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ABSTRACT: The implementation of a mechanical robot structure, in a working process, consists in 

determination of the driving moments of each motor from the kinematic joints. To establish of these driving 

moments, known as dynamic control equations, can be used a generalized algorithm, based on geometrical, 

kinematical, and dynamical modelling, by using dedicated algorithms. Generally, a proper estimation of 

moments of the motors, are revealing the driving motor torques, hence the related breaking systems can be 

rigorously dimensioned. The paper presents an example of using mathematical algorithms to implement a 

robot in a working process. 
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1. INTRODUCTION 

 
Starting from the idea that a robot is a complex 
mechanic system, further will be determined the 
dynamic functions for a mechanical robot 
structure. The obtained expressions leading to 
implementation it in a working process. To 
achieve this goal, it must be considered that the 
robot is a set of bidirectional elements 
interconnected by mathematical functions.  
Each serial robot is considered having a number 
of kinematic joint (link). In each kinematic link, 
is an actuator, which generates the movement of 
the mechanical element, hence the motion is 
transmitted to the end effector.  

 
2.  GEOMETRICAL MODELING OF THE 

2TR SERIAL ROBOT STRUCTURE  

Is considered a serial robot structure, having 
three degrees of freedom, as presented in the 
Figure 1.  

 
 
 
 

 
 
 

 

 

 

Fig. 1. The 2TR serial robot 

According to the figure, the proposed robot is a 
serial robot, consisting in two translations, and a 
rotation, the robot denoted 2TR.  
The first step in establishing of dynamic control 
equations, consisting in geometrical modeling, 
hence resulting a column vector, describing the 
direct geometric modeling of the type 2TR 
robot. 
In order to obtain the Direct Geometry 
Equations, according to [1], there is used the 
Locating Matrix Algorithm, described in [2], 
considering that 1 2 3, ,q q q  are the generalized 
coordinates from each kinetic link.  
As shown in Figure 2, the three d.o.f. of the 2TR 
serial robot, consisting in a translation along the 
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axis

0zO , one along the axis
0xO , as well as the 

rotation of the effector around the 
0xO  axis.  

According to mechanical structure of the robot, 
there is presented the kinematic scheme of the 
robot, as in Figure 2. 

 
 

 
 

 

 

 

 

 

Fig. 2. The Kinematic scheme of serial robot 2TR 
 

For the 2TR serial structure, to apply the 
Locating Matrix Algorithm as input data is 
considered the following matrix of nominal 
geometry, as presented in Table 1.  

Table 1 

The Matrix of nominal geometry 

Joint 

 

Joint 

type 

R,T
 

  

      

1 T 0 0 1 0 0 l1
 

2 T 1 0 0 0 - a1
 

l1
 

3 R 1 0 0 l2
 

- a1
 

l1
 

4 - - - - a+l2
 

-a1
 

l1
 

 

On the basis of matrix of nominal geometry, by 
applying the algorithm, there is determined the 
following column vector of generalized 
coordinates: 
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representing the direct geometry equations. 
On the basis of (1), are determined the 
geometrical control functions, corresponding to 

the input data regarding the position of the 
characteristic point in the Cartesian space: 

2 2 2
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z

q p a d

q p l

q γ π

= − − 
 = − 
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                                                  (2) 

representing the inverse geometry equations. 
 

3. KINEMATIC CONTROL FUNCTIONS 

FOR 2TR SERIAL STRUCTURE 

 

In order to obtain the direct kinematics 
equations, there is used the Algorithm of Matrix 
Exponential in kinematics, and the time 
derivative of Jacobian matrix, according to [3], 
[4]. The direct kinematics equations with respect 
to fixed reference frame are obtained as [5]: 

���� ≡ � ��� �	 	 	
�� � � � 
� ���� ⋅ ��� �
����� 0 ��������� 0 0�� �             (3) 

 

