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Abstract: This paper goes over some of the most significant considerations for choosing and testing random 

number generators. The testing process is applied to random number generator output sequences, with the 

purpose of determining if the random sequences behave statistically inconspicuously.  The bitstream's 

randomness is tested using the evaluation report suggested by NIST Test Suite 800-22 Rev.1a. Several 

investigations on the NIST randomness test suite's dependability have been published, with certain tests 

requiring corrections. By applying numerous adjustments to the tests, we review the NIST Statistical Test 

Suite in this study. Furthermore, a more precise interval of acceptable proportions was defined for the 

proportion of passing sequences. In the second level test, two more Goodness of Fit tests (Kolmogorov-

Smirnov and Anderson-Darling) are implemented in order to improve the uniformity testing methodology. 

The results of the studies presented in this paper show that the new testing approach improves detectability 

and reliability under the same or different test conditions. 
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1. INTRODUCTION   
 
 Random Number Generators (RNGs), be it 
True Random Number Generators (TRNGs) or 
Pseudo-Random Generators (PRNGs), are 
critical components in a wide range of 
cryptographic applications. The statistical tests 
of random number generators are discussed in 
this study in order to discover deviations from 
randomness in a binary sequence. Randomness 
variations can be caused by a poorly constructed 
generator or anomalies in the binary sequence. It 
is required to conduct statistical tests in order to 
provide assumptions about the system's 
behavior, to build, confirm, and adjust, and 
finally to comprehend the source of randomness 
generated by the RNG. 
 The National Institute of Standard and 
Technology (NIST) offered a set of 15 statistical 
tests in [1,2] that were used to assess the 
randomness of bitstreams. The publications 
became known as SP 800-22. The latest version 
is revision 1a. Unfortunately, the publication SP 
800-22 rev1a gives us only few directions on 

how to understand the NIST STS (Statistical 
Tests Suite) results; the explanations are either 
inadequate or offer only approximate values [3]. 
As a result, a number of corrections and 
improvements to statistical tests must be 
proposed in order to improve the interpretation 
of the results. Several papers have been already 
published in the literature. 
 Structure of the paper. In this article, we 
focus on the interpretation of the results 
provided by NIST STS. In order to evaluate the 
accuracy of the approximation for statistical test 
P-values, this study will investigate the NIST 
tests and make modifications and upgrades. The 
remainder of this study is structured as follows: 
Section 2 provides a brief overview of the NIST 
statistical test suite, testing methodology, and 
results interpretation. In Sections 3 and 4, we 
present a methodology for evaluating and 
interpreting NIST tests that we believe is 
necessary. We examine various corrections and 
improvements published in the literature and 
suggest a testing approach for improving the 
proportion of sequences passing a test and the 
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uniformity in second-level randomness test. 
Then, in Section 5, we run some tests and 
compare the results obtained using various 
corrections from the literature with the findings 
obtained using the original NIST test suite. 
Finally, in Section 6, we wrap up and address 
future development possibilities. 
 
2. TESTING METHODOLOGY 
PROPOSED BY NIST TEST SUITE 800-22 
  

The technique for evaluating and interpreting 
NIST testing is provided below for the reader's 
convenience [2]: 
 

1) Choose a Generator and a set of 

sequence blocks with a length of � 

When the NIST statistical test suite is run, 
and the required bit stream length, �, is chosen, 
a list of generator options displays (underlined 
in Table 1). A binary sequence of 0 and 1 of 
length � should be generated by the generator or 
provided from outside. 

Table 1 

 Test Code Generator Options for Running 
The 

option’s 
number 

Generator 
options 

The 
option’s 
number 

Generator 
options 

[00]  Input File [01]   Linear 
Congruential 

[02]  Quadratic 
Congruential I 

[03]  Quadratic 
Congruential 
II 

[04]  Cubic 
Congruential 

[05]  XOR 

[06]  Modular 
Exponentiation  

[07]  Blum-Blum-
Shub 

[08]  Micali-Schnorr [09]  G Using 
SHA-1 

 

2) Binary sequence generation 

A collection of binary sequences � is 
produced for a fixed sequence of length � and a 
pre-selected generator or an input file, and the 
sequences are recorded in a file. 

