
11

Received: 08.01.22; Similarities: 09.02.22: Reviewed: 11.02./11.02.22: Accepted:17.03.22.

 TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSIS

Series: Applied Mathematics, Mechanics, and Engineering

 Vol. 65, Issue I, March, 2022

THE CAVEAT OF OBJECT ORIENTED PROGRAMMING IN JAVA

Tiberiu Alexandru ANTAL

Abstract: The paper presents the wrong way of rewriting a code that uses procedural paradigm into a code

that uses object-oriented paradigm. Because the paradigm can be data-driven or code-driven, the problem

is common in code-driven paradigms, when the inexperienced programmer tries to rewrite the code under

a data-driven paradigm. As today, most programming languages are multi-paradigm, the paper starts from

a solved scientific problem using a structured/modular paradigm and rewrites it wrong, and then correctly

using the object-oriented paradigm.

Key words: code-drive, data-driven, imperative, paradigm, object-oriented, structured.

1. INTRODUCTION

1.1 The Harvard and the von Neumann

(Princeton) architectures.

The term of caveat should be interpreted as a

warning of practicing object oriented

programming without having any knowledge of

object oriented design. Although the problem to

be presented is about software, a variant of

approaching the concept of software

classification in paradigms ca be derived from

hardware. The term of computer architecture is

used to describe organization or structure of the

components that make up the computer based on

their role and interconnection. One of the first

computer hardware architecture used was called

the Harvard architecture.

As shown in Figure 1 the Harvard

architecture has two separate buses one for code

and one for data. Hence, the CPU (Central

Processing Unit) can access code and read/write

data at the same time. However, the existence of

two distinct busses will increase the number of

electrical lines needed for connection and

complicate the control unit of the CPU. In, 1945,

the great mathematician John von Neumann,

while working at Princeton, designed the

architecture from Figure 2 where data and code

was stored in the same memory.

Fig. 1. – The Harvard architecture.

Fig. 2. – The von Neumann (Princeton) architecture.

The CPU is separated from the memory so the

statements must be moved from the memory to

12

the CPU and results must be moved from the

CPU to the memory. A common bus was used to

data and code transfer between the CPU and the

internal memory of the computer. Both

architectures have survived to this day, the von

Neumann is used for personal computers, being

cheaper, while the Harvard architecture is used

in micro controllers, being faster but more

costly.

1.2 The hardware influence on the software.

The paradigm, in programming, defines a

methodology, a style that puts its mark on the

way of modeling, and therefore on the solution,

of the given problem. The von Neumann

architecture gave rise to a category of high-level

programming languages that form an

isomorphism (Table 1) with the hardware for

which they were written. In this sense the

following equivalences can be made:
Table 1

The hardware-software isomorphism.

von Neumann architecture

(hardware)

Programming

language

(software)

memory locations variable

machine language statements

data manipulation assignment

arithmetic with addressing

modes

expressions

One of the first paradigms use in

programming was the imperative paradigm. In

this paradigm it is mandatory to know the

solution of the problem to be solved. The

programming was consisting in translating the

known (mathematical) solution to the high level

programming language in order to get the

results. In the procedural subcategory of the

imperative paradigm a known and finite number

of transformations are applied to the data stored

in variables to obtain the results. Specific to the

procedural paradigm is the approach of the

resolving is starting from the code that leads to

the solution (code-driven). In the object-oriented

paradigm, also a subcategory of the imperative

paradigm, the solution starts from the

representation of the data that describe the

problem. These data are attached to code

sequences, called methods, which describe

operations that can be performed with the data.

The coupling of data and operations in a single

language construction (called class in Java)

leads to the formation of data structures that

result in objects that interact to obtain results.

1.3 The numerical solution of the problem.

All kinematical problems in robotics lead to

equations (see [5] - [8]). The numerical

simulation of the manipulator [1] from Figure 3,

where O and A are revolute joints (pivots), point

E is the end effector and ��� and ��� are the

lengths of the OA and AE links can be described

by the following equations (origin is considered

in O):

��� = ��� cos��� + ��� cos����
�� = ��� sin��� + ��� sin���� (1)

For a given set of {�, ��} the coordinates

(xE, yE) of the E end-effector are computed

directly from (1).

