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Abstract: Despite numerous technological advances, noise and the various forms it takes is perceived as a 

multiple source of environmental problems that are increasingly borne by humans. Sensitivity to rail traffic 

vibrations is the most important issue in the opinion of researchers. In this paper is determined the dynamic 

vibration response of the vehicle-railway system.  For this purpose, the most modern integration methods used 

for such purposes at present are used. For the two-degree-of-freedom, unloaded model for the railway, it is used 

the one-sided Laplace transform with respect to time that led to the algebraization of the problem, which 

simplified the integration of the differential equation system. With the Mathematica program, based on the 

numerical data presented in the paper, we inverted the Laplace transforms, resulting in the displacements as 

time functions, and then, with the same program, we obtained the graphical representations of the rail 

displacements caused by its geometrical imperfections. Next, using the same method, we obtained graphical 

representations of the bogie and wheel displacements caused by forced and damped vibrations induced in the 

system by the action of a force. For the determination of the deflection of the flexible rail track under a moving 

load the mathematical model is a partial derivative equation. We integrated this mathematical model by first 

applying the one-sided Laplace transform with respect to time, resulting in a Laplace image equation, to which 

we applied the finite sine Fourier transform. Solving the resulting algebraic system, we obtained the dynamic 

response of the mechanical system in Laplace and Fourier images. Applying first the inverse of the Laplace 

transform and then the inverse of the Fourier transformation in sine to the algebraic system, we obtained the 

solution of the partial derivative equation mentioned above in the form of a time and displacement function, 

which we plotted with the Mathematica program. 

             Key words: modelling, vibrations, Mathematica program, response, rail track 

 
1. INTRODUCTION 

 

 In the paper [1], the author refers to the 
environmental effects of vibrations produced in 
railway traffic. This paper aims to develop a 
reliable methodology to predict the design stages 
of a railway vehicle or to implement a new 
railway, as well as the dynamic stresses that the 
vehicle is likely to transmit to the ground and to 
estimate the environmental impact.  
 His results show the important influence of 
vehicle-railway (track) interaction and the need 
for a comprehensive model in rail traffic 
vibration issues.  We were interested in 
determining the dynamic vibration response of 
the vehicle-railway system. For this purpose, we 
used the most modern integration methods used 
for such purposes at present. 

The paper [5] specifies that the intensity of 
mechanical vibrations generated by a moving 
train increases with increasing train speed. The 
idea presented in this research is to develop 
mechanisms with negative stiffness, with utility 
in the suspension of wagon halls. 

In [6] it is shown that locomotive operators in 
the USA are exposed to multi-axis whole body 
vibration. In this study the ergonomic design of 
operator chairs is questioned. In this research 
vibration exposure was measured according to 
international regulations (ISO 2631-1, 1997). 
The aim is to detect musculoskeletal problems of 
locomotive engineers caused by vibration 
exposure. 

Study [7] aims to investigate and compare 
vibrations and shocks of railway vehicles used 
in railway maintenance and construction. It is 
mentioned in the research that there are no 
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studies available in the literature on the risk and 
health of machine operators with regard to 
whole-body vibration and shock exposure 
among workers. 

In paper [8], a collection of vibration 
measurement reports on railway tracks is 
analyzed. The vibrations that occur on the 
railway are generated by the interaction between 
the wheel and the track, i.e. the rail, and then 
propagate into the ground. In [9], solutions are 
proposed to eliminate these vibrations, one of 
which is to use recycled tires. 

Vibrations recorded during truck transport 
are shown in [10], and mechanical stresses 
induced by the high temperatures themselves are 
shown in [11]. 

In [12], a state of the art in the prediction and 
control of ground borne noise and vibration is 
presented. Similar studies are presented in [13] 
and [14]. 

The paper [15] presents a human 
biomechanical model with 4 degrees of freedom 
of a human body in a car seat with backrest 
exposed to vertical vibrations. 

In [16] it is shown that prolonged exposure of 
the body vibrations of a tractor operator. An 
experimental investigation is carried out to 
determine the vibrations transmitted from the 
seat to the operator in order to determine the 
degree of operator comfort in different terrains. 

