and left wheel,
respectively.
The mobile robot platform meets certain
restrictions, meaning that it can only move in the
xy plane, having three degrees of freedom
(DOF): orientation and position in two axes.
Nevertheless, the robot only comes with two
degrees of freedom that are controllable: speed
and steering angle; the term for such a driving
system is non-holonomic.
Using the rotation data of the wheels, forward
kinematics are applied to compute the
orientation and position of the robot. For this
study, it was of interest to characterize the robot
as being situated at a point in space defined by x
and y coordinates, which moves towards a
direction, creating an angle with the x axis.
Assuming that the robot is in the middle of the
wheel axle, it can move to different positions and
orientations, by adjusting the control parameters
Vr and Vl.
At the time (t + δt), the new position of the robot
can be defined as a simple 2D rotation model,
represented by a rotation matrix around ICC
frame by , multiplied by the pose of the robot
in the ICC frame, to which the pose of ICC in
the world coordinate system is added (see (3)
and Figure 10).

 (3)

In the

equation (3), parameters determine the new
positions of the robot in the world coordinate
system, with the heading. Therefore, equation
(3) depicts the motion of a robot rotating around
its ICC, with an angular velocity of.
In ROS, the “geometry_msgs/Twist” message
type is commonly used to transmit movement
orders to the robot. The data saved in the motor
driver node should then be used to control the
motor.

Fig. 11. Current linear and angular velocities displayed

inside the terminal
(Figure 11 shows the x component of the linear
speed vector and the z component of the angular
speed vector used to operate the
mobile_platform in the xy plane.

5. AUTONOMOUS NAVIGATION AND

MAPPING

Autonomous mobile robot platforms can
navigate in their surrounding environment and
accomplish cognitive tasks on their own.
Simultaneous localization and mapping is the
key technology that allows the robot to estimate
its own position using sensors, and create a map
of the surrounding environment. These two tasks
are interdependent.
The ROS Navigation package includes several
navigation-related algorithms that may be used
to quickly create autonomous navigation in
mobile robots. The user must provide the
Navigation package with the input consisting of
the target location of the robot and the odometry
data from sensors, while the output is
represented by the velocity commands that will
move the robot to the target position.

- 621 -

In ROS, Hector SLAM is a LiDAR-based, open-
source package that can create 2D and 3D maps
of an unknown environment, and simultaneously
identifying the position of the robot. Its main
modules are the following: “hector_slam”,
“hector_ mapping”, “hector_map_server”,
“hector_geotiff” and

“hector_trajectory_server”. The module
“hector_mapping” estimates the current 2D
posture information of the mobile robot platform
using the ultra-high scanning frequency of
LiDAR. The path planning algorithm is shown
in Figure 12.

Fig. 12. The path planning algorithm

“RobotModel” and “LaserScan” plugins in Rviz,
are used to generate the map, as it is seen in
Figure 13.

Fig. 13. Rviz display with the “Map” plugin while

running the “hector_slam” package

- 622 -

 The map will be updated anytime the robot
travels a distance given by the
"map_update_distance_thresh" parameter or
rotates by an angle defined by the
"map_update_angle_thresh" parameter,
mentioned in “mapping_default” file.
In a dynamic environment, local route planning
is required to address the deviation produced by
the dynamic, complex environment. Local path
planning prioritises obstacle avoidance, whereas
global path planning prioritises the shortest
route. Using a mix of global and local planning
algorithms the robot can accomplish precise
navigation.
The results of the path planning in the simulated
environment for the robot platform analysed in
this paper is shown in Figure 14. On the left side
it is seen the environment mapped by the robot’s
sensor. On the right side it is shown the
environment (designed in Gazebo). On the top
side it is shown the starting phase. On the bottom
side it is shown the result of the path execution.

Fig. 14. Path execution with the path planning algorithm
The pink arrow points from Figure 14 indicate
the goal position and orientation of the robot.
The cyan-coloured space is the security space for
the robot.

6. DESIGN-CENTRIC OBSTACLE

AVOIDANCE ALGORITHM

For designing the algorithm dedicated to
obstacle avoidance, we consider that mechanical
construction influences, through its dynamics,

the performances for obstacle avoidance. This
means, for a given longitudinal speed of the
mobile robot, for a given geometrical shape and
volume of the mobile robot, and for a given
aggregated mass and aggregated inertial
moment around the z axis of the mobile robot, as
well as for a given distance between the robot
and the obstacle, the algorithm for obstacle
avoidance must consider not only the kinematics
of the robot, but also its dynamics. This is
illustrated in Figure 15, which shows the model
for the dynamic analysis of the robot. For the
four wheels, masses are concentrated in one
point, whereas for each of the two bodies of the
robot, masses are dynamically concentrated in
three points.

