
7

Received: 08.01.22; Similarities: 09.02.22: Reviewed: 11.02./11.02.22: Accepted:17.03.22.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 65, Issue I, March, 2022

SOME ISSUES RELATED TO THE DOMAIN AND ACCURACY OF THE

NUMERICAL PRIMITIVE DATA TYPES IN JAVA THAT CAN BE

AVOIDED USING OBJECTS BASED ON THE BigInteger AND

BigDecimal CLASSES

Tiberiu Alexandru ANTAL

Abstract: The paper aims to present the possibilities of the Java language to give up the primitive types,

existing in most imperative programming languages and replace them with a group of predefined analog

classes that work in the case of integer numbers with arbitrary precision (BigInteger) or in the case of real

numbers with arbitrary precision decimal numbers (BigDecimal). Specific examples are presented to

describe how to work with these special classes compared to equivalent primitive types and the results

returned by them.

Key words: arbitrary precision, BigInteger, BigDecimal, integer, java, primitive, real.

1. INTRODUCTION

In computer science a data model is a
mathematical formalism for the description of
the data structures and the operators for the
validation and manipulation of the data. One
category of data models is called strict because
it provides predefined categories called “types”
that must be used to describe the data. In the
modeling process it is mandatory that any data
be forced to be part of a certain type otherwise
that data will not be able to be represented in the
strict model. The Java language uses the strict
data model and provides the programmer with
data “types” through which he can model the
problem to be solved. Technically the "type"
determines how many bits are used for that
particular data, and how the bits are to be
interpreted.

1.1 A brief description of Java numerical

primitive types

It is not the purpose of this article to describe

in depth how data types are represented in Java,
however it should be remembered that Java has
two distinct categories of data types:

• primitive - are predefined in the Java
programming language and named by their
corresponding keyword; the numeric types
are the integer types and the floating point
types;

• reference - Java has four kinds of reference
types - class type, interface type, type
variables, and array type.

The integer types are byte, short, int, and
long which are stored on 8, 16, 32 and 64 bits,
using signed two’s complement. By default
integer arithmetic is carried out using 32-bit
precision and the result is of type int. If an
integer operator has at least one long type
operand, then the operation is carried out using
64-bit precision and the result of the operation is
of type long. The integer operators do not
indicate overflow and underflow which is why
some results may come as a surprise (although
they are correct).The floating point types are
float, and double are stored on 32 and 64 bits
using the ANSI/IEEE 754 -1985 standard for
floating point number representation. The float

floating point type (sometimes called single
precision float) use 32 total bits and 24 bits for
digits (and 8 exponent bits), yielding about 7
decimal digits of precision and a range from

8

about 10-38 to 1038. The double floating point
type (often just called double) use 64 total bits
and 53 bits for digits (and 11 exponent bits),
yielding about 15/16 decimal digits of precision
and a range from about 10-308 to 10308. The
standard’s default rounding mode is round to
nearest. A floating point operation that
overflows produces a signed infinity. A floating
point operation that underflow produces a signed
zero. A floating point operation that is not
mathematically defined produces NaN result.

2. USING BIG NUMBERS IN JAVA

As already mentioned, the primitive numeric
types in Java are limited when it comes to
precision. There are several categories of
technical problems in which we want the
accuracy to be as high as possible [5] - [8]. If the
precision of the integers or the floating point
numbers are not sufficient the java.math

package contains two special classes,
BigInteger and BigDecimal, which solve the
problem of precision with the price of the
calculation time and the writing method of the
operators. Both classes implement arbitrary
precision arithmetic for numbers (integer and
floating point) and use methods for the familiar
mathematical operations. The internal
representation of the big numbers is different
from the numeric primitive types, for this reason
big classes have the a static valueOf() method
to convert primitive type numbers to big
numbers:
BigInteger ib = BigInteger.valueOf(1);

BigDecimal fb = BigDecimal.valueOf(1.);

Unlike C++, Java does not allow operator

overloading. This means that there no way the
BigInteger and BigDecimal classes to redefine
operators like: +, -, *, / and % to form
mathematical expressions. Instead, methods
such as add(), subtract(), multiply(), divide()
and mod() must be called to perform the
corresponding mathematical operations.

//a = b + c; - if a,b,c are int

BigInteger a = b.add(c); //b, c are BigInteger

//z=x*y/(x+y); - x,y,z are int

BigInteger z = x.multiply(y).divide(x.add(y)); //

x and y are BigInteger

To compare two big numbers the int

compareTo(BigInteger arg) method is
provided; it returns 0 if BigInteger equals arg,
a negative int result if BigInteger is less than
arg, and a positive result otherwise. When
working with BigDecimal the division is
defined as BigDecimal divide(BigDecimal

arg, RoundingMode mode). To compute the
quotient the rounding mode must be provided.
The RoundingMode.HALF_UP is the way taught
in primary school (digit 0, …, 4 are rounded
down, digits 5, …, 9 are rounded up). Some
division operations may produce an infinite
number of decimals and for this case exceptions
([2], [3]) will be thrown and the division
operation needs an integer called scale that limits
the number of decimals to be produces in the
result (see [4], 300 in the 2.2 example).

