TECHNICAL UNIVERSITY OF CLUJ-NAPOCA

 ACTA TECHNICA NAPOCENSISSeries: Applied Mathematics, Mechanics, and Engineerin!

Vol. 65, Issue I, March, 2022

DETERMINATION OF THE WHEEL TEMPERATURE, DURING
 STOPPING BRAKING OF RAILWAY VEHICLES, AT POINTS LOCATED AT THE DISTANCE $X_{\text {r }}$ FROM THE WHEEL-SHOE FRICTION SURFACE

Liviu Sevastian BOCÎI

Abstract

During stop braking, from high speeds, by means of the brake with shoes, the rolling surfaces of the wheels withstand thermal regimes that generate forces that affect driving safety.In this work, the calculation of the wheel temperature is presented using a calculation program (non-commercial), prepared by the author. After entering the initial data: the wheel load $G_{R}[d a N] ;$ the mass factor $\gamma[n o n-d i m e n s i o n a l] ;$ the initial speed of braking $V[\mathrm{~km} / \mathrm{h}]$; the width of the shoe [m]; the thickness of the shoe [m]; braking deceleration [m/s s^{2}; the conductivity coefficient for the two materials of the friction coupling elements $\lambda_{R}, \lambda_{K}\left[W /\left(m{ }^{\circ} \mathrm{C}\right)\right]$; the density of the two materials $\rho_{R}, \rho_{K}\left[\mathrm{~kg} / \mathrm{m}^{3}\right]$; the specific heat $\left.c_{R}, c_{K}\left[J /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)\right]\right)$ can be calculated, in addition to other parameters, the temperature of the friction surface of the wheel $\left(x_{R}=0\right)$ also the temperature at different points located at a distance $x_{R}=5 ; 10 ; 15 \mathrm{~mm}$, from the wheel tread. The values obtained by the calculation represent the variation in temperature at different points located at a distance x_{R} from the friction surface of the wheel vs. time (duration of braking). Figures 2-11 have represented, in temperature $(f(x))$ - time (x) coordinates, the variation of the temperature at the points located at the distance $x_{R}\left(x_{R}=0 ; 5 ; 10 ; 15 \mathrm{~mm}\right)$, considering the following braking speed values: $V=160 ; 200 \mathrm{~km} / \mathrm{h}$, the load per wheel $G_{R}=7000 ; 9000$ daN (Figures 2-5) and three values of the deceleration: $a=0.8 ; 1.1 ; 1.2 \mathrm{~m} / \mathrm{s}^{2}$ (Figures 6-11). Results obtained have made it possible to observe that at the same load per wheel, the increase in the initial braking speed leads to an increase in the wheel temperature. Also, at the same initial braking speed and the same load per wheel, a decrease in tread temperature is observed as deceleration decreases.

Key words: shoes brake, friction surface, temperature

1. INTRODUCTION

The continuous increase in the speed of travel of rail vehicles has represented a challenge for scientists.
Experimental tests carried out on high-speed railways have shown that brake shoes require very long braking distances and therefore to maintain the same distance between signals, that is, the same braking space, it is necessary to develop new brake systems and at the same time perfecting the brake with pads increasing its performance.
The improvement of the brake shoe efficiency has been achieved by the following methods:

- The use of the shoes of a special construction [5-9];
- Optimization of the braking times;
- The mounting of the anti-lock devices in each vehicle.
The refinement of the shoe brake has been carried out through the introduction of modern electrical controls and distributors that ensure better braking characteristics.
The main disadvantage of the shoe brake is the large amount of heat produced by friction, which cannot be dissipated by the friction coupling elements.
In this work, the calculation of the wheel temperature is presented using a calculation program (non-commercial), prepared by the author. After entering the initial data: the wheel load G_{R} [daN]; the mass factor γ [nondimensional]; the initial speed of braking $\mathrm{V}[\mathrm{km}$ / h]; the width of the shoe [m]; the thickness of the shoe [m]; braking deceleration [m/s ${ }^{2}$]; the coefficient of conductivity for the two materials
of the friction coupling elements λ_{R}, λ_{K} $\left[\mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)\right]$; the density of the two materials ρ_{R}, $\rho_{\mathrm{K}}\left[\mathrm{kg} / \mathrm{m}^{3}\right]$; the specific heat $\left.\mathrm{c}_{\mathrm{R}}, \mathrm{c}_{\mathrm{K}}\left[\mathrm{J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)\right]\right)$ can be calculated, in addition to other parameters, the temperature of the friction surface of the wheel ($x R=0$) also the temperature at different points located at a distance $\mathrm{x}_{\mathrm{R}}=5 ; 10 ; 15 \mathrm{~mm}$, from the wheel tread.

2. FORMULAS USED TO CALCULATE TEMPERATURE

In stopping braking of railway vehicles fitted with brake shoes, the variation of the temperature at points located at a distance x_{R} (see figure 1) from the wheel friction surface as a function of the ambient temperature (ΔT), for a time less than the braking duration $\left(\mathrm{t}<\mathrm{t}_{\mathrm{b}}\right)$ is given by the relation (1), [2-3], [8], [13-15]:
$\Delta T\left(t<t_{b}, 0\right)=\frac{q_{a}}{1+\frac{1}{f_{F_{o}}} \cdot \frac{\sqrt{\lambda_{K} \cdot \rho_{K} \cdot c_{K}}}{\sqrt{\lambda_{R} \cdot \rho_{R} \cdot c_{R}}}}$.
$\left\{\begin{array}{l}2 \cdot \sqrt{t} \cdot e^{-\frac{x_{R}{ }^{2}}{4 \cdot a_{R} \cdot t}} \\ \sqrt{\pi} \cdot \sqrt{\lambda_{R} \cdot \rho_{R} \cdot c_{R}} \\ -\end{array}\left[1-\frac{2}{3} \cdot \frac{t}{t_{b}} \cdot\left(1+\frac{x_{R}{ }^{2}}{4 \cdot a_{R} \cdot t}\right)\right]\right.$
$-\frac{x_{R}}{\lambda_{R}} \cdot\left[1-\Phi\left(\frac{x_{R}}{\sqrt{4 \cdot a_{R} \cdot t}}\right)\right]$
$\cdot\left[1-\frac{t}{t_{b}} \cdot\left(1+\frac{2}{3}\right.\right.$

$$
\begin{equation*}
\left.\left.\left.\cdot \frac{x_{R}{ }^{2}}{4 \cdot a_{R} \cdot t}\right)\right]\right\} \quad\left[{ }^{\circ} C\right] \tag{1}
\end{equation*}
$$

During cooling ($\mathrm{t}>\mathrm{t}_{\mathrm{b}}$) the corresponding variation in temperature at points located at a distance $x R$ from the friction surface of the wheel will be given by the relation (2):
$\Delta T\left(t<t_{b}, 0\right)=\frac{q_{a}}{1+\frac{1}{f_{F_{o}}} \cdot \frac{\sqrt{\lambda_{K} \cdot \rho_{K} \cdot c_{K}}}{\sqrt{\lambda_{R} \cdot \rho_{R} \cdot c_{R}}}}$.

$$
\cdot\left\{\frac{2}{\sqrt{\pi} \cdot \sqrt{\lambda_{R} \cdot \rho_{R} \cdot c_{R}}}\right.
$$

$$
\left[\sqrt { t } \cdot e ^ { - \frac { x _ { R ^ { 2 } } } { 4 \cdot a _ { R } \cdot t } } \cdot \left[1-\frac{2}{3} \cdot \frac{t}{t_{b}}\right.\right.
$$