Fig. 15. Dynamic model of the robotic platform

It is not the purpose of this paper to provide more
information about the dynamic modelling of the
robotic platform. Data about masses and inertial
moments around the z axis, reduced to the
pivotal centre (see the Huygens–Steiner theorem
of the parallel axes), have been introduced in the
simulation software to adjust the level of torques
on each motor.
To identify or design the obstacle avoidance
algorithm (in the case none of the existent ones
are appropriate), we consider the CSDT method
[8]. It creates in the first stage relationships
between the performance metrics of the
algorithm and the constitutive generic
components of the algorithm, as well as
correlations between metrics. Based on this
result, a roadmap for ideation is generated by the
CSDT algorithm. Following the elementary
steps of the roadmap, with assistance provided
by systematic inventive problem-solving tools

- 623 -

(e.g., in this case TRIZ and SAVE, as it was
mentioned in section 2 of this paper), a suitable
solution must be identified to achieve the
established performance indicators.
The following metrics (performance indicators)
have been considered: (A) capacity to avoid
obstacles that occur in less than 1 m; (B)
capacity to realize a smooth path for collision
avoidance such as to reduce shocks on the
motors; (C) capacity to ensure obstacle
avoidance with a single LiDAR; (D) capacity to
move at a speed equivalent of half than the speed
of human when it walks, while respecting
metrics (A), (B), and (C).
The generic components of the algorithm are:
(K1) division of the space; (K2) decision
according to information about the scene; (K3)
angle of rotation; (K4) direction of rotation.
The CSDT planning framework is shown in
Figure 16. Further, the investigation and ideation
roadmap is illustrated.

Fig. 16. The CSDT planning framework

The following CSDT coefficients are introduced
(see Figure 16): value weight (W), technical
index of priority (I), relative technical effort (Z),
impact depreciation (Q), technical depreciation
(O), input risk (J), difficulty to satisfy inputs (d),
correlation index of priority (K), and input index
of priority (H). These coefficients are introduced
in a logic algorithm [8] to generate the ideation
roadmap. These are technicalities that can be
consulted in [8] and we consider that there is no
value-added by displaying the whole demarche
here. To visualize the design flow (the ideation
roadmap), some conventions are used. They are
further introduced: (1) symbol “<>” indicates a
link between two subsequent steps from the
flow; (2) the symbol “&” describes the request
to analyse the correlation between two outputs;
(3) the symbol “|” asks to apply a given method

(here TRIZ or SAVE) to solve a negative
correlation between two outputs; (4) the symbol
“—“ represents the process of conceptualizing,
finding a partial or complete solution for a given
input with respect to a given output or a pair of
outputs. The ideation roadmap is further
introduced.
Flow 1: K3—(A&C) | TRIZ <> K2—(A&C) |
TRIZ <> K1—(A&C) | SAVE <> K4—(A&C) |
TRIZ
Flow 2: K3—(B&C) | TRIZ <> K2—(B&C) |
TRIZ <> K1—(B&C) | SAVE <> K4—(B&C) |
TRIZ
Flow 3: K3—(A&B) | TRIZ <> K2—(A&B) |
TRIZ <> K1—(A&B) | SAVE <> K4—(A&B) |
TRIZ
Flow 4: K3—(A&D) | TRIZ <> K2—(A&D) |
TRIZ <> K1—(A&D) | SAVE <> K4—(A&D)
| TRIZ
Flow 5: K3—(C&D) | TRIZ <> K2—(C&D) |
TRIZ <> K1—(C&D) | SAVE <> K4—(C&D) |
TRIZ
Flow 6: K3—(B&D) | TRIZ <> K2—(B&D) |
TRIZ <> K1—(B&D) | SAVE <> K4—(B&D) |
TRIZ
We exemplify only one elementary step of the
ideation process: K3—(A&C) | TRIZ. This
means “find a solution for deciding the
elementary angle of rotation such that to ensure
the capacity to avoid obstacles that occur in less
than 1 m using a single LiDAR”. In TRIZ
language this means “reduce criticality without
increasing complexity of the tool”. This conflict
leads to a set of TRIZ inventive vectors [9]:
periodic action (increase frequency of
impulses); increase the degree of segmentation
(cover 180 degrees with one LiDAR and divide
it into several segments); change the conditions
(e.g., location of LiDAR).
Following the steps indicated by the roadmap,
we finally identified an algorithm that
adequately satisfies our requirements. It was
developed in 2019 and described in [12].
The “obstacle avoidance” algorithm analyses a
large quantity of data from the LiDAR and
conducts sophisticated robot actions, combining
linear and angular velocities to allow the robot
to follow a curved path, while avoiding
collisions with obstacles. The sensor scans a
space of 180°, which is divided into 5 distinct

- 624 -

sets, as highlighted in Figure 17, where each set
is the shortest distance recorded on a 36-degree
sector, hence the total of 5 sectors (
).