In the quantification of vibrations occurring 
in mechanical systems, dynamic analysis 
software for multibody systems, such as 
ADAMS, can be used. This is used in paper [17] 
to simulate bearing and shaft vibrations (shaft 
centre of mass translational deformations). 
 
2. DETERMINATION OF DYNAMIC 

RESPONSE 

Consider the two degree of freedom 
mechanical model in Fig. 1, where the rail mass 
is modelled as a concentrated mass of size: 
  

                  �� = �����,                       (1) 

where: sρ  - the specific rail mass; sA - area of 

rail section; L - length of rail. 

 
Fig. 1. The two-degree-of-freedom, no-load model for 

railways. 
The mechanical model in Fig.1 generates the 

mathematical model below: 
 �	
��••� + ��
��� = �0�,                       (2) 

 
where: [ ]M  - matrix of masses;  [ ]K  - stiffness 

matrix; { }q  - matrix of displacements; m2 - 

crossbeam mass; k1 - the rail stiffness 
coefficient; k2- the coefficient of stiffness of the 
cross-beam; 
 �	
 = ��� 00 ��� ; ��••� = ���••

��•• � ; ��� = ������ ; ��
 =
��� + �� −��−�� �� � ; �0� = �00�. 

 
Applying the Laplace transform to system 

(2), initial conditions being: 
 

 ���0� = ���; ���0� = ���; �•��0� = 0; �•��0� = 0, 
so that the vibrations are considered to be 
generated by the geometrical imperfections of 
the rail, the algebraic system is obtained: 

  ���!� + �� + ����"��!� − ���"��!� = ��!���−���"��!� + ���!� + ����"��!� = ��!���   (3) 

 Solving the algebraic system elementary (3), 
results in the Laplace images ( )1q s%  and ( )2q s%  

of desired motions q1(t) and q2(t), as below: 
 �"��!� = !���������!� + ��� + �������
���!� + �� + ������!� + ��� − ���, 

(4)         �$��!� = �%&'(')*&+�',-+,-'.,-+&+(+)/�&+�',-+,-'��&'�',-+�0-+'         
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Fig. 2. The two-degree-of-freedom model with loading 

for railways. 
 

 In Fig. 2 a train axle load of size P is 
considered. This time we have worked under 
homogeneous initial conditions, i.e. 
 ���0� = 0; ���0� = 0; �•��0� = 0; �•��0� = 0 

 
System (2) becomes: 
 �	
��••� + ��
��� = �1�,                  (5) 
 
where: �1� = �20� 

 Applying, under these conditions, the one-
sided Laplace transform with respect to the 
system time (5), results in the algebraic system 
in the unknowns  ( )1q s%  and ( )2q s% : 

 

     !���!� + �� + ����"��!� − !���"��!� = 2−���"��!� + ���!� + ����"��!� = 0          (6) 

 
 Solving the elementary algebraic system (6), 
results in Laplace images ( )1q s%  and ( )2q s%  of 

motions searched q1(t) and q2(t), as below: 
 �"��!� = 2���!� + ���!���!� + �� + ������!� + ��� − !���, 

�"��!� = 3-+��&+�',-+,-'��&'�',-+�0�-+'        (7)                                   

Using Mathematica, based on the data in 
Table 1, we inverted the Laplace transforms (4), 
after which, with the same program, we obtained 
the graphical representations from Fig. 3 and 
Fig. 4. 
 With the program Mathematica we inverted 
the Laplace transforms (7), based on the data in 
Table 1, then with the same program we 

obtained the graphical representations in Fig. 5 
and Fig. 6 
 It is easy to see from these representations 
that the displacements caused to the rail by the 
vibrations induced by the P load are larger than 
those caused by a geometrical non-uniformity of 
the rail. Introducing damping into the system 
leads, in the case of vibrations generated only by 
geometrical imperfections of the rail, to the 
mathematical model below. 
 �	
��••� + �4
��• � + ��
��� = �0�,           (8) 

 
where:  ��
 = ��� + �� −��−�� �� � ; �4
 = 56� + 6� −6�−6� 6� 7 ; ��••�

= ���••
��•• � ; ��• � = ���•��• � ; ��� = ������ ; 