$$
\left.\cdot\left(1+\frac{x_{R}^{2}}{4 \cdot a_{R} \cdot t}\right)\right]-
$$

$$
\begin{aligned}
&-\frac{2}{3} \cdot \sqrt{t-t_{b}} \cdot e^{-\frac{x_{R}{ }^{2}}{4 \cdot a_{R} \cdot\left(t-t_{b}\right)}} \\
& \cdot {\left.\left[1-\frac{t}{t_{b}} \cdot\left(1+\frac{x_{R}^{2}}{4 \cdot a_{R} \cdot t}\right)\right]\right]- }
\end{aligned}
$$

$$
-\frac{x_{R}}{\lambda_{R}} \cdot\left[\Phi\left(\frac{x_{R}}{\sqrt{4 \cdot a_{R} \cdot\left(t-t_{b}\right)}}\right)-\Phi\left(\frac{x_{R}}{\sqrt{4 \cdot a_{R} \cdot t}}\right)\right] .
$$

$$
\cdot\left[1-\frac{t}{t_{b}}\right.
$$

$$
\cdot\left(1+\frac{2}{3}\right.
$$

$$
\begin{equation*}
\left.\left.\left.\cdot \frac{x_{R}{ }^{2}}{4 \cdot a_{R} \cdot t}\right)\right]\right\} \quad\left[{ }^{\circ} C\right] \tag{2}
\end{equation*}
$$

Fig. 1. Schematization of the wheel with the shoe applied to highlight the distance x_{R}

The value of the specific heat flux that appears at the beginning of braking (qa) is given by the relation (3):
$\mathrm{q}_{\mathrm{a}}=\frac{(1+\gamma) \cdot \mathrm{G}_{\mathrm{R}} \cdot \mathrm{v}^{2}}{\mathrm{~g} \cdot \mathrm{~S}_{\mathrm{oR}} \cdot \mathrm{t}_{\mathrm{b}}} \quad\left[\mathrm{W} / \mathrm{m}^{2}\right]$
where: $(1+\gamma)$ - the mass factor (experimental);
v - the speed $[\mathrm{m} / \mathrm{s}]$;
g - the gravitational acceleration $\left[\mathrm{m} / \mathrm{s}^{2}\right]$;
tb - the duration of braking [s];
G_{R} - the load per wheel [daN];
S_{oR} - the friction surface of the wheel $\left[\mathrm{m}^{2}\right]$.
The Fourier coefficient necessary to determine the temperature correction factor is given by the relation (4):
$\mathrm{F}_{\mathrm{o}(\mathrm{K}, \mathrm{R})}=\frac{\mathrm{a}_{\mathrm{K}, \mathrm{R}} \cdot \mathrm{t}_{\mathrm{b}}}{\mathrm{b}_{\mathrm{K}, \mathrm{R}}}$
where: $a=\frac{\lambda}{\rho \cdot c}$ - is the coefficient of thermal diffusivity $\left[\mathrm{m}^{2} / \mathrm{h}\right]$;
ρ - the material density of the friction coupling elements (ρ_{R} - for wheel, ρ_{K} - for shoe);
λ - the coefficient of thermal conductivity ($\lambda_{R}-$ for wheel, λ_{K} - for shoe);
c - specific heat of friction coupling element materials (c_{R} - for wheel, c_{K} - for shoe).

3. CALCULATION PROGRAM.

The (non-commercial) calculation program for the temperatures at points located on the wheel at the distance x_{R} from the friction surface of the friction coupling elements of the brake shoe, in the case of standstill braking, has been prepared by the author and contains the following instructions [2-3], [6]:

INTRODATEINITIALE (the introduction of the initial data)
 CALCULEPREG (preparatory calculations)
 CALCULULTEMP (temperature calculation)
 GRAFICA (graphics)
 RESULTATE (results)

The initial data necessary to calculate the temperature (also the graphical representation of the temperature variation) by means of this program are the following:

- Load per wheel G_{R} [daN];
- The mass factor γ [no dimensional];
- The speed of the braking principle V [km/h];
- Shoe width [m];
- The thickness of the shoe [m];
- The slowdown $\left[\mathrm{m} / \mathrm{s}^{2}\right]$;
- The coefficient of conductivity for the two elements of the friction coupling λ_{R}, $\lambda_{K}\left[\mathrm{~W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)\right]$;
- The density of the two materials $\rho_{\mathrm{R}}, \rho_{\mathrm{K}}$ $\left[\mathrm{kg} / \mathrm{m}^{3}\right]$;
- Specific heat $\mathrm{c}_{\mathrm{R}}, \mathrm{c}_{\mathrm{K}}\left[\mathrm{J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)\right]$.