���� ≡ � ���� �	 	 	
��� �
� � 
� ���� ⋅ ��� �

����� 0 ��������� 0 0�� �                           (4) 

and representing the direct kinematic model. 
They are characterizing for the gripper`s 
mechanical structure in Cartesian space, the 
kinematic motion parameters as velocity and 
accelerations.  In expressions (3) and (4), ( )0

J θ  

represents  the Jacobian matrix, as: 
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                     (5) 

 
On the basis of the same algorithm, there is 
determined the direct kinematic model for the 
proposed 2TR structure as [5]: 
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� !0 0 1 0 0 01 0 0 0 0 00 0 0 1 0 0#
⋅ ���� 0 ��� ��� 0 0�� � � ���� ��� �����
         (6) ������ � 
� ��������� ⋅ ���� ��� 	 
� ���������⋅ 
�� ������� ⋅ ��� � 

� !0 0 1 0 0 01 0 0 0 0 00 0 0 1 0 0#
⋅ ���� 0 ��� ��� 0 0�� � � ���� ��� �����
           (7) 

where ( ) 10J tθ −
  ⋅  is the inverse of the Jacobian 

matrix. 
 

4. DYNAMIC CONTROL FUNCTIONS 

FOR 2TR SERIAL ROBOT 

STRUCTURE 

 

A dynamic model for a mechanical system, 
consists in the equations of motion of the 
elements, therefore the establishing of driving 
moments on the basis of output data from the 
geometrical and kinematical algorithms. 
According to the specialized literature, a 
complete dynamic model comprises the 
dynamic model of the actuator system belonging 
to the robot being studied, as well as the 
dynamic model of the transmission structure of 
the movement.  
According to [3], [6], [7] motion expressions 
can be determined based on Lagrange-Euler 
formalism. Due to the fact that the Lagrange-
Euler equations are specific to non-conservative 
mechanical structures the dynamic model of the 
mechanical structure of the type 2TR serial 
robot will be determined taking into account the 
following expressions: 
 $%&% + $(% + $)*% � $+% ,��; ��� ; ���. , 0 � 1 → 3            

(8) 
 
In previous expressions there are included 

{ }; ;i i i
i g SUQ Q QF  representing: generalized inertia 

forces, generalized gravitational forces, and 
generalized handling forces.[3] 
The expressions for generalized inertia forces, is 
presented as: 

 $%&% � 334 5678,9� ;9�� .6:� ; < 	 678,9� ;9�� .6:;                      (9) 

On the basis of König`s theorem [3], the 
expression for kinetic energy is: 
 

( )

2 *
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j T j j
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∆ − ∆  = − ⋅ ⋅ ⋅ ⋅ ⋅ + + ⋅ ∆  
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 (10) 

where:
{ } { } { }{ }1; ; 0; ; 1;rotationM general motion translation∆ = −

, j
C j

v  and j
jω are linear and angular speed of the 

mass centre of every link; *j
jI  inertial axial-

centrifugal tensor of link ( )j . Based on previous 

considerations, kinetic energy for the considered 
structure, is [5]: 
 

=> ,��, ���. � @ A12 ⋅ CD ⋅ �E� >D� ⋅ �E� >D + 12
�

DF�⋅ 
E� D� ⋅ GD D∗ ⋅ 
E� DI � 
� @ A12 ⋅ CD ⋅ �E� >D� ⋅ �E� >DI + 12 ⋅ 
�� �� ⋅ G� �∗

�
DF� ⋅ 
�� � � � 3,731 ⋅ ���� + 1,814 ⋅ ���� + 760,45 ⋅ 10�O⋅ ���� + +��� ⋅ ��� ⋅ �5,2 ⋅ 10�� ⋅ PQR �� + 1,97 ⋅ 10�� ⋅R0T ���; (11) 

 
According to the identity (9), the generalized 
force of inertia is determined by: 
 $%&� ���� � �1,972 ⋅ 10�� ⋅ PQR �� 	 5,209⋅ 10�� ⋅ R0T ��� ⋅ ���� + +7,463 ⋅ ��� + �5,209 ⋅ 10�� ⋅ PQR �� + 1,972 ⋅10�� ⋅ R0T ��� ⋅ ���   (12) $%&� ���� � 334 U6786:�VW 	 6786:V � 3,6286 ⋅ ���   