Fig. 17. Five divisions of the scanned space [12]

According to Figure 18, front left, front and front
right regions are of major interest for the
avoidance of obstacles. For each of these
regions, eight possibilities can occur, depending
on the position of the detected obstacle.

Fig. 18. Three obstacle detection areas studied through

eight possible cases [12]

In this regard, the Python script “obstacle_
avoidance” considers each case and publishes
linear and angular velocity commands to the
“/mobile_ base_diff_controller/cmd_vel” topic,
in conformity with each situation, as it is
reflected in Figure 19.

Fig. 19. Obstacle avoidance logic in Python

The “take_action” function (Figure 19)
implements the logic for avoiding obstacles –
depending on the distances in each of the five
regions – analysing various obstacle
combinations and steering the robot in a
different direction, avoiding collision. The logic
behind the algorithm is quite straightforward: for
example, “case 1” depicts the circumstance
where the robot moves forward, since there is no
obstacle situated at 1 meter from the robot.
Taking “case 3” and “case 5” as another
example, the obstacle detected on the right side
determines the robot to turn left. The function
concludes with specifying and publishing the
“twist” message (the values for the robot
velocities according to the selected case).

7. RESULTS

Because it provides a safe trajectory and
guarantees convergence, a collision-free
algorithm is a vital requirement for autonomous
mobile robots. Figure 20 and Figure 21 show
tests of the robot on obstacle avoidance during
autonomous navigation, using two simulation
platforms.

- 625 -

Fig. 20. Mobile robot avoiding obstacle (Gazebo)

Fig. 21. Obstacle avoidance visualization (Rviz)

In this manner, the implemented obstacle
avoidance algorithm allows the robot to travel
the complete perimeter of the obstacle and
choose the appropriate position from which to
depart towards the goal, as demonstrated in the
figures above. Although the advantage of this
approach is that it facilitates the detection of
every obstacle inside the environment, the
mobile robot requires a longer time to complete
its task, because of the impact of linear and
angular components of velocity.
Regarding the performances of Hector SLAM
algorithm with the proposed obstacle avoidance
algorithm integrated in its logic, we noticed that
it generates a superior quality mapping, due to
its dependence on accurate scan matching. This
is achieved when the navigation of the mobile
robot is done with low linear and angular
velocities (approximately 0.3 m/s). Quality
refers to a successful overlap of the laser scans
in real-time. Opposite results have been obtained
when the latter velocity parameters were
increased to 1 m/s. This situation is explained by
the fact that this algorithm demands a laser range
finder with high update rates (i.e., the update rate
is 20 Hz for the Hokuyo LiDAR sensor); thus,
restrictions concerning the values of linear and
angular components of velocity are necessary
for a high-quality mapping.

8. CONCLUSIONS

Autonomous navigation of mobile robots
requires the integration of many technologies.
Sensors that capture data from the external
dynamic environment must be filtered and
analysed in due-time and converted into
adequate formats to be processed by the control
unit and transfer rapid commands to the motors.
The capacity to embed both kinematic and
dynamic models of the robot within the decision
algorithm is very important to ensure accurate
navigation and obstacle avoidance, with smooth
paths and low shocks to the motors. Thus, the
obstacle avoidance algorithm necessitates
customization to the specificities of the
mechanical construction of the robotic platform,
but also to the construction of the sensing system
(sensor type, sensor location, number of
sensors). We have found that the more accurate
the dynamic model is, the better the obstacle
avoidance algorithm behaves. In this paper we
have tested an existing algorithm for obstacle
avoidance, because the systematic investigation
roadmap indicated it to be valuable. However,
there is still potential for improvement this
algorithm with the consideration of more
divisions of the scanned space and interlinked
with the geometrical dimensions of the platform.

9. REFERENCES

[1]. Akiyoshi, K., Chugo, D., Muramatsu, S.,
Yokota, S., Hashimoto, H., Autonomous

mobile robot navigation considering the

pedestrian flow intersections, 2020
IEEE/SICE International Symposium on
System Integration (SII), pp. 428-433, doi:
10.1109/SII46433.2020.9026277,
Honolulu, USA, (2020).