The main results of this program are:

- The duration of braking tb [s];
- Friction surface $S\left[\mathrm{~m}^{2}\right]$;
- Thermal flux $q\left[W / \mathrm{m}^{2}\right]$;
- The material constants of the two elements of the friction coupling:

$$
\sqrt{\lambda_{\mathrm{R}} \cdot \rho_{\mathrm{R}} \cdot \mathrm{c}_{\mathrm{R}}} \quad \sqrt{\lambda_{\mathrm{K}} \cdot \rho_{\mathrm{K}} \cdot \mathrm{c}_{\mathrm{K}}}
$$

- The coefficient of thermal diffusivity of the two elements: $\mathrm{a}_{\mathrm{R}}, \mathrm{a}_{\mathrm{K}}\left[\mathrm{m}^{2} / \mathrm{h}\right]$;
- The Fourier coefficient F_{o}, no dimensional;
- The correction factor f_{Fo}, no dimensional;
- The temperature $\left[{ }^{\circ} \mathrm{C}\right]$.

The program calculates and presents in a synthetic form (tables) the results listed above, also by means of the GRAPH procedure it represents the variation of the temperature in points located at a distance $x R$ from the friction surface of the wheel as a function of time (the duration of braking).
Next, as an example, a case is analyzed using the program, in coordinates temperature ($\mathrm{f}(\mathrm{x}$) on the figures) - time (x on the figures). In this analysis, the temperature variation at points located at a distance $\mathrm{x}_{\mathrm{R}}\left(\mathrm{x}_{\mathrm{R}}=0 ; 5 ; 10 ; 15 \mathrm{~mm}\right)$ from the friction surface of the wheel has been represented, the speed of the beginning of braking has been considered: $\mathrm{V}=160 ; 200 \mathrm{~km} /$ h), two loads per wheel: $G_{R}=7000 ; 9000$ daN in figures 2 to 5 and four decelerations ($a=0.8 ; 1.0$; $1.2 ; 1.3 \mathrm{~m} / \mathrm{s}^{2}$) - figures 6 to 11 , for a load of $10,000 \mathrm{daN}$.

Fig. 2. The variation of the wheel temperature (f 1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=7000 \mathrm{daN}$, a $=1,3 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=160 \mathrm{~km} / \mathrm{h}$, Vs. time (braking duration -x in figures)

Fig. 3. The variation of the wheel temperature (f 1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=7000 \mathrm{daN}$, a $=1,3 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=200 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration -x in figures)

Fig. 4. The variation of the wheel temperature (f1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=9000 \mathrm{daN}$, a $=1,3 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=160 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration -x in figures)

Fig. 5. The variation of the wheel temperature (f 1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=9000 \mathrm{daN}, \mathrm{a}$ $=1,3 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=200 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration -x in figures)

Fig. 6. The variation of the wheel temperature (f 1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=10000 \mathrm{daN}$, $\mathrm{a}=0,8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=160 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration x in figures)

Fig. 7. The variation of the wheel temperature (f1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=10000 \mathrm{daN}$, $\mathrm{a}=1,0 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=160 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration x in figures)

Fig. 8. The variation of the wheel temperature (f1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=10000 \mathrm{daN}$, $\mathrm{a}=1,2 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=160 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration x in figures)

Fig. 9. The variation of the wheel temperature (f1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=10000 \mathrm{daN}$, $\mathrm{a}=0,8 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=200 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration x in figures)