Fig. 3. – Elements of the 2D, 2R manipulator.

2. PROGRAMMING PARARADIGMS

USED TO SOLVE THE PROBLEM

2.1 The structured paradigm and the

corresponding Java implementation.

The structured paradigm is based on the

Böhm–Jacopini theorem [2]. It states that only

three rules of grammar are needed to combine

any set of basic statements into more complex

ones:

13

Received: 08.01.22; Similarities: 09.02.22: Reviewed: 11.02./11.02.22: Accepted:17.03.22.

1. Sequence:

Do this; then do that

2. Decision (or selection or branching):

IF test is true,

 THEN do this

 ELSE do that

3. Repetition (or looping or iteration):

 WHILE test is true

 DO this

(4. optional; depends on the programming

language)

 STOP/HALT

(5. even more optional, but very useful)

 Procedure definition: Define new

complex actions by name

The following code if presenting the

structured implementation of the solution in

Java. It is written inside a class named rob2Dv1

with a single static method main() as this is the

only way in Java to create a runnable code while

avoiding the object creation process.

public class rob2Dv1 {

 public static void main(String[] args) {

 double fi1, fi2, xe, ye;

 final double l1 = 10., l2 = 7.;

 String s = "";

 for (fi1 = 0.; fi1 <= 6.29; fi1 += 0.1)

 for (fi2 = 0.; fi2 <= 6.29; fi2 += 0.1) {

 xe = l1 * Math.cos(fi1) + l2 *

Math.cos(fi2);

 ye = l1 * Math.sin(fi1) + l2 *

Math.sin(fi2);

 s += String.format("%.7f,%.7f\n", xe, ye);

 }

 s = "line\n" + s + "\n";

 System.out.print(s);

 }

}

All data in the implementation is static, so no

new operator is needed to create objects to

access it.

2.2 The procedural paradigm and the

corresponding Java implementation

The procedural paradigm is based on the

concept of subroutine and subroutine call. A

subroutine (or procedure) is a name given to a

group of actions (statements) that can be called

from any point of the code (including itself). The

modular paradigm is defined as the method of

building programs from smaller pieces called

usually subroutines. Not any procedural code is

modular; modularity is achieved only if a

coherent connection of autonomous subroutines

can be achieved. The following code if

presenting the procedural/modular

implementation of the solution in Java:
public class rob2Dv2 {

 public static double[] rotate(double x0,

double y0, double l, double fi) {

 double r[] = new double [2];

 r[0] = x0 + l * Math.cos(fi);

 r[1] = y0 + l * Math.sin(fi);

 return r;

}

public static void main(String[] args) {

 double fi1, fi2, xa, ya, xe, ye;

 final double l1 = 17., l2 = 5.;

 double a[] = new double[2], e[] = new

double[2];

 String sr = "", se = "";

 for (fi1 = 0.; fi1 <= 6.29; fi1 += 0.1)

 for (fi2 = 0.; fi2 <= 6.29; fi2 += 0.1) {

 a=rotate(0.,0.,l1, fi1);

 e=rotate(a[0], a[1], l2, fi2);

 sr +=

String.format("pline\n0,0\n%.7f,%.7f\n%.7f,%.7f\

n\n", a[0], a[1], e[0], e[1]);

 se += String.format("%.7f,%.7f\n", e[0],

e[1]);

 }

 System.out.printf("-layer\ns\nrob\n\n");

 System.out.printf(sr);

 System.out.printf("-layer\ns\ntra\n\n");

 System.out.printf("pline\n"+se+"\n");

 }

}

Modularity is obtained if the inputs are

specified syntactically in the form of arguments

and the outputs delivered as return values in

order to achieve the coupling and the generality

of the subroutine. The previous code from

rob2Dv2 class is using the static method rotate()

that returns an array and inputs the coordinates

of the rotation point, the length and the rotation

angle. The main() method is reusing the

subroutine code in two calls in order to perform

the two rotations.

