
7 
 

 

Received: 08.01.22; Similarities: 09.02.22: Reviewed: 11.02./11.02.22: Accepted:17.03.22.  
 
 

 

 

     TECHNICAL UNIVERSITY OF CLUJ-NAPOCA 
 

      ACTA TECHNICA NAPOCENSIS 
 

Series: Applied Mathematics, Mechanics, and Engineering

                      Vol. 65, Issue I, March, 2022 

 

 

 

 

 

  

 

 

 

SOME ISSUES RELATED TO THE DOMAIN AND ACCURACY OF THE 

NUMERICAL PRIMITIVE DATA TYPES IN JAVA THAT CAN BE 

AVOIDED USING OBJECTS BASED ON THE BigInteger AND  

BigDecimal CLASSES 
 

Tiberiu Alexandru ANTAL 

 
Abstract: The paper aims to present the possibilities of the Java language to give up the primitive types, 

existing in most imperative programming languages and replace them with a group of predefined analog 

classes that work in the case of integer numbers with arbitrary precision (BigInteger) or in the case of real 

numbers with arbitrary precision decimal numbers (BigDecimal). Specific examples are presented to 

describe how to work with these special classes compared to equivalent primitive types and the results 

returned by them. 
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1. INTRODUCTION 
 
In computer science a data model is a 
mathematical formalism for the description of 
the data structures and the operators for the 
validation and manipulation of the data. One 
category of data models is called strict because 
it provides predefined categories called “types” 
that must be used to describe the data. In the 
modeling process it is mandatory that any data 
be forced to be part of a certain type otherwise 
that data will not be able to be represented in the 
strict model. The Java language uses the strict 
data model and provides the programmer with 
data “types” through which he can model the 
problem to be solved. Technically the "type" 
determines how many bits are used for that 
particular data, and how the bits are to be 
interpreted. 
 

1.1 A brief description of Java numerical 

primitive types 
 
It is not the purpose of this article to describe 

in depth how data types are represented in Java, 
however it should be remembered that Java has 
two distinct categories of data types: 

• primitive - are predefined in the Java 
programming language and named by their 
corresponding keyword; the numeric types 
are the integer types and the floating point 
types; 

• reference - Java has four kinds of reference 
types - class type, interface type, type 
variables, and array type. 

The integer types are byte, short, int, and 
long which are stored on 8, 16, 32 and 64 bits, 
using signed two’s complement. By default 
integer arithmetic is carried out using 32-bit 
precision and the result is of type int. If an 
integer operator has at least one long type 
operand, then the operation is carried out using 
64-bit precision and the result of the operation is 
of type long. The integer operators do not 
indicate overflow and underflow which is why 
some results may come as a surprise (although 
they are correct).The floating point types are 
float, and double are stored on 32 and 64 bits 
using the ANSI/IEEE 754 -1985 standard for 
floating point number representation. The float 

floating point type (sometimes called single 
precision float) use 32 total bits and 24 bits for 
digits (and 8 exponent bits), yielding about 7 
decimal digits of precision and a range from 
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about 10-38 to 1038. The double floating point 
type (often just called double) use 64 total bits 
and 53 bits for digits (and 11 exponent bits), 
yielding about 15/16 decimal digits of precision 
and a range from about 10-308 to 10308. The 
standard’s default rounding mode is round to 
nearest. A floating point operation that 
overflows produces a signed infinity. A floating 
point operation that underflow produces a signed 
zero. A floating point operation that is not 
mathematically defined produces NaN result. 
 
2. USING BIG NUMBERS IN JAVA 
 

As already mentioned, the primitive numeric 
types in Java are limited when it comes to 
precision. There are several categories of 
technical problems in which we want the 
accuracy to be as high as possible [5] - [8]. If the 
precision of the integers or the floating point 
numbers are not sufficient the java.math 

package contains two special classes, 
BigInteger and BigDecimal, which solve the 
problem of precision with the price of the 
calculation time and the writing method of the 
operators. Both classes implement arbitrary 
precision arithmetic for numbers (integer and 
floating point) and use methods for the familiar 
mathematical operations. The internal 
representation of the big numbers is different 
from the numeric primitive types, for this reason 
big classes have the a static valueOf() method 
to convert primitive type numbers to big 
numbers: 
BigInteger ib = BigInteger.valueOf(1); 

BigDecimal fb = BigDecimal.valueOf(1.); 

 
Unlike C++, Java does not allow operator 

overloading. This means that there no way the 
BigInteger and BigDecimal classes to redefine 
operators like: +, -, *, / and % to form 
mathematical expressions. Instead, methods 
such as add(), subtract(), multiply(), divide() 
and mod() must be called to perform the 
corresponding mathematical operations. 
 