Fig. 10. The variation of the wheel temperature (f 1 (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=10000 \mathrm{daN}$, $\mathrm{a}=1,0 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=200 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration x in figures)

Fig. 11. The variation of the wheel temperature ($f 1$ (x) $\left.\rightarrow \mathrm{x}_{\mathrm{R}}=0 \ldots \mathrm{f} 4(\mathrm{x}) \rightarrow \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}\right)$ for $\mathrm{G}_{\mathrm{R}}=10000 \mathrm{daN}$, $\mathrm{a}=1,2 \mathrm{~m} / \mathrm{s}^{2}, \mathrm{~V}=200 \mathrm{~km} / \mathrm{h}$ Vs. time (braking duration x in figures)

5. CONCLUSIONS

From the analysis of the diagrams presented in Figures 2 to 11 , the following conclusions result:

- In brake shoe braking, the rolling wheels withstand thermal regimes that generate forces on the wheel disc and on the crown;
- At the same load per wheel, an increase in the speed at the beginning of braking (from $160 \mathrm{~km} / \mathrm{h}$ to $200 \mathrm{~km} / \mathrm{h}$) produces an increase in the temperature inside the wheel (especially at the crown) reaching values of approximately $267^{\circ} \mathrm{C}$ at a distance $\mathrm{x}_{\mathrm{R}}=10$ mm from the friction surface of the wheel;
- For $\mathrm{x}_{\mathrm{R}}>0$, a decrease in wheel temperature is observed, but the temperature values must be noted. For example, the value of approximately $250^{\circ} \mathrm{C}$ is obtained at a regime characterized by: $\mathrm{G}_{\mathrm{R}}=9000$ daN, $\mathrm{a}=1.3 \mathrm{~m}$ $/ \mathrm{s}^{2}, \mathrm{~V}=200 \mathrm{~km} / \mathrm{h}, \mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}$, a value that will be transmitted by driving in the wheel disc leading, in the most unfavorable case, to a rotation of the wheel on the axle;
- At the same initial braking speed and the same load per wheel, a decrease in deceleration, for example from $\mathrm{a}=1.2 \mathrm{~m} /$ s^{2} to $\mathrm{a}=0.8 \mathrm{~m} / \mathrm{s}^{2}$ leads to a decrease in temperature from about $310^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$, but at the same time requires a greater stopping distance;
- Likewise, at the increase in the speed at the beginning of braking (for example, from V $=160 \mathrm{~km} / \mathrm{h}$ to $\mathrm{V}=200 \mathrm{~km} / \mathrm{h}$), at the same deceleration $\left(a=1.0 \mathrm{~m} / \mathrm{s}^{2}\right)$ and at the distance $\mathrm{x}_{\mathrm{R}}=15 \mathrm{~mm}$, produces an increase
in the temperature of the wheel from $190^{\circ} \mathrm{C}$ to $270^{\circ} \mathrm{C}$, considering a load per wheel $\mathrm{G}_{\mathrm{R}}=$ $10,000 \mathrm{daN}$.

6.REFERENCES

[1] Adamsen , J., "Heating and cooling of Friction Brakes" Seminar on Braking , London 1986;.
[2] L.S. Bocîi, "Contribuţii la frânarea vagoanelor de călători de mare viteză", Teză de doctorat, Universitatea Politehnica Timişoara, 1997;
[3] Bocîi , L.S., Dungan, M. C. "Sistemas de frenada sobre los vehículos ferroviarios de velocidades grandes y muy grandes " Sesión de Comunicaciones Científicas de la Universidad " Aurel Vlaicu " Arad, mayo 1994;
[4] Bocîi , L.S., Lammert , F., Dungan , M. A., "Materiales utilizados para los acoplamientos de fricción del sistema de frenada mecánico de los vehículos ferroviarios de alta velocidad" Sesion de Comunicaciones Científicas de la Universidad " Aurel Vlaicu " Arad , mayo 1994;
[5] Boiteux , M., "Recherches en vue de l'optimisation de la regeneration de l'adherence en freinage ", Revue Générale de Chemins de Fer, februarie 1993;
[6] Ehlers , H.R., "Die thermishe Berechnung der Klotzbremse" Sonderdruck aus Archiv für Eisenbahntechnik, Folge 18;
[7] Fall, S., Mager, G., " Les semelles de frein en fonte grise phosphoreuse" Revue Générale de Chemins de Fer, mai 1989;