2.3 The object oriented paradigm and the

corresponding Java implementation

Object oriented software construction is a

development method which organizes the

architecture of the system to be designed on

types of objects that are manipulated to solve the

problem. As a class is a user definer data type in

Java and the following code is creating the r1

object based on the class rob2Dv3 we can state

that the implementation is object oriented.

14

public class rob2Dv3 {

 double fi1, fi2, xa, ya, xe, ye, l1 , l2 ;

 public rob2Dv3_1(double l1, double l2) {

 this.l1=l1;

 this.l2=l2;

 compute();

 }

 public double[] rotate(double x0, double y0,

double l, double fi) {

 double r[] = new double [2];

 r[0] = x0 + l * Math.cos(fi);

 r[1] = y0 + l * Math.sin(fi);

 return r;

 }

 public void compute() {

 double a[] = new double[2], e[] = new

double[2];

 String sr = "", se = "";

 for (fi1 = 0.; fi1 <= 6.29; fi1 += 0.1)

 for (fi2 = 0.; fi2 <= 6.29; fi2 += 0.1) {

 a=rotate(0.,0.,l1, fi1);

 e=rotate(a[0], a[1], l2, fi2);

 sr +=

String.format("pline\n0,0\n%.7f,%.7f\n%.7f,%.7f\

n\n", a[0], a[1], e[0], e[1]);

 se += String.format("%.7f,%.7f\n", e[0],

e[1]);

 }

 System.out.printf("-layer\ns\nrob\n\n");

 System.out.printf(sr);

 System.out.printf("-layer\ns\ntra\n\n");

 System.out.printf("pline\n"+se+"\n");

 }

 public static void main(String[] args) {

 rob2Dv3_1 r1 = new rob2Dv3_1(17.,5.);

 }

}

The type or the class (r1) on which the object

(rob2Dv3) is based has one constructor and two

methods related to the subject: compute() and

rotate(). The main() method is mandatory in

Java to run the code so it not consider as part of

the design.

3. TOWARDS A BETTER OBJECT

ORIENTED IMPLEMENTATION USING

OBJECT ORIENTED DESIGN CONCEPTS

The elements considered in the above

solution were purely geometric, which is why

the proposed solution is in fact a procedural one

that has been forcibly implemented in an object-

oriented form. This is easy to see because there

are no specific classes (or user-defined data

types) identified on the subject that are used to

define the interacting objects to get us to the

solution. There is only one class and one object

that produce the final results. In the general case,

the solution should start from the identification

of some general characteristics that can be used

in the description of new data types that can

describe the individual elements that appear in

the context of the problem to be solved. For

example, some of the categories of types in the

context of the problem could be the:

• structure type: provides identity and

linkage description;

• topology type: provides geometrical

description based on positions and

angles;

• kinematical type: provides

displacement, speed and acceleration

description;

• dynamic type: provides description of

forces, momentum and frictions.

If we consider the concepts of link, joint and

robot the following user defined data types can

be described: Link, JointR and Rob2D. A link is

defined as a moving rigid body (or it can be fixed

with respect of a reference when is called frame).

As shown in Figure 3 we are in the case of planar

mechanisms where all of the relative motions of

the rigid bodies are in one plane (or in parallel

planes). This will influence the topological

description of the types. As no forces and masses

are specified the implementation will only refer

to a kinematical solution considering only the

fundamental concepts of space and time (and

maybe quantities like velocity and acceleration

derived from there). The new user type called

Link will topologically describe the state of a

link using four quantities: (x0, y0) - the initial

position, l - the length of the body and fi - the

angle of the body with respect of the frame. The

end point of the link ca be computed with the

help of the getEnd() method that returns an array

of a 2D point.

public class Link {

 double x0, y0, l, fi;

 public Link(double x0, double y0, double l,

double fi) {

 this.x0=x0;

 this.y0=y0;

 this.l=l;

 this.fi=fi;

 }

 public double [] getEnd() {

 double e[] = new double[2];

 e[0] = x0+l*Math.cos(fi);

 e[1] = y0+l*Math.sin(fi);

 return e;

15

Received: 08.01.22; Similarities: 09.02.22: Reviewed: 11.02./11.02.22: Accepted:17.03.22.