2.1 Using BigInteger to compute the factorial

A short Java program that can be used to

compute the factorial (n!=1·2·3·…·n) is:
import java.util.Scanner;

public class Factorial {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 System.out.print("n: ");

 long n = in.nextLong();

 long fact = 1L;

 for(long i = 1L; i<=n ; ++i)

 fact*=i;

 System.out.println(n+"! = "+fact);

 }}

Some of the obtained results are:
4! = 24

5! = 120

20! = 2432902008176640000

21! = -4249290049419214848

100! = 0

The code is using the long integer type as the

64-bit precision is the highest that can be used in
Java (the upper bound of the domain is
computed as +263-1 =
+9223372036854775807). As we can see 20! is
the last “good value” as 21! can’t be negative
and 100! can’t be zero. The BigInteger

corresponding code is:
import java.math.BigInteger;

import java.util.*;

public class FactorialBI {

 public static void main(String[] args) {

 Scanner in = new Scanner(System.in);

 System.out.print("n: ");

 long n = in.nextInt();

 BigInteger fact = BigInteger.valueOf(1);

 for(long i=1; i<=n ; ++i)

9

 fact = fact.multiply(BigInteger.valueOf(i));

 System.out.println(n + "! = " + fact);

 }}

20! = 2432902008176640000

21! = 51090942171709440000

100! =

933262154439441526816992388562667004907159682643

816214685929638952175999932299156089414639761565

182862536979208272237582511852109168640000000000

00000000000000

2.2 Using BigDecimal to reach a desired

precision in the bisection method

The bisection method is a well-known
numerical algorithm [1] that can be used to find
the roots of the f(x) = 0 equation on a given
interval [a, b]. Specific to this method is that the
length (|a-b|) of the initial interval, in which the
solution is found, will be reduced by modifying
the initial [(a, a1, a2,... ak), (b, b1, b2, bm)] margins
of the interval. The algorithm is iterative, and the
condition of leaving the solution search loop is
about finding a new interval [ak, bm], containing
the solution, and having the length (|ak-bm|)
under a very small given number (eps):
public class BisectionOO {

 private double a, b, x, eps;

 protected int max_iter;

 public double f(double x) {

 return 4. * Math.exp(-x) - x + 1.; }

 public BisectionOO(double st, double dr, double

prec) {

 a = st; b = dr; eps = prec;

 max_iter = 100;

 solve(); }

 public void solve() {

 int n = 0;

 while ((Math.abs(b - a) > eps) && (n++ <

max_iter)) {

 x = (a + b) / 2.;

 if (f(x) == 0) {

 System.out.println("Exact root: " + x);

 System.exit(0); }

 if (Math.signum(f(a)) * Math.signum(f(x)) > 0)

 a = x;

 else

 b = x; }

 if (Math.abs(b - a) > eps)

 System.out.println("Precision was not

reached in " + (n - 1) + " iterations");

 else

 System.out.printf("The aprox. root is %-

25.16g\n", x);

 }

 public static void main(String[] args) {

 BisectionOO ics = new BisectionOO(1., 4., 1.e-

15);

 }}

Getting a more precise result may be obtained

by manipulating the number of the printed
decimals in the format specifier: %-25.16, %-25.17,
%-25.19, %-25.20. As shown in the following

results this will not help us as the language will
fill with zeros de decimal position where the
result beyond the maximum precision of the
double data type. Although the language
documentation states that the precision of the
representation of real numbers in double is
limited to 16 decimal places it seems that we can
even reach 17 decimal precision. However, this
is not true, as the result printed by the printf()
method is rounded before printing (the total
number of digits in the resulting magnitude is
rounded before printing):
The aprox. root is 1.717824512494594 %-25.16

The aprox. root is 1.7178245124945943 %-25.17

The aprox. root is 1.71782451249459430 %-25.18

The aprox. root is 1.7178245124945943000 %-25.20

Another way of obtaining a better precision
would involve setting the length of the distance
between the left and the right margin to a lower
value. In other to increase the precision this
value can be set from 1.e-15 to 1.e-16 in the line
BisectionOO ics = new BisectionOO(1., 4., 1.e-

16); However, the margins result from
computations, and there is no magic way for
dealing with accumulation of errors and loss of
precision so this approach will produce no more
answers as the required precision can’t be
reached in the fixed given maximum number of
iterations (in the code max_iter = 100). A solution
of this new problem would be to increase the
maximum number of iterations (max_iter will

get the values {1000,10000}). However, the
corresponding answers will be:
Precision was not reached in 100 iterations