//a = b + c; - if a,b,c are int 

BigInteger a = b.add(c); //b, c are BigInteger 

//z=x*y/(x+y); - x,y,z are int  

BigInteger z = x.multiply(y).divide(x.add(y)); // 

x and y are BigInteger 

 

To compare two big numbers the int 

compareTo(BigInteger arg) method is 
provided; it returns 0 if BigInteger equals arg, 
a negative int result if BigInteger is less than 
arg, and a positive result otherwise. When 
working with BigDecimal the division is 
defined as BigDecimal divide(BigDecimal 

arg, RoundingMode mode). To compute the 
quotient the rounding mode must be provided. 
The RoundingMode.HALF_UP is the way taught 
in primary school (digit 0, …, 4 are rounded 
down, digits 5, …, 9 are rounded up). Some 
division operations may produce an infinite 
number of decimals and for this case exceptions 
([2], [3]) will be thrown and the division 
operation needs an integer called scale that limits 
the number of decimals to be produces in the 
result (see [4], 300 in the 2.2 example). 
 

2.1 Using BigInteger to compute the factorial 
 
A short Java program that can be used to 

compute the factorial (n!=1·2·3·…·n) is: 
import java.util.Scanner; 

public class Factorial { 

 public static void main(String[] args) { 

  Scanner in =  new Scanner(System.in); 

  System.out.print("n: "); 

  long n = in.nextLong(); 

  long fact = 1L; 

  for(long i = 1L; i<=n ; ++i) 

   fact*=i; 

  System.out.println(n+"! = "+fact); 

 }} 

 

Some of the obtained results are: 
4!   =                  24 

5!   =                 120 

20!  = 2432902008176640000 

21!  = -4249290049419214848 

100! =                    0  

 
The code is using the long integer type as the 

64-bit precision is the highest that can be used in 
Java (the upper bound of the domain is 
computed as +263-1 = 
+9223372036854775807). As we can see 20! is 
the last “good value” as 21! can’t be negative 
and 100! can’t be zero. The BigInteger 

corresponding code is:  
import java.math.BigInteger; 

import java.util.*; 

public class FactorialBI { 

 public static void main(String[] args) { 

  Scanner in =  new Scanner(System.in); 

  System.out.print("n: "); 

  long n = in.nextInt(); 

  BigInteger fact = BigInteger.valueOf(1); 

  for(long i=1; i<=n ; ++i) 
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   fact = fact.multiply(BigInteger.valueOf(i)); 

  System.out.println(n + "! = " + fact);      

 }} 

 
20! =  2432902008176640000 

21! = 51090942171709440000 

100! = 

933262154439441526816992388562667004907159682643

816214685929638952175999932299156089414639761565

182862536979208272237582511852109168640000000000

00000000000000 

 

2.2 Using BigDecimal to reach a desired 

precision in the bisection method 
 

The bisection method is a well-known 
numerical algorithm [1] that can be used to find 
the roots of the f(x) = 0 equation on a given 
interval [a, b]. Specific to this method is that the 
length (|a-b|) of the initial interval, in which the 
solution is found, will be reduced by modifying 
the initial [(a, a1, a2,... ak), (b, b1, b2, bm)] margins 
of the interval. The algorithm is iterative, and the 
condition of leaving the solution search loop is 
about finding a new interval [ak, bm], containing 
the solution, and having the length (|ak-bm|) 
under a very small given number (eps): 
public class BisectionOO { 

 private double a, b, x, eps; 

 protected int max_iter; 

 

 public double f(double x) { 

  return 4. * Math.exp(-x) - x + 1.; } 

 public BisectionOO(double st, double dr, double 

prec) { 

  a = st;  b = dr;   eps = prec; 

  max_iter = 100; 

  solve(); } 

 public void solve() { 

  int n = 0; 

  while ((Math.abs(b - a) > eps) && (n++ < 

max_iter)) { 

   x = (a + b) / 2.; 

   if (f(x) == 0) { 

    System.out.println("Exact root: " + x); 

    System.exit(0);   } 

   if (Math.signum(f(a)) * Math.signum(f(x)) > 0) 

    a = x; 

   else 

    b = x;   } 

   if (Math.abs(b - a) > eps) 

    System.out.println("Precision was not 

reached in " + (n - 1) + " iterations"); 

   else 

    System.out.printf("The aprox. root is %-

25.16g\n", x); 

 } 

 public static void main(String[] args) { 

  BisectionOO ics = new BisectionOO(1., 4., 1.e-

15); 