(13) 

$%&� ���� � XX� �Y=>Y���� 	 Y=>Y�� � 
� �5,209 ⋅ 10�� ⋅ PQR �� + 



- 248 - 
 +1,97 ⋅ 10�� ⋅ R0T ��� ⋅ ��� + 1,52 ⋅ 10�� ⋅ ���            

(14) 

The generalized gravitational forces are: 

( ) ( ) ( )0 0Ti
g i xi

Q J Fθ θ θ= ⋅ ,                               (15) 

where ( )0 T

iJ θ is the line ( )i  of the transposed of 

Jacobian matrix defined in (5), and ( )0
xi

F θ  is 

the resultant force-moment vector of 
gravitational loads in the range [ ]3i → , whose 

expression for the 2TR structure of is presented 
in [5]. 
According to (15), the generalized gravitational 
forces for the considered structure is: 
 

( ) ( )
( )

1 2

3 3 3
3 3

73,186; 0

51,081 10 cos 19,339 10 sin

g g

g

Q Q

Q q q

θ θ

θ − −

= =

= ⋅ ⋅ + ⋅ ⋅
(16) 

 
The generalized handling forces are expressed: 
 

( ) ( ) ( )0 0 , 1 3i T
SU i XQ J F iθ θ θ= ⋅ = → .             (17) 

 
where ( )0 , 1 3XF iθ = → is, the vector of the 
resultant force-load handling moment, 
determined in [5]. 
For proposed robot, according to (17), there is 
obtained: 
 

( ) ( ) ( )1 2 39,806 ; 0SU SU SU SUQ m Q Qθ θ θ= ⋅ = =  (18) 

 
According to the same [5], the precise 
determination of these forces, in keeping with 
transmission chain, have as starting expressions  
the above determined  
generalized gravitational, manipulation, inertia, 
forces, which are substituted in the definition 
expression (8). It results: $+� � �1,97 ⋅ 10�� ⋅ PQR �� 	 5,2 ⋅ 10��

⋅ R0T ��� ⋅ ���� + +�1,97 ⋅ 10�� ⋅ R0T �� + 5,2 ⋅ 10�� ⋅ PQR ���⋅ ��� + +7,46 ⋅ ��� + 73,18+9,806 ⋅ Z)*(19) $+� � 3,628 ⋅ ���                                           (20)

                                                  

 

$+� � �5,2 ⋅ 10�� ⋅ PQR �� + 1,97 ⋅ 10��⋅ R0T ��� ⋅ ��� + +1,52 ⋅ 10�� ⋅ ��� + 51,08 ⋅ 10�� ⋅ PQR �� + +19,33 ⋅ 10�� ⋅ R0T ��(21) 

The relationships previously obtained, (19)-(21) 
are in accordance with the kinematic structure of 
the 2TR serial robot, without considering the 
friction. 
Taking into account the constructive form of the 
robot, regarding the system of motion 
transmission on each axis [9], there are 
determined the driving moments [8], [10]. Thus, 
and taking into account the characteristic 
friction existing in the mechanical systems of 
transmission of the movement, the driving 
motor, from the axis according to [5], are: 
 $+�D[ � 7,47 ⋅ ��� + �28,7 ⋅ 10�\ 	 11,6 ⋅ 10�] ⋅ PQR ��	 43,95 ⋅ 10�^ ⋅ R0T ��� ⋅ ��� + +�	26,55 ⋅ 10�\ + 52,09 ⋅ 10�_ ⋅ PQR �� + 19,72⋅ 10�_ ⋅ R0T ��� ⋅ ��� + +�90,71 ⋅ 10�\ + 19,72 ⋅ 10�_ ⋅ PQR �� 	 52,09 ⋅ 10�_

⋅ R0T ��� ⋅ ���� + +�9,806 	 20,76 ⋅ 10�` ⋅ PQR ��� ⋅ Z)* + 73,186

 