Precision was not reached in 10000 iterations

Precision was not reached in 100000 iterations

The results show that the solutions can no

longer be found, because the algorithm is
entering an infinite loop as the required
precision can no longer be reached. The margins
are obtained by computation; the length is
obtained by arithmetic from the computed
margins, the termination condition of the loop is
beyond the maximum precision of the language
arithmetic of the double primitive type. The
equivalent BigDecimal code is:
import java.math.BigDecimal;

import java.math.RoundingMode;

public class BisectionOOBDBI {

 private BigDecimal a, b, x, eps;

 protected int max_iter;

 static BigDecimal elax(int n, BigDecimal X) {

 BigDecimal exp_sum = BigDecimal.valueOf(1.);

 for (int i = n - 1; i > 0; --i)

10

 exp_sum =

BigDecimal.valueOf(1.).add(X.multiply(exp_sum.di

vide(BigDecimal.valueOf(i), 300,

RoundingMode.CEILING)));

 return exp_sum; }

 public static BigDecimal f(BigDecimal X) {

 return elax(300,

X.multiply(BigDecimal.valueOf(-

1.))).multiply(BigDecimal.valueOf(4.))

 .subtract(X).add(BigDecimal.valueOf(1.)); }

 public BisectionOOBDBI(double st, double dr,

double prec) {

 a = BigDecimal.valueOf(st);

 b = BigDecimal.valueOf(dr);

 eps = BigDecimal.valueOf(prec);

 max_iter = 10000; solve();

 }

 public void solve() {

 int n = 0;

 while ((b.subtract(a).abs().compareTo(eps)

==1) && (n++ < max_iter)) {

 x = a.add(b).divide(BigDecimal.valueOf(2.),

300, RoundingMode.CEILING);

 if (f(x).compareTo(BigDecimal.valueOf(0.)) ==

0) {

 System.out.println("Exact root: " + x);

 System.exit(0);

 }

 if (f(a).signum()*(f(x).signum()) ==1)

 a = x;

 else

 b = x;

 }

 if (b.subtract(a).abs().compareTo(eps) ==1)

 System.out.println("Precision was not

reached in " + (n - 1) + " iterations");

 else

 System.out.println("The aprox. root is " +

x);

 }

 public static void main(String[] args) {

 BisectionOOBDBI ics = new BisectionOOBDBI(1.,

4., 1.e-300);

 }}

The aprox. root is 1.71782451249459490159607232

816366103851677131334224688771969289449019564357

802054488344483203793921477348984337384442572230

201628490199643814889702577218744557272235023918

529973430422348911654604127499873334435380304790

161006278814473920269155666844420829074133410900

7912846260478094440489812914435739

3. REFERENCES

[1] Antal, Tiberiu Alexandru. Visual BASIC pentru

ingineri. Risoprint, 2003, p. 244, ISBN 973‐656‐
514‐9

[2] ANTAL, T. A., Elemente de Java cu JDeveloper

- îndrumător de laborator, Editura UTPRES,
2013, p.150, ISBN: 978-973-662-827-6.

[3] ANTAL, T. A., Java - Iniţiere - îndrumător de

laborator, Editura UTPRES, 2013, p. 246, ISBN:
978-973-662-832-0.

[4] https://docs.oracle.com/en/java/javase/12/
docs/api/java.base/java/math/BigDecimal.html#
divide(java.math.BigDecimal,int,int)

[5] Husty, M., Birlescu, I., Tucan, P., Vaida, C.,
Pisla, D.: An algebraic parameterization

approach for parallel robots analysis,
Mechanism and Machine Theory, vol. 140, pp.
245-257, 2019.

[6] Tarnita, D., Pisla, D,. Geonea, I., Vaida, C.,
Catana, M., Tarnita D.N.: Static and Dynamic

Analysis of Osteoarthritic and Orthotic Human

Knee, Journal of Bionic Engineering, vol. 16(3),
pp. 514-525, 2019

[7] Pisla, D., Plitea, N., Vaida, C. (c.a.), Hesselbach,
J., Raatz, A., Vlad, L., Graur, F., PARAMIS
Parallel Robot for Laparoscopic Surgery, (2010),
Chirurgia 105(5), pp. 677-683

[8] Tucan, P., Vaida, C., Plitea, N., Pisla, A.,
Carbone, G., Pisla, D.: Risk-Based Assessment
Engineering of a Parallel Robot Used in Post-
Stroke Upper Limb Rehabilitation, Sustainability,
vol. 11(10), 2893, 2019

Câteva probleme legate de domeniul şi precizia tipurilor de date numerice primitive în Java

care pot fi evitate cu obiectele din clasele BigInteger şi BigDecimal

Lucrarea doreşte să prezinte posibilităţile limbajului Java de a evita tipurile primitive, existente în
majoritatea limbajelor de programare imperative şi înlocuirea acestora un grup de clase analoage
predefinite care lucrează cu precizie arbitrară. Exemple specifice sunt prezentate pentru descrie modul
de lucru cu aceste clase speciale în comparație cu tipurile primitive echivalente precum şi rezultatele
întoarse de către acestea.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,
Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul
Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