 
3) The Statistical Test Suite is run 

The NIST statistical test suite consists of 15 
empirical tests grouped into two categories: 
binomial and chi-square distribution-based tests 
[2]. The tests are used to analyze binary 

sequences, and they are briefly mentioned in 
Table 2. 

Table 2 

 Distribution of the test statistic values 
Name Distribution 

Frequency (Monobit) Binomial 

 

Runs 

Discrete Fourier 
Transform (Spectral) 

Maurer’s” Universal 
Statistical” 

Random Excursions 
Variant 

Frequency Test 
within a Block 

 

 
 

Chi – Square 
 

 

Longest Run of Ones 
in a Block 

Binary Matrix Rank 

Non-overlapping 
Template Matching 

Overlapping 
Template Matching 

Linear Complexity 

Serial 

Approximate Entropy 

Cumulative Sums 
(Cusums) 

Random Excursions 

Two alternatives exist: 
- To perform every test in a series, press 

key 1, and 
- to run a single test, press key 0.  

For instance, follow these steps to utilize the 
Overlapping Template Matchings test: 

123456789111111 
000000001000000 

The appropriate sample size is then specified 
in a question: How many bit sequences ought to 
be generated? 

 
4) Examining p-value variables / 

Assessing the test: Passed / Failed 

Two techniques are recommended by NIST 
[2]: 

The first-level test. Each statistical test will 
require intermediate data, such as test statistics 
and p-value variables, which the test suite will 
deliver in an output file. A conclusion about the 
sequence quality can be reached based on these 
p-value factors. Each statistical test in the NIST 
test suite examines the null hypothesis (��). 
According to the null hypothesis, the sequence 
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is random. The alternative hypothesis (��), 
which is related to the null hypothesis, states that 
this sequence is not random. The decision to 
accept the null hypothesis - that is, whether or 
not the generator produces random values - is 
made next. For each test, a statistical test value 
is produced based on the data. The crucial value 
(	 = 0.01) is used to compare this statistical 
value. The null hypothesis is rejected if the 
statistical value is greater than the crucial value. 
If not, the null hypothesis is rejected and the 
alternative hypothesis is accepted. 

To improve the reliability of statistical tests, 
the second-level test has been proposed. There 
are two methods for estimating the distribution 
of N p-values: 

- Proportion of Sequences Passing a Test. 
- Uniform Distribution of P-values. 

 

Proportion of Sequences Passing a Test. 

NIST uses the normal distribution as an 
approximate representation of the binomial 
distribution. By counting the number of blocks 
with P-values equal to or higher than 	, the 
passing ratio is determined. If the ratio falls 
within the following confidence interval: �̂ ± � ∙ ���������� ,  

where, � = ������ ����, 	 = 0.01, �̂ = 1 −	,  then, the first-level test is successfully 
passed. The formula is based on a binomial 
distribution estimate that is quite accurate for 
many tested sequences (� ≥ 1000). According 
to NIST, � =  3 is the preferred value. 

 

Uniform Distribution of P-values. The 
interval [0, 1� is subdivided into k equal sub-
intervals: [0.0;  0.1�, [0.1;  0.2�, … , [0.9;  1.0�. 
Then, a count of P-values inside each sub-
interval is made. The NIST SP 800-22 test suite 
treats ( as being equal to 10. 

On these ( integers, a Chi-Square test known 
as the Goodness-of-Fit Distributional Test is 
carried out using the presumptive uniform 
distribution. The following )* value is 
computed as a result of this investigation: 

)* = + �,- − �10�*�10
��

-.�  

where ,- is the quantity of P-values in sub-
interval [�� − 1� ∙  0.1, � ∙  0.1], and � is the 
quantity of sequences (the sample size). After 
that it is generated a new P-value �0: �1�2340 = �56���92 , )*2 � 

If �0 is equal to or higher than another 
significance level 	0 =  0.0001 in the NIST SP 
800-22 test suite, the second-level test is 
regarded as passing. 