(22) $+�D[ � 48,21 ⋅ 10�� ⋅ ��� + 39,03 ⋅ 10�\

                                   

(23) $+�D[ � �5,2 ⋅ 10�� ⋅ PQR �� + 1,97 ⋅ 10�� ⋅ R0T ��� ⋅ ���+ 1,52 ⋅ 10�� ⋅ ��� + +51,08 ⋅ 10�� ⋅ PQR �� + 19,34 ⋅ 10�� ⋅ R0T �� + +824,67 ⋅ 10�O ⋅ a������1,97 ⋅ 10�� ⋅ PQR �� 	 5,2 ⋅ 10��
⋅ R0T ��� + 1,3 ⋅ ��� + +�5,2 ⋅ 10�� ⋅ PQR �� + 1,97 ⋅ 10�� ⋅ R0T ��� ⋅ ���+ 9,806 ⋅ Z)* + 12,8�� + +��5,2 ⋅ 10�� ⋅ PQR �� + 1,97 ⋅ 10�� ⋅ R0T ��� ⋅ ���� + 

+�5,2 ⋅ 10�� ⋅ R0T �� 	 1,97 ⋅ 10�� ⋅ PQR ��� ⋅ �����bcV,

         

(24)

  

 

where, ,j k  will be explained in the next 
paragraph. 
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5. THE IMPLEMENTATION OF SERIAL 

2TR STRUCTURE IN A WORKING 

PROCESS 

 

Further in the paper is presented, based on 
determined driving moments from the kinetic 
link the implementation of the robot in a 
working sequence, as presented in Figure 3. 

  

 

 

 

 

 

 

 

Fig. 3. The robot working sequences 

There is considered three kinetic links, on 
working sequences 1 3j = → . Each sequence is 
divided in 3 segments, resulting 1 9k = →  
configurations.  

The cyclogram marks the order as well as 
the operating time kτ  of each link of the 2TR 
structure, in time intervals between two adjacent 
configurations. Further to underscore the 
oscillation of the kinematic parameters, and the 
driving moments, according to [3], respectively 
[5] every sequence of the process, is 
mathematically modeled by interpolating the 
trajectory in the configurations space on every 

1 3j = → sequence, using cubic spline functions. 
The analysis taking account the restrictions 
imposed by geometry and kinematics of the 
robot.   

Further are used polynomial functions, and 
interpolation by cubic spline of ( )3n type−  

expressions.  
Mathematically the method consists in 

generation of linear time functions for the 
generalized accelerations for every kinetic link 
of the robot. The motion trajectory in space must 
go through all the points corresponding to the 
moments ( )0i i nτ = →   .  

Based on initial conditions, the trajectory 
must be controlled in position, velocity and 
acceleration at 0τ  and nτ . Also, it must be a 

continuity in velocity and acceleration at 
( )1 1k k nτ = → −   . Hence, there is interpolated 

every 1 9k = →  segment, and  is mathematically 
modeled using cubic spline functions.  

In order to establish of generalized 
accelerations for every kinetic link, a time linear 
function, is generated [5] as: 

 ��D%�d� � e;�e4; ⋅ ��D%�d%��� + e�e;fc4; ⋅ ��D%�d%�        

(25) 
 
where 1i i it τ τ −= −  is the time necessary cover 
the segment ( )1 3i = → . By applying 

mathematical transformations on (25), results: 
 ��D%�d� � 	 �e;�e�V�⋅4; ⋅ ��D%�� + �e�e;fc�V�⋅4; ⋅ ��D% +gD%�;  (26) 

 �D%�d� � �e;�e�hO⋅4; ⋅ ��D%�� + �e�e;fc�hO⋅4; ⋅ ��D% + gD%� ⋅d + gD%�(27) 
 
For exemplification of the above presented 
considerations, in Table 2, there are imposed 
values for coordinates and time of the intervals 
as presented. 