�1� = �00� 

 Applying, under initial conditions ���0� =���; ���0� = ���; �•��0� = 0; �•��0� = 0,  
 

Laplace transform to system (8), results in the 
algebraic system: 

 

⎩⎨
⎧���!� + �6� + 6��! + �� + ��
�"��!� − �6� + ����"��!� = �����! + �6� + 6����� − 6����−�6� + ����"��!� + ���!� + 6�! + ����"��!� =�����! − 6���� + 6����

      (9) 

 
 Solving elementary the algebraic system (9), 
results in Laplace images ( )1q s%  and ( )2q s%  of 

movements searched q1(t) and q2(t), as below: 
 

⎩⎪⎪
⎨⎪
⎪⎧�"��!� = ������! + �6� + 6����� − 6����
���!� + 6�! + ��� +�6� + ���������! − 6���� + 6��������!� + �6� + 6��! + �� + ��
���!� + 6�! + ��� − �6� + ����

�"��!� = ���!� + �6� + 6��! + �� + ��
������! − 6���� + 6����� +�6� + ���������! + �6� + 6����� − 6����
���!� + �6� + 6��! + �� + ��
���!� + 6�! + ��� − �6� + ����
 

 (10) 
 Introducing damping into the system, in the 
case of train loading, on the axle, with load P, 
leads to the mathematical model: 
 �	
��••� + �4
��• � + ��
��� = �1�               (11) 
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 Applying, under homogeneous initial 
conditions, the Laplace transform to the system 
(11), the following system is obtained:  
 

<!���!� + �6� + 6��! + �� + ��
�"��!�−!�6�! + ����"��!� = 2−�6�! + ����"��!� + ���!� + 6�! + ����"��!� = 0,     
                  (12) 

with the solution, in Laplace images ( )1q s%  and 

( )2q s%  of motions searched q1(t) and q2(t),  

 

<�"��!� = 3*&'�',=+�,-+.��&+�',�=+,='��,-+,-'
�&'�',=+�,-+�0��=+�,-+�'�"��!� = 3�=+�,-+���&+�',�=+,='��,-+,-'
�&'�',=+�,-+�0��=+�,-+�'
              

(13) 
 With the Mathematica program we inverted 
the Laplace transforms (13), based on the data in 
Table 1, then with the same program we 
obtained the graphical representations in Fig. 9 
and Fig. 10. 
 With the Mathematica program we inverted 
the Laplace transforms (10), then with the same 
program, based on the data in Table 1, we 
obtained the graphical representations in Fig.7 
and Fig.8. 
 In [18], Krylov proposes an analytical 
method to determine the deflection w (x, t) of a 
flexible railway track under moving load and the 
effects on the ground. 

He thus takes up a quasi-static approach 
based on the equation describing the vertical 
behaviour of a beam on a Winkler foundation: 

 
 >�?� @AB�C,D�@CA + �EF�G, H� = 2�G − IJH�,          (14) 

 
where the parameter �E is the stiffness (per unit 
length) of the foundation, which is approximated 
by: �E = K L-+ + L-'M0�

, 

 
and v0 is the speed of the train set, which we 

further take to be 100 5N&
ℎ

7. 

Applying the unilateral Laplace transform 
with respect to time to equation (14), we obtain 
the equation: 

 

>�?� @AB$ �C,��@CA + �EF$�G, !� = 2G �� − 2IJ ��',         (15) 

to which applying the Fourier transform in the 
sine (the resemblance conditions allowing this) 
leads to an algebraic equation whose solution is: 

( ) ( ) ( ) ( )n 1 n 1
0s 4

1 1 n fn

P 1 1
w n,s 1 L v 1 1

s sEI K

+ +  = − − + −   α α +
%                        

(16) 
 Applying the inverse of the Laplace 
transform in (16), we obtain the solution of the 
problem in the Fourier transform of the sought 
solution as: 