 
3. CORRECTIONS TO THE NIST SP 800-
22 TEST BATTERY DESCRIBED IN THE 
LITERATURE 
 

Discrete Fourier Transform (Spectral) Test. 
Assuming that 7- = 28- − 1, for 1 ≤ � ≤ : and ; = 7�, 7*, … . , 7< are true, we have 7-. Apply a 
Discrete Fourier Transform (DFT) to ; to 
produce a sequence of : complex variables. = =>,?�;� represents the periodic elements of a set 
of bits at various frequencies. Let �@AB  be the 
complex modulus of =B (let =�, =*, … . , =CD  be the 

first 
<* components in f) for 1 ≤ E ≤ <*. A 

confidence interval can be calculated based on 
the values of �@AB under the assumption that ; is random. More specifically, 95% of the 
values �@AB should be fewer than ? =�:�@5� ��.�F�. Let ��  = �.GF<*  be the expected 

theoretical number of peaks and let �� be the 
number of �@AB less than ?. Following the 
conventional normal distribution, the statistic 
test is: 

A = �� − ���: ∙ � ∙ H� = �� − 0.95 :2�: ∙ 0.95 ∙ 0.05� ~��0,1� 

 
NIST advises using the value � =  4. 

(Proposed by Kim et al. in [5]). 
Iwasaki [6] first established the theoretical 

value of � =  3.7903 using Parseval's theorem, 
followed by experimentation and discussion of 
the validity of the result. The equation is written 
as follows: 
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� = �2 ∙ 0.05 ∙ 0.95�/ NO1 − 0D*�DP��� −
O1 − 0D*�DP*��* + �� − 1� RO1 − 0D*�DP��� −

O1 − 0D*�DP*��*ST; � = <* . 

Overlapping Test. Early versions of NIST 
used precise probabilities, but subsequently 
shifted to Polya-Aeppli probabilities. When they 
changed the numbers U- in the source code, they 
neglected to comment or remove the instructions 
for calculating the real probabilities (lines 40–
44) [7,8] (more precisely, in Overlapping 
Template Matching.c). As a result, precise 
probabilities were used in place of the Polya-
Aeppli probabilities. 

For greater accuracy, the probability U- 
values were computed to 20 decimal places. 
These probabilities were calculated for the 
additional 9-bit and 10-bit patterns (by 
simulation). pi[6]  =  0.36409105321672786245 0.18565890010624038178  0.13938113045903269914  0.10057114399877811497 0.07043232634639844974  0.13986544587282249192  
The formulas for calculating these probabilities 
are as follows: [5]: U- = ?-�:�2<  

where 0 ≤ � ≤ 4 ?��:�
= Z 1, : = −11, : = 02?��: − 1�, 1 ≤ : ≤ � − 12?��: − 1� − ?��: − � − 1�, : ≥ � 

?��:�
=

⎩⎪⎨
⎪⎧         0, : ≤ � − 11, : = �2, : = � + 1

+ ?��E�?��: − � − 2 − E�<����
B.� , : ≥ � + 2 

?_�:� = ?_���: − 1�
+ + ?��E�?_���: − � − 2<�*��_

B.�− E� 

UF = 1 − + U-
`

-.�  

 
Linear Complexity Test. The values of the 

probabilities U- with a higher number of 
decimals were determined for the Linear 
Complexity test. ab[c]  =  196 , 132 , 18 , 12 , 14 , 116 , 148 . 

 

Random Excursions and Random 

Excursions Variant Test. Due to programming 
errors in calculating the uniformity of P-values 
in the STS software package, there are 
discrepancies in the computation of �1�2340 from 
the third decimal point for Random Excursions 
and Random Excursions Variant tests: 

- the intended value is of type integer. 
When multiplying two numbers (one 
integer and one double) by 10, the result 
loses the decimal part; 

- when computing the expected value, the 
programming environment reacts 
differently depending on the order of the 
operands. 
 

4. RESEARCH TESTING 
METHODOLOGY FOR IMPROVING THE 
PROPORTION OF SEQUENCES PASSING 
A TEST AND UNIFORMITY SECOND-
LEVEL RANDOMNESS TEST 
 
4.1 Proportion of sequences passing a test 
 

The proportion test level correction entails 
revising the allowable proportion range using a 
more precise constant of � =  2.6. NIST's 
method is based on a binomial distribution 
approximation that is reasonably accurate for 
many of the sequences examined (� =  1000). 
The likelihood of the sequence of random 
sequences passing in the computed range is 
99.73%, which equates to a type I error 
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probability of 0.27%. As a result, if the range of 
the permissible fraction is computed using the 
following formula, the probability of a type I 
error will be closer to 1%: 

 1 − 	 ± 2.6 ∙ �_���_�� ,  where 	 =  0.01 

 
Thus, using the test parameters recommended 

by NIST, : =  10d  or : = 2*� and � = 1000, it will be obtained that if � − e6�f� ∈ [0.981819291;  0.998180709] then the test 
will be considered PASSED [9]. 