Determinarea temperaturii roții, la frânarea de oprire a vehiculelor feroviare, în puncte sitúate la distanța x_{R} față de suprafața de rulare

Rezumat: În timpul frânării DE oprite de la viteze mari prin intermediul frânei cu saboți, suprafețele de rulare ale roților suportă regimuri termice care generează tensiuni cu efecte negative asupra siguranteei circulației. În această lucrare este prezentat calculul temperaturii roții folosind un program de calcul (necomercial) elaborat de autor. După introducerea datelor inițiale: sarcina roții G_{R} [daN]; factorul de masă γ [nedimensional]; viteza inițială de frânare $\mathrm{V}[\mathrm{km} / \mathrm{h}$; lățimea sabotului $[\mathrm{m}]$; grosimea sabotului $[\mathrm{m}]$; decelerarea frânării $\left[\mathrm{m} / \mathrm{s}^{2}\right]$; coeficientul de conductivitate pentru cele două materiale ale elementelor cuplei de frecare $\lambda_{\mathrm{R}}, \lambda_{\mathrm{K}}\left[\mathrm{W} /\left(\mathrm{m}^{\circ} \mathrm{C}\right)\right]$; densitatea celor două materiale $\rho_{\mathrm{R}}, \rho_{\mathrm{K}}\left[\mathrm{kg} / \mathrm{m}^{3}\right]$; căldura specifică $\left.\mathrm{c}_{\mathrm{R}}, \mathrm{c}_{\mathrm{K}}\left[\mathrm{J} /\left(\mathrm{kg}{ }^{\circ} \mathrm{C}\right)\right]\right)$ poate fi calculată, pe lângă alți parametri, temperatura suprafeței de frecare a roții $\left(\mathrm{x}_{\mathrm{R}}=0\right)$ și temperatura în diferite puncte situate la distanță $x_{R}=5 ; 10 ; 15 \mathrm{~mm}$, față de suprafața de rulare a roții. Valorile obținute prin calcul reprezintă variația temperaturii în diferite puncte situate la o distanță x_{R} de suprafața de frecare a roții Vs. timp (durata frânării). În figurile $2-11$ se prezintă, în coordonate temperatură ($f(x)$) - timp (x), variația temperaturii în punctele situate la distanța $\mathrm{x}_{\mathrm{R}}\left(\mathrm{x}_{\mathrm{R}}=0 ; 5 ; 10 ; 15 \mathrm{~mm}\right)$, având în vedere următoarele valori ale parametrilor: viteza de început al frânării: $V=160 ; 200 \mathrm{~km} / \mathrm{h}$, sarcina pe roată $\mathrm{G}_{\mathrm{R}}=7000 ; 9000 \mathrm{daN}$ (Figurile 2-5) și trei valori ale decelerării: $\mathrm{a}=0,8$; $1.1 ; 1,2 \mathrm{~m} / \mathrm{s}^{2}$ (Figurile 6-11). Rezultatele obținute au făcut posibilă observația că la aceeași sarcină pe roată, creșterea vitezei inițiale de frânare duce la o creștere a temperaturii roții. De asemenea, la aceeași viteză de frânare inițială și aceeași sarcină pe roată, se observă o scădere a temperaturii suprafeței de rulare pe măsură ce decelerarea scade.

Liviu Sevastian BOCÎI, Professor, PhD, "Aurel Vlaicu" University of Arad; Department of Automation, Industrial Engineering, Textiles and Transport; no 2, Elena Drăgoi Street, 310330 Arad, Romania, tel/fax: +40 257 250389; bociis@yahoo.com