( ) ( )
( ) ( )

( )

n 1

n 1s 4
1 1 n f 0n

1 LH tP
w n, t

E I K v 1 1 t

+

+

 − − =  
 α α + + −   

 (17) 

 Applying the inverse of the sine Fourier 
transform to relation (17), the solution of 
equation (14) is given as: 

( ) ( )
( ) ( )

( )
( )

n 1
n

nn 14
n 1 1 1 n f 0n

1 LH t2 P
w x, t sin x

L E I K v 1 1 t

+
=∞

+
=

 − − = α 
 α α + + −   



,      (18)        
where OP = PQL , and H(t) is the function of 
Heaviside. 
 

    

Fig. 3.  Mathematica computed displacement q1= q1(t)                                  

 

Fig. 4. Mathematica computed displacement q2= q2(t) 
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Fig. 5. Mathematica computed displacement q1= q1(t)                                               

      

 
Fig. 6. Mathematica computed displacement q2= q2(t) 

    

 
Fig.7. Mathematica computed displacement q1= q1(t)                                              

   

 
Fig. 8. Mathematica computed displacement q2= q2(t)  

    

 
Fig. 9. Mathematica computed displacement q1= q1(t) 

 

 

Fig. 10.  Mathematica computed displacement q2= q2(t) 
 

Comparing the latest graphs, where 
amortization has occurred, with the previous 
ones, which were not subject to amortization, it 
can be seen, as expected, that the latter are much 
lower. With the data in Table 1, using 
Mathematica, the 3D graphical representation of 
the displacement is obtained, given by (18) 
induced to the rail by the vibrations of the 
system, as below 
 

 
 

Fig. 11. Graphical representation of the temporal 
deflection behaviour of a flexible railway track. 
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 In the following we have shown how the 
vibrations of a multibody wagon-bogie-wheel 
system could be modelled. For the vehicle in 
Fig.12 each axial axle load is modelled by a 
system with three degrees of freedom. 
  

 
Fig. 12.  The multibody model, with three degrees of 

freedom, of the railway vehicle. 
 

2.1. Modelling of forced and damped 

vibrations                                      
  

The mathematical model of the forced and 
damped vibrations of the railway vehicle in 
Fig.12 is 

 �	
��••� + �4
��• � + ��
��� = �1�,       (19) 
where: 

[ ]M  - matrix of masses;  [ ]C  - damping 

matrix; [ ]K  - stiffness matrix; { }q   - matrix of 

displacements; { }Q - generalized force matrix;  

where:  
 

 �	
 = R�� 0 00 �� 00 0 ��S ; �4
 =
R 6� −6� 0−6� 6� + 6� −6�0 −6� 6� S ; ��
 =
R �� −�� 0−�� �� + �� −��0 −�� �� S ; 

��� = T�����UV ; ��• � = W�•��•��•U
X ; ��••� = W�••��••��••U

X ; �1�
= T −��Y−��YZ − �UYV 

 
m1 - mass of the wagon; m2 - bogie mass; m3 - 
wheel mass; k1 - the stiffness coefficient related 
to the wagon; k2 - the stiffness coefficient related 
to the bogie; c1 - the depreciation coefficient 

related to the wagon; c2 - the corresponding 
depreciation coefficient related to the bogie. 

Applying the unilateral Laplace transform, 
with respect to time, the system of differential 
equations with constant coefficients (10), results 
in an elementary algebraic system, which has as 
unknowns the Laplace transforms �"��!�, �"��!�, �"U�!� of displacements 

( ) ( ) ( )1 2 3q t , q t , q t , in the form: 
 

⎩⎪⎨
⎪⎧!���!� + 6�! + ����"��!� − !�6�! + ����"��!� = −��Y−!�6�! + ����"��!� + !���!� + �6� + 6��! + �� + ��
�"��!�

−!�6�! + ����"U�!� = −��Y−!�6�! + ����"��!� + !��U!� + 6�! + ����"U�!� = Z − �UY
   

(20) 
            