 
4.2 Uniformity of the distribution of the p-
value variable 
 

Two further GOF tests, the Kolmogorov-
Smirnov and Anderson-Darling tests, will be 
employed to measure uniformity. 

It is advised to do a GOF test under the 
uniform distribution hypothesis using a test like 
the Kolmogorov-Smirnov test (rather than the 
Chi-Square test) on the complete distribution of 
P-values [7]. 

The Kolmogorov-Smirnov test uses the CDF 
(cumulative distribution function) of U [0, 1] to 
examine the uniformity of the random integers. 

Compared to the Chi-squared test, the 
Kolmogorov-Smirnov test has the following 
advantages: 

- There are no intervals needed;  
- It was developed for continuous data, 

like values sampled from a Uniform 
[0,1] random variable; 

- The Kolmogorov-Smirnov test is a 
precise measurement.  

- For the approximations to be valid, 
the Chi-square GOF test requires a 
sufficient sample size. 

The Kolmogorov-Smirnov GOF uniformity 
test entails using the formula to get the 
Kolmogorov distribution [10,11]: h�:, ><� =  ij@k�>< <  7�,     
where >< =  �67 Nm� − 0: , m* − 1: … , m< − : − 1: , 1:− m�, 2: − m*, … , :: − m<T 

with m� < m*, …  < m< a set of n independent 
uniform random variables [0,1) sorted in 
ascending order and returns the variables � −e6�f� = h�:, ><�. 

The Kolmogorov-Smirnov Test for 
Uniformity is based on the following algorithm 
[11,12]: 

Step 1. Evaluate i [>< <  A];     
Step 2. Write A = n�o< , with k a positive 

integer and  0 ≤ ℎ < 1; 
Step 3. Apply the Durbin matrix 

formula: h�:, A� = i [>< ≤ A] = <!<C rn,n , 

where rn,n is (, ( is the matrix element ? = �<, � is a matrix � × �, � = 2( − 1; 
Step 4. Rank the P-values in ascending 

order, m�, m*, … , m<, where n is the 
size of the sample; 

Step 5. Calculate  >t = max�x-x< y -< − m-z; 

Step 6. Calculate  >� = max�x-x< ym- − -��< z; 

Step 7. Calculate > = max�x-x<{>t, >�|; 

Step 8. The probability transformation i =  h�:, ><� changes the randomly 
generated >< to a uniform (0,1) 
variate (P-value); 

Step 9. If  h�:, >� = � − e6�f� ≥0.0001, then the sequences can be 
considered to be uniformly 
distributed. 

Moreover, many analysts consider Anderson-
Darling GOF test to be more powerful than the 
original Kolmogorov-Smirnov test because it 
gives greater weight to the tails. The Anderson-
Darling test is used to determine whether a set of 
data came from a population with a particular 
distribution. 

The Anderson-Darling test for uniformity is 
putting a collection of ostensibly random data in 
ascending order and applying the method to 
calculate the statistic test [13]: ADtest =  −� − �� ∙ [�:�m� ∙ ��� + 3 ∙ �:�m* ∙�*+. . . +�2 ∙ � − 1� ∙ �:�m� ∙ ���], where �� =1 − m�, �* = 1 − m���, . . . , �� = 1 − m� 
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then find e =  6A�:= �6� and return the p-value 
variables associated with the observed variables � =  e +  �jj=�7 �e�, which should be 
uniform on [0,1). 