 }

 public String toString() {

 double e[] = getEnd();

 return

String.format("%5.3f,%5.3f\n%5.3f,%5.3f\n",x0,

y0, e[0], e[1]);

 }

}

The following new user type is called JointR

and will be topologically described by the links

l1 and l2 that it connects. This is a revolute joint

placed at the intersection of the endpoint of l1

and the initial point of l2. Rotations and

translations of the JointR types are applied at

the initial point of l2.

public class JointR {

 Link l1, l2;

 public JointR(Link l1, Link l2) {

 this.l1 = l1;

 this.l2 = l2;

 }

 public void rotate(double fi) {

 l2.fi = fi;

 }

 public void translate(double t[]) {

 l2.x0 = t[0];

 l2.y0 = t[1];

 }

 public double [] getEnd() {

 return l2.getEnd();

 }

}

The combination of links and joints with a

fixed link (a base) are describing the 2D

manipulator from Figure 3 in the new user

defined data type called Rob2D.

public class Rob2D {

 Link l0, l1, l2;

 JointR JO, JA, JE;

 public Rob2D() {

 l0 = new Link(0., 0., 0., 0.);//fixed

 l1 = new Link(0., 0., 17., 0.);//oa

 l2 = new Link(0., 17., 5., 0.);//ae

 JO = new JointR(l0, l1); //O

 JA = new JointR(l1, l2); //A

 JE = new JointR(l2, l2); //E

 }

 public void compute() {

 for (double fi1 = 0.; fi1 <= 6.3; fi1 +=

0.01) {

 JO.rotate(fi1);

 JA.translate(JO.getEnd());

 for (double fi2 = 0.; fi2 <= 6.3; fi2 +=

0.1) {

 JA.rotate(fi2);

 System.out.print("pline\n");

 System.out.print(l1);

 System.out.println(l2);

 }

 }

}

 public static void main(String[] args) {

 Rob2D r = new Rob2D();

 r.compute();

 }

}

Object oriented design involves finding new

data types that are used to describe the data to be

processed as well as the use of techniques

specific to object-oriented design called

composition and inheritance [3], [4].

Composition is applied inside the JointR type

as the data of this category is composed of

instance variables based on the Link user

defined data type. Composition is also applied in

the Rob2D class where all the instance variables

are based on the Link and JointR user defined

data types. One of the major advantages of a

properly object oriented designed code is it’s the

adaptation to new requirements and problems

that are close to the already solved problem.

Consider a new problem similar to the one

already presented, in which a new joint and a

new link are added to the structure. The code to

solve the new problem is further presented.

public class Rob2D3R {

 Link l0, l1, l2;

 Link l3;

 JointR JO, JA, JE;

 JointR JE1;

 public Rob2D3R() {

 l0 = new Link(0., 0., 0., 0.);

 l1 = new Link(0., 0., 17., 0.);

 l2 = new Link(0., 17., 5., 0.);

 l3 = new Link(0., 22., 9., 0.);

 JO = new JointR(l0, l1);

 JA = new JointR(l1, l2);

 JE = new JointR(l2, l3);

 JE1 = new JointR(l3, l3);

 }

 public void computeEE(double fi1, double fi2,

double fi3) {

 JO.rotate(fi1);

 JA.translate(JO.getEnd());

 JA.rotate(fi2);

 JE.translate(JA.getEnd());

 JE.rotate(fi3);

 System.out.println("pline");

 System.out.print(l1);

 System.out.print(l2);

 System.out.println(l3);

 }

 public void computeWorkspace() {

 for (double fi1 = 0.; fi1 <= 6.29; fi1 +=

0.3) {

 JO.rotate(fi1);

 JA.translate(JO.getEnd());

 for (double fi2 = 0.; fi2 <= 6.29; fi2 +=

0.3) {

 JA.rotate(fi2);

16

 JE.translate(JA.getEnd());

 for (double fi3 = 0.; fi3 <= 6.29; fi3 +=

0.3) {

 JE.rotate(fi3);

 System.out.println("pline");