Table 2 

Values for coordinates and time 

 

Based on (25)-(27), the kinematic control 
functions based on ( )3n type−  polynomial 
functions with restrictions, are:  
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Table 3 

 Kinematic control functions 

Se
q.

 j=
1→

9  

In
te

rv
al

 

C
oo

rd
.

Generalized position, speeds and 
accelerations  

,

qljk

m rad
 

��iD[  jZR , kgXR l ��iD[  jZR� , kgXR� l
 

1 

1 

1q  

30,04 τ⋅  20,125 τ⋅  0,25τ  

2 
3 20,1 0,75

1,5 1

τ τ
τ

− + ⋅
− ⋅ +

−
( )

20,25

1,5 1

τ
τ

− +
+ −

 1,5 - 0,5τ  

3 30,04( 6) 2τ − + 20,125 ( 6)τ⋅ −  0,25  - 1,5τ  

2 

1 

2q  

20 0,17( 15)τ− − 20,5 ( 15)τ− ⋅ −  15 - τ  

2 
3 20,34 16,5

271,5 1483,5

τ τ
τ
−

+ −
+ 2 33

271,5

τ τ− +
+

 2  - 33τ  

3 31 0,17( 18)τ− − 20,5 ( 18)τ− ⋅ −  18 - τ  

3 

1 

3q  

31,6 3,4( 18)τ− − 2( 810,05 1 )τ− −  10,05(2  - 36)τ−

2 
3 213,4 748,9

13945,7 86540,1

τ τ
τ

−
+ −

+ 240,2 1497,9

13945,7

τ τ− +
+

 80,4  - 1497,9τ

3 33,3( 19,25)τ− − 2( 19,25)10,0τ− −  10,05(2  - 38,5)τ−

 
Using as input data, the running time for 
trajectory, and the coordinate at the beginning 
and end of the sequence, the expressions of the 
generalized coordinates, and kinematic 
parameters, are represented, as in Figures 4-6: 
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Fig. 4. Representation of kinematical 
parameters on sequence  j=1 

Variation of acceleration 

Speed variation  

Position Variation 

Fig. 5. Representation of kinematical 
parameters on sequence  j=2 
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Fig. 6 Representation of kinematical 
parameters on sequence j=3 
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On the basis of data contained in Table 3, and 
functions (22)-(24), the variations of the driving 
moments are presented in the following (see 
Figures 7-9). 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analysing the previous graphs, for a correct 
determination of variation laws for the driving 
moments, is required a linear variation law for 
accelerations. Also, on the graphs 
corresponding to the driving moments, were 
represented, both static and dynamic 
components which together constituting the 
total driving moment. 

 

6. CONCLUSIONS 

 
The paper presents the implementation mode of 
a serial structure in a working process. In first 
phase, using the locating matrix algorithm, there 

are established the direct and inverse geometry 
equations.  
 
Applying the Matrix Exponential Algorithm in 
kinematics, has been determined the Jacobian 
matrix (known as the velocity transfer matrix). 
In this sense, some of the results obtained by 
applying the mathematical exponential 
algorithm in direct geometry as well as the 
exponential functions in the direct kinematics 
are used as inputs. As major observation, the 
algorithmizing mathematical modelling of the 
robot structures having advantages, as simple 
visualization of the characteristics of different 
parameters; the degree of generalization. 
 
The dynamic modelling called dynamic 
simulation, reveals the differential equations of 
motion through successive integrations lead to 
the determination of the motion laws on each 
kinetic link of mechanical structure. 
 
The variation laws of coordinates, velocities, 
and accelerations have been established, having 
as input data the positions of characteristic 
points of working space. The dynamic control 
functions have been determined, using as kinetic 
energy. Using differential principles, specific to 
the holonomic mechanical systems, and 
applying the algorithm of the generalized forces 
in dynamics, the generalized driving forces were 
directly determined.  
The generalized variables for  which describing 
the robot motion can be replaced by polynomial 
time functions. It have been determined the 
kinematic control functions for the 2TR robot, 
and after it were established the polynomial 
interpolation functions having as real variable 
the time for description of the process. 
Substituting expressions into dynamic 
equations there were determined the variation 
laws of the driving moments. 
 