The Anderson-Darling Test for Uniformity is 
based on the following procedure [13,14]: 

Step 1. Arrange in ascending order m�, m*, … , m� the vector to be tested for 
uniformity and return the p-value 
variables associated with the Anderson-
Darling test using 6A�:= �� and �jj=�7 ��; 

Step 2. Calculate 6A�:= ��� 
For  0 < � < 2, max |error|  <  0.000002  6A�:=��� = exp�− 1.2337141z �/√z∙ �2.00012 + �0.247105− �0.0649821 − �0.0347962− �0.011672 − 0.00168691∙ z� ∙ z� ∙ z� ∙ z� ∙ z� 
For z ≥ 2, max |error| < 0.0000008 6A�:=��� = exp �−exp �1.0776 − �2.30695− �0.43424 − �0.082433− �0.008056 − 0.0003146∙ z�  ∙ z� ∙ z� ∙ z� ∙ z�� 

Step 3. Calculate �jj=�7��, m� 
For m > 0.8 �jj=�7��, m� = �−130.2137+ �745.2337− �1705.091− �1950.646− �1116.360 − 255.7844 ∙ A�∙ A� ∙ A� ∙ A� ∙ A��/N � = 0.01265 + �.��F�� ; 

For m < �, r = �� r = √r ∙ �1 − r� ∙ �49 ∙ r − 102� �jj=�7��, m� = 

t ∙ 0.0037N ∙ N + 0.00078N + 0.00006N  

For � ≤ m < 0.8 r = m − �0.8 − � r = −0.00022633 + �6.54034 − �14.6538 −�14.458 − �8.259 − 1.91864 ∙ r� ∙ r� ∙ r� ∙ r� ∙r; 

�jj=�7��, m� = t ∙ 0.04213 + 0.01365NN  

Step 4. Calculate m>��, �� 

m = 6A�:=��� 
For m > 0.8 e = �jj=�7��, m�= ��−130.2137+ �745.2337− �1705.091− �1950.646− �1116.360 − 255.7844 ∙ A�∙ A� ∙ A� ∙ A� ∙ A��/� m>��, �� = m + e � = 0.01265 + �.��F�� ; 

For m < �,      e = ��  e = √e ∙ �1 − e� ∙ �49 ∙ e − 102� 

m>��, �� = A + v ∙ 0.0037N ∙ N + 0.00078N + 0.00006N  

For � ≤ m < 0.8 e = m − �0.8 − � e = −0.00022633 + �6.54034 − �14.6538 −�14.458 − �8.259 − 1.91864 ∙ e� ∙ e� ∙ e� ∙e� ∙ e; m>��, �� = 

A + e ∙ 0.04213 + 0.01365NN  Step 5. Calculate m>r��r��, m� r = m[�] ∙ �1 − m[: − 1 − �]) � = � − �� + � + 1� ∙ �@5�r� m>r��r��, m� = m>��, −� + ��� 
Step 6. If m>r��r��, m� = � − e6�f� ≥0.0001  then the sequence can be 

considered to be evenly distributed. 
 
5. EXPERIMENTAL RESULTS 
 

In this paper, following [12,14,15], we 
evaluated NIST statistical tests in order to 
examine the accuracy of the P-values 
approximation. 

The following parameters are used to test the 
battery: 

• Sample file (Input data): random1e9.dat, 
a binary file [16] as an example 

• File size: 125000000 bytes 
• Significance Level 	 =  0.01 
• Proportion constant � =  2.6 
• Sample size � =  10� 
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• Frequency (Monobit): the bit stream 
length : = 2*� 

• Runs: the bit stream length : = 2*� 
• Discrete Fourier Transform: the bit 

stream length : = 10d 
• Maurer’s” Universal Statistical”: the bit 

stream length : = 10d 
• Random Excursions Variant: the bit 

stream length : = 2*� 
• Frequency within a Block: the bit stream 

length : = 2*�; (Sub)block=128 
• Longest Run of Ones in a Block: the bit: 

stream length : = 2*�; (Sub)block = 
10000 

• Binary Matrix Rank: the bit stream 
length : = 2*� 

• Non-overlapping Template Matching: 
the bit stream length : = 2*�; 
(Sub)block = 8, Patterns size = 9, 
Patterns numbers=148 

• Overlapping Template Matching: the bit 
stream length : = 10d; Patterns size = 9, 
Patterns numbers=1 

• Linear Complexity: the bit stream length : = 2*�; (Sub)block = 500 
• Serial: the bit stream length : = 2*�; 

(Sub)block = 16 
• Approximate Entropy: the bit stream 

length : = 2*�; (Sub)block = 10 
• Cumulative Sums (Cusums): the bit 

stream length : = 2*� 
• Random Excursions: the bit stream 

length : = 2*�. 
The updated NIST test suite yielded the 

following results (Figs. 1,2,3): 

 
Fig. 1. The number of rejected sequence (from a total of 

1000 sequences)  

The maximum number of rejected sequences 
of these tests is in the range [3.71, 16.29]. 