 System.out.print(l1);

 System.out.print(l2);

 System.out.println(l3);

 }

 }

 }

 }

 public void computeTrajectory(){

 for (double fi1 = 0.; fi1 <= 6.29; fi1 +=

0.01) {

 double fi2=Math.sin(fi1/2.);

 double fi3=Math.sin(fi1);

 computeEE(fi1,fi2,fi3);

 }

 }

 public static void main(String[] args) {

 Rob2D3R r = new Rob2D3R();

 //r.computeWorkspace();

 r.computeTrajectory();

 }

}

4. CONCLUSION

As can be seen, the adaptation of the old code

to the new problem is clearly visible at the data

level and at the code level. The extension is

clear, natural and directly reflects the changes

needed to be followed to get the new solution

(see the bold elements).

5. REFERENCES

[1] ANTAL, Tiberiu Alexandru. Principles of

motion simulation of a 2 dof rr planar

manipulator using java swing. Acta Technica

Napocensis - Series: Applied Mathematics,

Mechanics, And Engineering, v. 63, n. 1,

2020. ISSN 2393–2988.

[2] Boehm, Corrado, & Jacopini, Giuseppe Flow

Diagrams, Turing Machines, and Languages

with only Two Formation Rules,

Communications of the ACM, Volume 9,

issue 5, pp 366-371, May 1966,

https://doi.org/10.1145/355592.365646.

[3] ANTAL, T. A., Elemente de Java cu

JDeveloper - îndrumător de laborator,

Editura UTPRES, 2013, p.150, ISBN: 978-

973-662-827-6.

[4] ANTAL, T. A., Java - Iniţiere - îndrumător

de laborator, Editura UTPRES, 2013, p. 246,

ISBN: 978-973-662-832-0.

[5] DETESAN, Ovidiu-Aurelian. The numerical

simulation of TRR small-sized robot. Acta

Technica Napocensis - Series: Applied

Mathematics, Mechanics, And Engineering,

[S.l.], v. 58, n. 4, nov. 2015. ISSN 1221-5872.

[6] Husty, M., Birlescu, I., Tucan, P., Vaida, C.,

Pisla, D.: An algebraic parameterization

approach for parallel robots analysis,

Mechanism and Machine Theory, vol. 140,

pp. 245-257, 2019

[7] B. Gherman, C. Vaida, D. Pisla, N. Plitea, B.

Gyurka, D. Lese, M. Glogoveanu,

Singularities and workspace analysis for a

parallel robot for minimally invasive surgery,

Automation Quality and Testing Robotics

(AQTR), 2010 IEEE International

Conference on, DOI: 10.1109/AQTR.

2010.5520866

[8] Vaida, C; Plitea, N; Gherman, B; Szilaghyi,

A; Galdau, B; Cocorean, D; Covaciu, F;

Pisla, D; Structural analysis and synthesis of

parallel robots for brachytherapy, New

Trends in Medical and Service Robots, pp

191-204, 2014, DOI: 10.1007/978-3-319-

01592-7_14

Un avertisment cu privire la programarea orientată pe obiect aplicată greşit în Java
Lucrarea prezintă modul de eronat de transcriere a unui cod ce foloseşte paradigma procedurală într-un cod care este

implementat utilizând paradigma orientată pe obiect. Deoarece paradigma poate fi condusă atât de date cât şi de cod,

problema prezentată apare frecvent în cazul paradigmelor conduse de cod, când programatorul neexperimentat,

încearcă sa-l rescrie într-o paradigmă condusă de date. Deoarece astăzi, majoritatea limbajelor de programare sunt

multi-paradigma, lucrarea pleacă de la o problemă științifică rezolvată folosind paradigma structurată/modulară şi o

reface greşit, iar apoi corect, utilizând paradigma orientată pe obiect.

ANTAL Tiberiu Alexandru, Professor, dr. eng., Technical University of Cluj-Napoca,

Department of Mechanical System Engineering, antaljr@bavaria.utcluj.ro, 0264-401667, B-dul

Muncii, Nr. 103-105, Cluj-Napoca, ROMANIA.