As an important remark, by a proper estimation 
of the motor moments, the driving moments of 
the motors necessary to start up a kinematic axis, 
respectively the related braking systems, can be 
rigorously dimensioned, thus keeping up from 
damaging the robots. 

 

Qm N m⋅

τ s

Figure 7 The representation of driving moment on j=1 

Qm N m⋅

τ s

Figure 8 The representation of driving moment on 
j=2

Figure 9 The representation of driving moment on 

Q m N m⋅

τ s



- 252 - 
 
7. REFERENCES 

 

[1] Negrean, I., Negrean, D. C., The Locating Matrix 

Algorithm in Robot Kinematics, Cluj-Napoca, 
October 2001, Acta Technica Napocensis, 
Series: Applied Mathematics and Mechanics, 
Vol. 2, pp. 7-14, (2001). [2] Negrean, I., 
Mecanică Avansată în Robotică, Editura UT 
PRESS, ISBN 978-973-662-420-9. Cluj-
Napoca, (2008). 

[3] Negrean, I., Schonstein C., “Advanced Studies on 

Matrix exponentials in Robotics”, Published in 
the Acta Technica Napocensis, Series: Applied 
Mathematics and Mechanics, 53 Vol. I,, pp. 13-
18, Cluj-Napoca, Romania, (2010). 

[4] Bernstein, D.S., So, W.G., Some  explicit Formulas 

for the Matrix Exponential, IEEE Transaction on 
Automatic Control, Vol. 38, (1993). 

[5] Schonstein, C., Contribuții în dezvoltarea unei 

structuri robotizate hibride, PhD Thesis, Cluj-
Napoca, (2011). 

[6] M.D. Ardema, Analytical Dynamics Theory and 

Applications,  Springer US, ISBN 978-0-306-
48681-4, pp. 225-243, 245-259, (2006).  

[7] Rumyantsev, V., Forms of Hamiltons’s Principle 

for nonholonomic systems, Mechanics, 
Automatic Control and Robotics, Vol. 2, (2000). 

[8] Negrean, I., Schonstein C., ” Formulations in 

Robotics based on Variational Principles”, 
Proceedings of AQTR 2010 IEEE-TTTC, 
International Conference on Automation, 
Quality and Testing, Robotics, ISBN 978-1-
4244-6722-8, pp. 281-286, Cluj-Napoca, 
Romania, (2010). 

[9] Covaciu, F., Actuation and Control of a Serial 

Robotic Arm with four degrees of freedom, Acta 
Technica Napocensis – Series: Applied 
Mathematics, Mechanics, and Engineering, 
Volume: 61, Issue: 3, Pages: 347-356, 2018, 
ISSN: 1221-5872, (2019). 

[10] Covaciu, F., Control and Actuation System of a 

six degrees of freedom robotic arm, Acta 
Technica Napocensis – Series: Applied 
Mathematics, Mechanics, and Engineering, 
Volume: 62, Issue: 1, Pages: 99-106,  ISSN: 
1221-5872, (2019). 

 
Considerații privind implementarea roboților seriali în procese de lucru 

 

 

Rezumat: Implementarea unei structuri mecanice de robot, într-un proces de lucru, constă în 
determinarea momentelor de antrenare ale fiecărui motor din cuplele cinematice. Pentru stabilirea 
acestor momente motoare, cunoscute sub denumirea de ecuații de control dinamic, se poate folosi 
un algoritm generalizat, bazat pe modelare geometrică, cinematică și dinamică, folosind algoritmi 
dedicați. În general printr-o determinare corectă și reală a momentelor de antrenare a motoarelor 
necesare punerii in miscare a unei axe cinematice, sistemele de frânare aferente, pot fi 
dimensionate riguros, evitându-se astfel situațiile critice, care pot duce la deteriorarea structurii 
mecanice. Lucrarea prezintă un exemplu de utilizare a algoritmilor matematici pentru a 
implementa un robot într-un proces de lucru. 
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