 

 
Fig. 2. The number of rejected sequence (from a total of 

953 sequences)  
 
The maximum number of rejected sequences 

of these tests is in the range [0.00, 15.67]. 
 

 
Fig. 3. The number of rejected sequence (from a total of 

606 sequences)  
 
The maximum number of rejected sequences 

of these tests is in the range [0.00, 10.96]. 
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It can be observed (Fig. 4), that fewer 
sequences are rejected after applying 
modifications when comparing the improved 
NIST tests battery to the previous 
implementation of the NIST tests suite (sts-
2.1.2). 

 

 
Fig. 4. Comparison between the original NIST and the 

new implementation 
 
 The Anderson-Darling test yielded superior 
findings than Kolmogorov-Smirnov or Chi-
Square because the results are more 
concentrated in the center of the interval [0,1], 
which is indicative of the uniformity of the 
distribution of the p-values (Figs. 5, 6). 
 

 
Fig. 5. The p-values for the tests that followed the 

binomial distribution 

 
Fig. 6. The p-values for the tests that followed the Chi-

Square distribution 
 

The experiments demonstrate that the new 
testing methodology improve the detectability 
and reliability under the same or other test 
parameters. 
   
6. CONCLUSIONS AND FURTHER 
DEVELOPMENT 
 

This research has shown that the NIST test 
suite have to improve its testing method. In this 
study, NIST tests were used to detect deviations 
from randomness in a binary sequence. The 
project's first goal was to investigate how NIST 
STS data were interpreted. The second goal of 
the project was to provide various computation-
friendly approximations and revisions in order to 
improve the results' interpretation. The project's 
final purpose was to use experimental results to 
investigate the proportion of passing sequences 
and the uniformity of P-value distribution. 
Experiments show that the new testing 
methodology boosts detectability and reliability 
in the same tests and similar parameters. The 
study's main contribution was to provide a 
review of the NIST Statistical Test Suite 
utilizing case studies with more precise values 
and uniformity tests in the second-level tests, all 
of which were then implemented in C-code. 
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Future Work. In order to establish an 
optimum approach for testing random numbers, 
our forthcoming projects will compare the 
benefits of several batteries or suites that have 
been researched in the literature, such as 
Diehard, Dieharder, Cryp-X, or ENT. 
Examining the NIST IR 6390 and NIST IR 6483 
methodologies used to test the statistical 
properties of block algorithms would be another 
interesting extension to examine in the future. 
The samples generated by these methodologies 
will be directly subjected to statistical testing 
with the NIST SP 800-22 battery. 

 
7. ACKNOWLEDGEMENT(S) 
 

The author would like to express his gratitude 
to Diana Maimuţ, Mariana Costiuc, George 
Teşeleanu and Tiberiu Zbîrnea for their 
insightful comments. 

 
8. REFERENCES  
 
[1]. Rukhin, A., Soto, J., Nechvatal, J., Smid, 

M., & Barker, E. (2001). A statistical test 

suite for random and pseudorandom 

number generators for cryptographic 

applications. Booz-allen and hamilton inc 
mclean va. 

[2]. Bassham III, L. E., Rukhin, A. L., Soto, J., 
Nechvatal, J. R., Smid, M. E., Barker, E. B., 
... & Vo, S. (2010). Sp 800-22 rev. 1a. A 

statistical test suite for random and 

pseudorandom number generators for 

cryptographic applications. National 
Institute of Standards & Technology. 

[3]. Kenny, C., Mosurski, K.: Random Number 

Generators: An Evaluation and 

Comparison of Random.org and Some 

Commonly Used Generators. Tech. rep., 
Computer Science Department, Trinity 
College Dublin (2005) 

[4]. Pareschi, F., Rovatti, R., & Setti, G. (2012). 
On statistical tests for randomness included 

in the NIST SP800-22 test suite and based 

on the binomial distribution. IEEE 
Transactions on Information Forensics and 
Security, 7(2), 491-505. 