 Solving the algebraic system elementary (20) 
results in Laplace images �"��!�, �"��!�, �"U�!� of 
displacements ( ) ( ) ( )1 2 3q t , q t , q t , in the form: 

 �"[�!� = 3\���3��� , ] = 1,3                               (21) 

 
where: 
 2��!� = −��Y!�����!� + �6� + 6��! + ��+ ��
��U!� + 6�! + ���− �6�! + ����� + +!��6�! + ����−��Y��U!� + 6�! + ���+ �6�! + ����Z − �UY�
 

 2��!� = !����!� + 6�!+ ����−��Y��U!� + 6�! + ���+ �6�! + ����Z − �UY�
 − −��Y!��6�! + �����U!� + 6�! + ��� 
 2U�!� = !����!� + 6�!+ �������!� + �6� + 6��! + ��+ ��
�Z − �UY�− ��Y�6�! + ���� − 

   −!��6�! + �����Z − �UY� 
 2�!� = !U���!� + 6�!+ �������!� + �6� + 6��! + ��+ ��
��U!� + 6�! + ���− �6�! + ����� − −!��6�! + �����U!� + 6�! + ��� 
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2.2. Modelling of forced and non-damped 

vibrations 

 

 The mathematical model of the forced and 
non-damped vibrations of the railway vehicle in 
Fig.12 is: 
 �	
��••� + ��
��� = �1�              (22)  

                                
Applying the unilateral Laplace transform, 

with respect to time, the system of differential 
equations with constant coefficients (10), results 
in an elementary algebraic system, which has as 
unknowns the Laplace transforms �"��!�, �"��!�, �"U�!� of displacements 

( ) ( ) ( )1 2 3q t , q t , q t , in the form: 
 

 �"��!� = 3+���3��� , �"��!� = 3'���3��� , �"U�!� = 3̀ ���3��� ,  (23)    

where: 
 2��!� = −��Y!�����!� + �� + �����U!�+ ��� − ���
+ !����−��Y��U!� + ���+ ���Z − �UY�
 2��!� = !����!� + ����−��Y��U!� + ���+ ���Z − �UY�
− ��Y��!���U!� + ��� 2U�!� = !����!�+ �������!� + �� + ����Z− �UY� − ��Y��
− ���!��Z − �UY� 2�!� = !U���!�+ �������!� + �� + �����U!�+ ��� − ���
− ��!���U!� + ��� 

(24) 
 

Inverting the Laplace transforms, with data 
from Table 1 of application, with the 
Mathematica program, results the graphical 
representations from Fig.13 and Fig.14 of the 
movements of the bogie and wheels caused by 
forced and damped vibrations induced by the 
force action system of 118 kN. Also, in Fig.15 
and Fig.16 are given graphical representations of 
the movements of the bogie and the wheels 
caused by the forced and non-damped vibrations 

induced by the system by the action of a force of 
118 kN. Comparing the displacements in the 
graphs in Fig.13 and Fig.14, with those in the 
graphs in Fig.15 and Fig.16, it is clear that the 
former is much smaller than the latter. This 
shows the importance of introducing damping 
devices into vibrating mechanical systems. 

 

  

Fig. 13. Mathematica computed displacement q� = q��t�          

                                      
 

 

Fig. 14. Mathematica computed displacement  qU =qU�t� 

   
Fig. 15. Mathematica computed displacement q� = q��t�    

 

 
Fig. 16. Mathematica computed displacement qU = qU�t� 
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Table 1 

 

3. CONCLUSIONS 
 

In this paper, an analysis was performed to 
determine the deformation w (x, t) of the flexible 
railway subjected to a mobile load, as well as the 
effects on the ground.  

 
The determination of the dynamic behaviour 

of the structures subjected to vibrations was 
done with the help of integral transformations. 
These, leading to the so-called algebraization of 
the problem, facilitate the determination of the 
dynamic responses of vibrating systems.  