 }} 

 
Getting a more precise result may be obtained 

by manipulating the number of the printed 
decimals in the format specifier: %-25.16, %-25.17, 
%-25.19, %-25.20. As shown in the following 

results this will not help us as the language will 
fill with zeros de decimal position where the 
result beyond the maximum precision of the 
double data type. Although the language 
documentation states that the precision of the 
representation of real numbers in double is 
limited to 16 decimal places it seems that we can 
even reach 17 decimal precision. However, this 
is not true, as the result printed by the printf() 
method is rounded before printing (the total 
number of digits in the resulting magnitude is 
rounded before printing): 
The aprox. root is 1.717824512494594     %-25.16 

The aprox. root is 1.7178245124945943    %-25.17 

The aprox. root is 1.71782451249459430   %-25.18 

The aprox. root is 1.7178245124945943000 %-25.20 
 

Another way of obtaining a better precision 
would involve setting the length of the distance 
between the left and the right margin to a lower 
value. In other to increase the precision this 
value can be set from 1.e-15 to 1.e-16 in the line 
BisectionOO ics = new BisectionOO(1., 4., 1.e-

16); However, the margins result from 
computations, and there is no magic way for 
dealing with accumulation of errors and loss of 
precision so this approach will produce no more 
answers as the required precision can’t be 
reached in the fixed given maximum number of 
iterations (in the code max_iter = 100). A solution 
of this new problem would be to increase the 
maximum number of iterations (max_iter will 

get the values {1000,10000}). However, the 
corresponding answers will be: 
Precision was not reached in 100 iterations 

Precision was not reached in 10000 iterations 

Precision was not reached in 100000 iterations 

 
The results show that the solutions can no 

longer be found, because the algorithm is 
entering an infinite loop as the required 
precision can no longer be reached. The margins 
are obtained by computation; the length is 
obtained by arithmetic from the computed 
margins, the termination condition of the loop is 
beyond the maximum precision of the language 
arithmetic of the double primitive type. The 
equivalent BigDecimal code is: 
import java.math.BigDecimal; 

import java.math.RoundingMode; 

public class BisectionOOBDBI { 

 private BigDecimal a, b, x, eps; 

 protected int max_iter; 

 static BigDecimal elax(int n, BigDecimal X) { 

  BigDecimal exp_sum = BigDecimal.valueOf(1.); 

  for (int i = n - 1; i > 0; --i) 
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   exp_sum =  

BigDecimal.valueOf(1.).add(X.multiply(exp_sum.di

vide(BigDecimal.valueOf(i), 300, 

RoundingMode.CEILING))); 

  return exp_sum; } 

 public static BigDecimal f(BigDecimal X) { 

  return elax(300, 

X.multiply(BigDecimal.valueOf(-

1.))).multiply(BigDecimal.valueOf(4.)) 

     .subtract(X).add(BigDecimal.valueOf(1.)); } 

 public BisectionOOBDBI(double st, double dr, 

double prec) { 

  a = BigDecimal.valueOf(st); 

  b = BigDecimal.valueOf(dr); 

  eps = BigDecimal.valueOf(prec); 

  max_iter = 10000; solve(); 

 } 

 public void solve() { 

  int n = 0; 

  while ((b.subtract(a).abs().compareTo( eps) 

==1) && (n++ < max_iter)) { 

   x = a.add(b).divide(BigDecimal.valueOf(2.), 

300, RoundingMode.CEILING); 

   if (f(x).compareTo(BigDecimal.valueOf(0.)) == 

0) { 

    System.out.println("Exact root: " + x); 

    System.exit(0); 

   } 

   if (f(a).signum()*(f(x).signum()) ==1) 

    a = x; 

   else 

    b = x; 

   } 

   if (b.subtract(a).abs().compareTo(eps) ==1) 

    System.out.println("Precision was not 

reached in " + (n - 1) + " iterations"); 

   else 

    System.out.println("The aprox. root is " + 

x); 

 } 

 public static void main(String[] args) { 

  BisectionOOBDBI ics = new BisectionOOBDBI(1., 

4., 1.e-300); 

 }} 

 
The aprox. root is 1.71782451249459490159607232 

816366103851677131334224688771969289449019564357

802054488344483203793921477348984337384442572230

201628490199643814889702577218744557272235023918

529973430422348911654604127499873334435380304790

161006278814473920269155666844420829074133410900

7912846260478094440489812914435739 
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Câteva probleme legate de domeniul şi precizia tipurilor de date numerice primitive în Java 

care pot fi evitate cu obiectele din clasele BigInteger şi BigDecimal 

 
Lucrarea doreşte să prezinte posibilităţile limbajului Java de a evita tipurile primitive, existente în 
majoritatea limbajelor de programare imperative şi înlocuirea acestora un grup de clase analoage 
predefinite care lucrează cu precizie arbitrară. Exemple specifice sunt prezentate pentru descrie modul 
de lucru cu aceste clase speciale în comparație cu tipurile primitive echivalente precum şi rezultatele 
întoarse de către acestea. 
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