[5]. Kim, S., Umeno, K., Hasegawa, A.: 
Corrections of the NIST Statistical Test 

Suite for Randomness. IACR Cryptology 
ePrint Archive 2004/018, 18 (2004) 

[6]. Iwasaki, A. (2019). Deriving the variance of 

the discrete Fourier transform test using 

Parseval’s theorem. IEEE Transactions on 
Information Theory, 66(2), 1164-1170. 

[7]. Haramoto, H., & Matsumoto, M. (2019). 
Checking the quality of approximation of p-

values in statistical tests for random number 

generators by using a three-level test. 
Mathematics and computers in simulation, 
161, 66-75. 

[8]. https://csrc.nist.gov/projects/random-bit-
generation -  sts-2.1.2 

[9]. Sýs, M., Říha, Z., Matyas V., Marton, K., 
Suciu, A., (2015). On the interpretation of 

results from the NIST statistical test suite, 
Romanian Journal of Information Science 
and Technology, 18, 1, 18–32 

[10]. Simard, R., & L’Ecuyer, P. (2011). 
Computing the two-sided Kolmogorov-

Smirnov distribution. Journal of Statistical 
Software, 39(11), 1-18. 

[11]. Marsaglia, G., Tsang, W. W., & Wang, J. 
(2003). Evaluating Kolmogorov’s 

distribution. Journal of statistical software, 
8(18), 1-4. 

[12]. Marsaglia, G., Tsang, W. W., & Wang, J.: 
C program to compute Kolmogorov’s 
distribution.  
https://www.jstatsoft.org/article/view/v008
i18 

[13]. Marsaglia, G., & Marsaglia, J. (2004). 
Evaluating the Anderson-Darling 

distribution. Journal of statistical software, 
9(2), 1-5. 

[14]. Marsaglia, G., & Marsaglia, J.: AnDarl.c: 
C code. 
https://www.jstatsoft.org/article/view/v009
i02 

[15]. Sýs, M., Říha, Z.: Optimised 

implementation of NIST STS (2014). 
https://github.com/sysox/NIST-STS-
optimised  

[16]. https://www.idquantique.com/resource_ty
pe/random-number-generation/ 

 



406 
 

 

ÎMBUNĂTĂȚAREA SUITEI DE TESTE NIST 800-22 REV.1A PRIN ADĂUGAREA DE 
DIVERSE CORECȚII ASUPRA TESTELOR ȘI ALTE TESTE GOODNESS-OF-FIT 

PENTRU A VERIFICA UNIFORMITATEA ÎN TESTELE DE NIVELUL AL DOILEA 
 

Rezumat. Această lucrare studiază unele dintre cele mai semnificative considerații pentru alegerea 
și testarea generatoarelor de numere pseudoaleatoare. Procesul de testare este aplicat secvențelor de 
ieșire ale generatorului de numere aleatoare, cu scopul de a determina dacă numerele aleatoare se 
comportă statistic discret. Aleatorismul fluxului de biți este testat folosind raportul de evaluare 
sugerat de NIST 800-22 rev. Au fost publicate mai multe investigații privind fiabilitatea suitei de teste 
ale aleatorismului NIST, și anumite teste necesită corecții. În această lucrare se prezintă o trecere în 
revistă a suitei de teste statistice NIST prin implementarea multor modificări la testele de evaluare. 
Mai mult, a fost definit un interval mai precis de proporții acceptabile în cadrul proporției de secvențe 
de trecere. În testul de nivel al doilea, sunt implementate încă două teste Goodness of Fit 
(Kolmogorov-Smirnov și Anderson-Darling) pentru a îmbunătăți metodologia de testare a 
uniformității. Rezultatele studiilor prezentate în această lucrare arată că noua abordare de testare 
îmbunătățește detectabilitatea și fiabilitatea în condiții de testare identice sau diferite. 
 
Elena-Iuliana GINGU (BOTEANU),  PhD, University ”Politehnica” of Bucharest, Romania and 

Advanced Technologies Institute, e-mail: iuliana_boteanu@yahoo.com. 