 
The graphical representation of the temporal 

behaviour of the flexible rail deflection was 
obtained with the Mathematica program. For the 

model with two degrees of freedom, without 
load, for the railway, the unilateral Laplace 
transformation in relation to time was also 
resorted to.  

 
With the Mathematica program, based on the 

numerical data presented in the paper, we 
reversed the Laplace transformations, resulting 
in displacements in the form of time functions, 
after which, with the same program, we have 
graphical representations of displacements and 
cause imperfections and geometries. . 

 
Next, using the same presentations, we 

obtained graphical representations of the bogie 
and wheel movements caused by the forced and 
damped vibrations induced by the system by the 
action of a force.  

 
Comparing the movements of the bogie and 

the wheels caused by the forced and damped 
vibrations, induced by the action of a force, with 
those caused by the forced and non-damped 
vibrations, it is found that the former is smaller, 
which does not show the importance of 
introducing damping means in mechanical 
vibration systems.  
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Parameter Unit of 

measure 

Symbol  Size 

Longitudinal 
modulus of elasticity 

of the rail 

[ ]GPa
 

E1 210 

Moment of inertia of 
the cross sections of 

the rail 

4cm 
   

I1 1987 

Density of the 
material 

 
3

Kg

m

 
  

 1ρ  7850 

Stiffness coefficient 
related to the rail 

MN

m
 
  

 
k1 90 

The cross-sectional 
area of the rail 

 

MN

m
 
  

 
k2 25,5 

The cross-sectional 
area of the rail 

2cm 
   

A1 63,8 

Rail length 
 

[ ]m  L1 0,72 

Cross mass [ ]Kg  m2 90,84 
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MODELAREA EFECTELOR VIBRATORIILORLOR ALE TRAFICULUI FEROVIAR  

ASUPRA MEDIULUI 
 

Rezumat: În ciuda numeroaselor progrese tehnologice, zgomotul şi diversele forme sub care 
el se manifestă este perceput ca o sursă multiplă de probleme asupra mediului înconjurător, 
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care sunt din ce în ce mai mult suportate de oameni. Sensibilitatea față de vibrațiile traficului 
feroviar este cea mai importantă în opinia cercetătorilor. În această lucrare ne-am propus să 
determinăm răspunsul dinamic la vibrații al sistemului vehicul-cale ferată.  În acest scop am 
folosit cele mai moderne metode de integrare folosite în astfel de scopuri la ora actuală. Pentru 
modelul cu două grade de libertate, fără încărcare, pentru calea ferată, am apelat la 
transformata Laplace unilaterală în raport cu timpul care a dus la algebrizarea problemei, ceea 
ce a simplificat integrarea sistemului de ecuații diferențiale. Cu programul Mathematica, în 
baza datelor numerice prezentate în lucrare, am inversat transformatele Laplace, rezultând 
deplasările sub forma unor funcții de timp, după care, cu același program, am obţinut 
reprezentările grafice ale deplasărilor șinei provocate de imperfecțiunile ei geometrice. În 
continuare, apelând la aceeși metodă, am obținut reprezentările grafice ale deplasărilor 
boghiului şi roţilor provocate de vibraţiile forţate şi amortizate induse sistemului de acţiunea 
unei forţe. Pentru determinarea deflexiei căii feroviare flexibile supuse unei încărcări mobile 
modelul matematic îl reprezintă o ecuație cu derivate parțiale. Acest model matematic l-am 
integrat aplicându-i, mai întâi, transformata Laplace unilaterală în raport cu timpul, rezultând 
o ecuație în imagini Laplace, căreia i-am aplicat transformata Fourier finită în sinus. 
Rezolvând sistemul algebric astfel rezultat, am obținut răspunsul dinamic al sistemului 
mecanic în imagini Laplace și Fourier. Aplicând, mai întâi, inversa transformatei Laplace și 
apoi inversa transformatei Fourier în sinus soluției sistemului algebric, am obținut soluția 
ecuației cu derivate parțiale, amintită mai sus, sub forma unei funcții de timp și deplasare, pe 
care am reprezentat-o grafic cu programul Matematica. 
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