[2]. Alatise, M.B, Hancke, G.P., A review on

challenges of autonomous mobile robot

and sensor fusion methods, IEEE Access,
Vol. 8, pp. 39830-39846, (2020).

[3]. Iqbal, J., Xu, R., Sun, S., Li, C., Simulation

of an autonomous mobile robot for

LiDAR-based in-field phenotyping and

navigation, Robotics, Vol. 9, No. 46, pp.
1-19, (2020).

- 626 -

[4]. Shen, M., Wang, Y., Jiang, Y., Ji, H.,
Wang, B., Huang, Z., A new positioning

method based on multiple ultrasonic

sensors for autonomous mobile robot,
Sensors, Vol. 20, No. 17, pp. 1-15, (2020).

[5]. Mohanty, P.K., Parhi, D.R., Controlling

the motion of an autonomous mobile robot

using various techniques: a review,
Journal of Advanced Mechanical
Engineering, Vol. 1, pp. 24-39, (2013).

[6]. Du, Y.C., Ai, C.S., Feng, Z.Q., Research

on navigation system of AMR based on

ROS, 2020 IEEE International Conference

on Real-Time Computing and Robotics,
pp. 117-121, Shandong, China, (2020).

[7]. Elkilany, B.G., Abouelsoud, A.A.,
Fathelbab, A.M.R., Ishii, H., A proposed

decentralized formation control algorithm

for robot swarm based on an optimized

potential field method, Neural Computing
& Applications, Vol. 33, No. 1, pp. 487-
499, (2020).

[8]. Brad, S., Complex system design

technique, International Journal of
Production Research, Vol. 46, No. 21, pp.
5979-6008, (2008).

[9]. Altshuller, G., The Innovation Algorithm.

TRIZ. Technical Innovation Center,
Worcester, USA, (2000).

[10]. Brad, S., Structured activation of vertex

entropy (SAVE): another way around

creative problem solving for non-technical

applications, Innovator Journal of the
European TRIZ Association Vol. 1, pp.
76-81, (2017).

[11]. Bailey, M., Gebis, K., Žefran, M.,
Simulation of Closed Kinematic Chains in

Realistic Environments Using Gazebo.

Springer, Chicago, USA, (2016).
[12]. Arruda, M., Exploring ROS with a 2

wheeled robot #5: obstacle avoidance.

Retrieved from The Construct:
https://www.theconstructsim.com
/exploring-ros-2-wheeled-robot-part-5/,
(2019).

ALGORITM DE EVITARE A OBSTACOLELOR CENTRAT PE DESIGN PENTRU UN

ROBOT MOBIL AUTONOM ȘI TESTAREA ACESTUIA FOLOSIND TEHNOLOGII

DE PROTOTIPARE VIRTUALĂ

Rezumat: Roboții mobili autonomi sunt necesari în multe aplicații, de la industrie la servicii, securitate și apărare.
Capacitatea de a naviga autonom într-un mod lin în medii cu diverse obstacole este esențială pentru adoptarea în practică
a acestor tipuri de sisteme robotizate. Navigarea lină și evitarea obstacolelor depind în mod semnificativ de corelația
corectă între algoritmul de evitare a obstacolelor și proiectarea sistemului robotizat (tipul de senzori, locația senzorului,
tipul de control, construcția mecanică a platformei mobile). Această lucrare investighează posibilitatea de a proiecta
algoritmul de evitare a obstacolelor din perspectiva designului particular al robotului. Validarea timpurie a algoritmului
este o abordare rentabilă. În acest sens, această lucrare introduce, de asemenea, o construcție arhitecturală folosind diferite
tehnologii open-source pentru a testa și valida algoritmul prin intermediul unui prototip digital (sau digital twin) care
încorporează proprietățile fizice ale robotului real și ale obstacolelor din mediul de simulare. Testele efectuate în mediul
virtual arată că algoritmul propus, încorporat într-un algoritm mai larg de Localizare și Cartografiere Simultană (SLAM),
este capabil să asigure o evitare fără probleme a obstacolelor. Rezultatele pot fi implementate cu ușurință într-un robot
fizic mobil pentru navigare autonomă inteligentă.

Stelian BRAD, Professor dr. Eng. Technical University of Cluj-Napoca, Department of Engineering

Design and Robotics, E-mail: stelian.brad@staff.utcluj.ro.
Naomi Damaris DOLHA, Eng., Technical University of Cluj-Napoca, Department of Engineering

Design and Robotics, E-mail: damarisdolha@gmail.com.

